WHIPPLE'S IMPROVED CLOTHES DRYER.

The device illustrated herewith will doubtless meet a ready welcome from laundresses, inasmuch as it tends to obviate the use of the stationary clothes line. Instead of the clothes being carried out to the line and there secured, requiring the person to emerge from a warm room, often into cold and blowy weather at the risk of incurring illness, the gar ments, through the present invention, are secured to lines on a simple frame, which last is then transported bodily out of doors, and set up-an operation requiring but a few se conds. The wooden frames, $5 \frac{1}{t}$ feet high by 4 feet wide

are neatiy strung with metallic line, the total length of the latter being about one hundred feet. At the upper left hand corner, as shown in the engraving, a hinge joins the tw frames, but in such a manner as to admit of their lower portions being thrown outward, as represented. The other upper corner is provided with a recessed hinge and set screw as shown at A. and is enlarged borow, the recess of the hinge allowing of the entrance of the shank of the screw and the consequent joining or loosening of the parts as desired.
When set up, the clothes, after being wrung out, ar attached, and the entire device is then carried to the drying ground and left there until the clothes are dry. This is of much convenience, since it allows of the transporting of frozen garments directly to the fire without requiring their being torn loose from the lines at the risk of injuring them, and ad mits of the clothes being carried immediately to shelter in case of a sudden shower.
The apparatus is readily converted into an ordinary clothes horse by loosening the screw, A, and securing the hinge, which joins the left hand corner of one frame to the right hand lower corner of the other.
For further particulars, address the manufacturer, Mr. D. B. Chapman, New London, Conn

The Recent Life-Saving Dress Trial in England.

We mentioned recently the remarkable performance of Captain Paal Boyton in making his way to land after having jumped overboard from the steamship Queen, while tha vessel was yet two and a half miles distant from Cape Clear through the support of a life-preserving dress, to exhibit which was the object of his transatlantic voyage. A storm arising, the efficiency of the invention was put to a severer test than the wearer contemplated; but though he was kep in the water some seven hours, during which period he travled thirty miles, Captain Boyton reached shore in safet and this despite a terrible buffeting from the breakers.
Since his arrival in England, Boyton has given several ex hibitions of the life-preserving capabilities of his dress in the Thames river, attracting large crowds of people, as wel as the examination of the Royal Humane and other societies
The latest test to which the invention has been subjected is certainly n crucial one; and although its wearer failed to ccomplish completely the task which he had set himself sufficient. nevertheless, was done to warrant the pronounc ing this device to be certainly one of the most efficient of life-preserving apparatus yet produced. Captain Boyton undertook to fioat from Dover to Boulogne, crossing the English Channel and accomplishing a distance of over fifty miles, within one day. The darkness of the night and in clemency of the weather. coupled with an error on the part of his pilot in not directing him a straight course, prevented the fulfilment of the undertaking; but as it was, the swim mer, after remaining in the water fifteen hours and reach ing a point within eight miles of his destination, etaerged with clothes dry, temperature of body lowered but one de gree, pulse at eighty, and fully capable, according to medi cal opinion, of remaining afloat at least six hours longer. A repetition of the effort will undoubtedly bring success, though to all practical purposes the same has already been
achieved. The credit, however, must in no slight measure
be awarded to Captain Boyton's powers of enduranco, a s it i ovident that, while the dress furnished buoyancy for the pe riod above named, it had nothing to do with the rapid pro pulsion of the individual over the water.
We notice that several of our contemporaries fall into the mistake that the invention is a very recent one. This is not the fact, since it is nearly six years ago that it was patented hrough this agency, by its inventor, Mr. C. S. Merriman both in the United States and in most of the foreign countries. In our issue of January 14, 1871, a fully illustrated description of the device appeared, together with an accoun of its successful exhibition off the Battery in this city.
The efficiency of the invention now being proved, it remains
to see how long before the steamship companies will defer to see how long before the steamship companies will defer its adoption. The objection of occupying valuable space cannot be urged against it, inasmuch as it can be folded into the compass of an ordinary overcoat ; nor is its cost,pro bably, to be compared with that of much more common and more elaborate life-preserving apparatus. With the record of its qualities now well known, it certainly appears that the knowledge of such a means of safety being on board would do much to lessen the terrors of the sea to the traveling public, and at the same time, as a necessary con sequence, to increase the receipts of sieamship lines.

IMPROVED ELECTRIC LAMP LIGHTER.

The lamp-lighting device shown in our illustration is called " the electro-catalytic lamp lighter, and is brought out by Messrs. Voisin \& Dronier, of Paris, France. It re embles, in its general features, the well known Dobereine apparatus, in which hydrogen gas is used to heat platinum sponge. In this case, the igniting material is a thin platinum wire, heated to glowing by an electric current passing through it, and thus igniting a wick, the lower part of wich is immersed in benzine which continues to burn until extin guished. Fig. 1 shows the apparatus in sectional side eleva tion, and Fig. 2 shows the igniting wire in its actual size.
The glass vessel, b, is placed in an inclosing casing or box and is provided with a galvanic element attached to the de tachable top, the long carbons, c, reaching down into a solu tion of bichromate of potassa and diluted sulphuric acid which fills the vessel, b, up to a certain point. A zinc plate d, is suspended between the carbons by a sliding spring acted rod, e. guided in a perforation at the top, and depressed by a button at its upper end; so that, when depressed, the zinc plate is immersed in the solution till it comes in contact with a lateral carbon connecting stop, f. At the under side of the lid of the vessel are applied two parallel copper wires, g, in contact with the sliding rod and the carbons, for trans mitting the electric current (produced by the immersion of he zinc) to the igniter at the ontside of the casing.
The igniter (Fig. 2) is composed of two copper tubes, $h h$, placed on the ends of the wires, g. The copper tubes are laterally connected by an insulated brace sleeve, j, and have, at their front end, small rods, i, which appronch each other. These small rods are connected by the spiral platinum wire, k, which is protected against injury by a perfora ted guard piece, l, attached to the lid and extended over the gniter. The length and resistance of the platinum wire

have to be determined in proportion to the galvanic element and if the wire is of proper length, it will be heated brightl when only one fourth of a square inch of the zinc is im mersed in the solution. The lamp, $: i b$, which is filled with benzine, is placed in front of the apparatus so that the wick is just below the platinum wire, but does not touch it. The lamp is attached to the base of the apparatus, and can be refilled by unscrewing the top part, the wick being held by a forked guide piece, n, in the exact position required for gnition
The whole apparatus can be hung by the ring, o, to the wall, or applied in any other suitable manner. The batter solution is sufficient for about 500 ignitions, while the gal-

quired.

A FEW LOCK IG BOLT

In the annexed engraving we illustrate a new and simple ocking bolt, such as is used for connecting fish plates with railroad rails, irons of railroad bridges, and for like pur poses. The novel feature is a mortise made near the outer and of the bolt and through the same, in which two arms or dogs, A, in the sectional view, Fig. 2 , are pivoted to a com mon center, B. Between the arms is arranged a U-shaped spring, which throws them outward. In pushing the bol hrough the aperture, and in applying the nut, the arms are asily shoved into the mortise; but when the nut is in place, as in Fig. 1, the arms are thrown out by the spring, their

square shoulders thus locking the nut. The device was pa ented January 20, 1874, to Mr. J. C. Tiffany, of Portsmouth N. H

Riveted structures.

Structures composed of several parts must mainly depend, for their strength and stability, upon the joints or means of connection between them. Thus, in a wrought plate girder he riveting becomes a very important element of strength, and no correctness of mechanical design or sectional area of parts will avail, if one of the join:s happens to be defective or weak. Every joint should, in fact, be equally as strong at the least, as the material or parts connected, for it is ver clear, if it were not so, the sectional areas of the plates o pieces would only be partially called into requisition, and, in fact the structure would be no atronger than its, and, joint, or its stability would be measurable by the strength of its joints. Taking, for example, a cylindrical boiler, its effective strength to resist the pressure of steam would only effective strength to resist the pressure of steam would only
be that of its weakest rivetpd joint, as we are all occasionbe that of its weakest riveted joint, as we are all occasion-
ally made aware of under the distressing circumstances of ally made aware of under the distressing circumstances of
boiler explosions. This point,in fact,cannot be toostrongly in boiler explosions. This point,in fact,cannot be toostrongly
sisted upon,for it is obvious that,in constructing such works, sisted upon,for it is obvious that, in constructing such work,
there is a tendency to regard the general form, and not ever detail; or in other words, the joints and minute connection are only thought of collectively. In every structurerequired for active stability or strength, the details require equal attention and care to that of the general design. As regards iron plates or boiler plates, it is known they have less tensile strength than the same iron made into bars. This is due chiefly to the process of rolling iron into plates of such thinness; and it is also found that a boiler plate is less tenacious across the fiber than in its direction; its greatest cious across the fiber than in its direction; its greatest
strength being about 20 to 22 tuns per square inch, while strength being about 20 to 22 tuns per square inch, while
its least strength in the transverse direction is about 10 tuns per inch of section. In making cylindrical boilers, therefore, t is evidently desirable to put the plates in their strongest direction round the boiler, so that the transverse pressure, which is always the greatest, should have the strongest direction of the plates. It is seldom found that boilers give in their longest direction, and a cylindrical boiler is calculated to have about double the strength in that direction to what it has transversely under a given uniform pressure of steam. The circular or cylindrical form of boiler is the strongest, and has superseded the rectangular form with flat purfaces. It is easily seen that a circular form is the best for resisting uniform pressure. For the plates, though wrought iron is commonly used, steel is rapidly coming into use. The relative strengths of iron and steel are as follows:

$$
\text { Iron.. } 50,000 \text { lbs. }
$$

Steel. 90,000 lbs.
From which it is seen that steel has nearly double the strength of wrought iron. The recent boiler explosions which have startled the public will, we believe be the means of introducing to a greater estent than bitharto the claims of steel for boiler plates. Let us further examine the conditions of strength in boiler construction; and first as regards the materials and joints: We may bere casually refer to the advantage that would arise, in reducing the risks of the calamitous accidents we are constantly hearing of, if periodi.
oal tests were instituted by government authorities by the ap plication of hydraulic or steam pressure of double the usua working pressure.* It is very evident that the strength of a boiler depends, first upon the resistance to tearing of the plates, and secondly upon the resistance to shearing of the rivets. New plates may tear along the line of rivet holes, or by the detrusion of the pieces of plate between the holes and the edge of plate. In this case, the resistance is meas multiplied by the number of pieces detruded or pushed out. We hava already shown that the tenacity of boiler plate is about 20 tuns per square inch. As regards rivets, the shearing strength may be taken as the same; 22 tuns is considered the average, however, for best Yorkshire iron. We have nest to consider how the riveting can be made to equal in in strength the plates, so as to obtain the greatest amoun of strength from both. This is usually done by making the rivet equal to twice the thickness of the plate. Then the pitch or distance from center to center of rivets must be considered, as it is very clear, if this distance is not sufficient to make the plate between two rivet holes as strong as the rivet itself, no advantage is gained, as the least resisting will give. Thus,in a single riveted joint,the breadth should be at least equal to three diameters of the rivet, and the pitch should also be three diameters. The plates at the lap joint are double, hence are equal in strength to the rivet; and the distance from the rivet iole to the edge of the plate must be one diameter, hence the whole width of the joint from center of the rivets will be three diameters, as above stated. There must, it will be seen, be a diminution of the effective strength of the plates in thus riveting them together, equal to the amount of metal punched or drilled out, which is one third. This diminution in the strength must be carefully considered, and precautions taken to lessen it as much as possible, either by increasing the number of shears to which a joint is liable, or by drilling the holes. Thus, a double shear rivet is considered twice as strong as a single shear one and to make the joints equally strong the single shear joint should have twice as many rivets as the other. Fig. 1 show

a double shear rivet, and Fig. 2 a single one. When plates are in tension, the aggregate shearing area of the rivets on each side of the line of joint, multiplied by the safe strain to shearing per inch, should equal the total working strain on the plates. In some joints, as in girder plates, the collective shearing area of the rivets should be nearly equal to the effective plate area. In practice, the rivet area is made about $\frac{1}{10}$ greater, to compensate for any inequality in the strain. "In steel plating," observes Mr. Bindon Stoney," the rivet area of the rivets in steel should be one third greater than the nett area of the plates, but the heads, of steel rivets are very apt to fly." Mr. Hodgkinson deduced from experiments that the "strength of plates, however riveted together with one row of rivets, was reduced to about one half
the tensile strength of the plates themselves; and if the rivets were somewhat increased in number and disposed alternately in two rows, the strength was increased from one half to two thirds or three fourthsat the utmost. For the relative strengths the following may be taken
Strength of an unpunched plate, 100 ; strength of a double riveted joint, 66 ; strength of single-riveted joint, 50. Punch ing, it would appear, reduces the tensile strength of iron to a greater degree than the entire area of metal punched out. It has been stated that drilled plates are 15 per cent stronger than punched ones. The preceding remarks apply to girder and boiler riveting. We give here the rules adopted by boiler makers. For plates less than $\frac{1}{i}$ inch thick, the diameter of rivet equals twice the thickness of the plate. For plates more than $\frac{1}{y}$ inch thick, the diameter of rivet equals once and a half the thickness. The pitch of single joints equals $2 \frac{8}{8}$ to 3 diameters, and that for double joints equals 3 to 4 diameters. The lap for single joints equals 3 diameters, and that for double joints 5 diameters, of the rivet. While in boilars the distance between the holes and edge of plate is 1 diameter, in girders it is seldom less than $1 \frac{1}{2}$ times diameter of rivet, and the pitch varies from $2 \frac{1}{y}$ to 5 or 7 inches. Some joints, as in girder work have covers or plates riveted on one or both sides; these covers should equal in strength the plates. See Fig. 3, which shows an economical arrangement of tension joint. Another resistance must be notioed, which tends to increase that of
the riveting, namely, that due to the contraction of the rivets when cooling. This frictional resistance does not, however, when added to the rivet's resistance, quite equal that of the plates, though much stress is placed upon it by engineers.

Various ingenious devices have been proposed to obtain a uniform strength both in the plates and joints. Oval rivets
have been suggested, in which a greater area is left between the holes by putting the narrowest part of the rivet in line with the joint,the longest diameter being placed in the other
direction. Thus a $\frac{8}{2}$ inch round rivet may, as far as its direction. Thus a $\frac{f}{8}$ inch round rivet may, as far as its rea of section and strength; but the hole being reduced in he direction of the joint or weak line of the plate, greate advantage would result,because the plate could be made so much stronger. Oval holes may as easily be drilled as round ones, and it is not improbable this mode of riveting will supersede the ordinary kind for boilers before long.
Sir W. Fairbairn proposed rolling the plates with thicker adges along the rivet holes so as to approximate the strength of both; this, too, is a feasible suggestion. Another equally rood plan is to arrange the plates and joints diagonally, the joints being at an angle of 45° with the aris of boiler. By
this plan the strength of the boiler is increased considerably, this plan the strength of the boiler is increased considerably,
according to Mr. W. R. Browne, in the ratio of four to five.
In good boilers the joints that have to resist the greates strain, the circumferential, are double-riveted, while those subject to longitudinal strain are single-riveted. Even this precaution, however, does not mase the joints so strong a The plates by a ratio of one fifth.

Corrtegpoufeute.

The White streak in silk

To the Editor of the Scientific American;

I am aware that manufacturers have been more or les wist, and that dyeing by the ordinary process for silk would not color it. It is alleged that it may arise from not thoroughly washing the material from soap; or it may arise from dead wood, or from adulteration, or from a parasite or fun gus. That it is not soap, every dyer knows. That it is no a parasite or fungus is evident, because an ordinary thread of twist contains about 15 threads as reeled, and each thread about 5 as spun by the worm, so that the aggregate is 75 threads. Were it a parasite or fungus, it would be a spot only on 1 thread of the 75 , and the other 74 threads would wrap round it, and it would be lost to view. No silk made on mills where the spindles are run with leather belts and the silk is taken up on shaft bobbins, and is not stretched on the stretchere now in use, ever developed the so-called white streak.
That it is a vegetable substance is shown by the fact that the process for dyeing cotton, flax, or woody fibers colors it but the process for silk, wool, feathers, or other animal sub stances will not color it.

The friction rolls on spioning mills are continually wear ing, by friction with the silk. The bands are whipped and worn, at the knots, into fine threads flying around the spin dle; the wood rolls of the stretcher are constantly wet and softened, and are subject to friction, giving off fine particles. All these latter are taken up more or less by the thread; and it is from this source the trouble must be looked for
I would like to confirm the statement that it is found on
raw silk by boiling and dyeing; then if thestreak remains, I raw silk by boiling and dyeing; then if thestreak remains, on, parasite, or fungus.

Lewib Leigh
Mansfield Center, Conn

A Remedy for Potato Blight.

To the Editor of the Scientifle American:
Having read a communication from Mr. Lyman Reed, of Boston, some months since, concerning the cause of the potato rot, and referring the process to the action of microscopic parasites attacking the tubers, I devoted some spare hours to the verification of his view, which, with some modifications, I am compelled to indorse. My investigations have been conducted with an instrument magnifying 800 diameters (640,000 times), assisted by a dissecting microecope giving 50 diameters, for the preparation of sections and the isolation of specimens. My method has been to procure specimens of the different varieties, and, having carofully cleansed them, to subject them to gentle heat for 96 hours or more, then to submit them to a careful examination. The ova of the insects seem to occupy the interior layer of the cuticle of the tubgrs, and pass rapidly into larvalstate under the proper thermal condition. I have no doubt that they commence that histolytic process that ends in the destruction of the taber; bat I doubt whether there is any genetic connection between the fungi developed on the stalks in the course of
the degeneration, and the larve, in which the degeneration the degeneration, and the larve, in which the degeneration primarily starts. The fungi are very likely independent structures resulting from the deposition of spores from the atmosphere, on vegetable tissue already in the course of dissolution from other causes. Indeed, I may say that from ac. tual examination I am assured that such is the case, and that, as a general rale, vegetable tissues develop microscopic fungi in the process of breaking down, where similar spores deposited on healthy tissue would remain undevelnped.
I have made drawings of the larvæ mentioned by Mr. Reed in their various stages, and, what is more important, have tested them with various re-agents. Tested with weak solution of sulpharic acid, they become very active for a few minates, then fall into a torpid state, but finally recover. Substantially the same effect is produced by alcuhol. Ordinary whale oil attacks them viralently in the larval state, but not so virulently in the less developed stages. Kerosent oil is still more fatal to them in the larval state; but unless a considerable quantity is absorbed they gradually recover, aud the younger the larva the less readily they gield to the action of kerosene. In some experiments prosecuted last
summer on what are generally known as apple tree worms he same rule held good. Sperm oil and kerosene were both destructive to the fully developed larvæ, but very inefficien when applied to the undeveloped ova. After thoroughly esting the potato larvex in their various stages, with solu ions of nitric, muriatic, sulphuric, and oxalic acids, then with alcohol, sperm oil, and kerosene, and with various alkalies, and finally with iodine tincture, I was forced to the conclusion that the remedy was not to be sought in this di ection, and tried a combination of one part of carbolic acid to hirty parts of common whale oil, with unerringly destruc ive results, both as respects the larvæ und the ova
If you will permit me, on a subject of such importance hrough your universally read journal. I will take the liber y of announcing that a bland solution of carbolic acid in common whale oil or kerosene is the scientific remedy fo the rot. The best way to use it would, I think, le to dip the potato, just before planting, in the solution, which is very inexpensive and very easily obtained. I may add that my experiments convince me that carbolic acid in this bland solution in no way impairs the germinal activity of the tuber ; but, by way of certainty, let me recommend your far mer readers to first try the experiment on a few hills this spring,
I will, should you signify that it would be agreeable t you, be glad to give you full details of my investigations, you, be glad to give you full details of my investigations,
accompanied with drawings of the insects in differentstages, accompanied with drawings of the insects in different stages
and descriptions of structure and manner of development and descriptions of structure and manner of development
from the egg, of which I have copious notes: according always to Mr . Reed the full honor of first discovery.
New York city.
Francib Gerry Fairfield.

The Flow of Water in the Suction
In reply to your many correspondents $w . i 0$ ask about (and are pleased to commend) my recent article (in "Practica Mechanism") on the subject of pump suction pipes, I would say that the result of my experience has been that, by allow ing the flow of water through suction pipes to be 300 instead of 500 feet per minute, the following increase in the ratio of efficiency of the pump is attainable, and carefully conducted tests show it to be correct : Under a 27 feet lift, 15 per cent under a 15 feet lift, 7 per cent; urder a 5 feet lift, 2 per cent.
I account for this increase of efficiency as follows: Since the area of a circle increases as the square of the diameter the friction of the water is, proportionally to its volume, less in the larger pipe. Tbe check given to the upward move ment of the water (in the suction pipe) by the pump piston (when it reverses its motion at the end of the stroke, and be fore the suction valve has had time to close) is experienced to a less degree upon the larger than upon the smaller body of water contained in the suction pipe. The larger suction pipe holds a proportionally larger supply of water close to the pump barrel, and serves in the same way as does a steam chest to a steam engine, to increase the volume of the supply. The increased efficiency, due to the application of an air chamber to the suction side of a pump, is in part, if no wholly, due to the same principle. The presence of air in communication with the suction pipe is neither desirable nor obtainable in a continuously working pump, because the wa ter in time absorbs all the air, and fills the chamber which contains it. That vessel may therefore be more correctly contains it. That vessel may therefore be more correctly
termed a supply reservoir. In the experiments referred to termed a supply reservoir. In the experiments referred to above, there was one bend or elbow in the suction pipe im-
mediately outside the pump barrel, and the water was re ceived into a reservoir in the pump and directly beneath the suction valves, which were of rubber and of the kind known as griddle valves. They were as large in area as the barrel of the pump; the reservoir referred to was about two thirds as large in cubical contents as the pump barrel, and (as a consequence) but very little difference in the ratio of the efficiency of the pump was observable, whether the suction pipe was supplied with an air chamber or not, excepting a the 27 feet lift test, at which the application of the air cham ber increased the efficiency about 3 per cent. The number and radius of the bends in a suction pipe affect the efficiency of the supply of water to a serious degree, as the greater their number, and the less the radius of each bend, the larger should be the area of the suction pipe. These conditions are however, so variable that but little would be added to our present knowledge upan the subject by making tests, unless under a multiplicity of those conditions.
I stated, in the article on pumps, that "all pumps ihrow less water than their capacity, the deficiency ranging from 20 to 40 per cent, according to the quality of the pump This loss arises from the lift and fall of the valves, fron inaccuracy of fit or leakage, and in many cases from there bting too much space between the valves and piston or plunger." To this latter remark, I would now add that, in cases where the defect referred to exists, I haveincreased the efficiency of the pump as much as 25 per cent by simply filling in the vacant space with lead, first boring a few holes in the metal for the molten lead to run in, so as to prevent the lead from moving when cold. It is of vital necessity to keep the space between the pump plunger or piston and the valves as small as possible, filling in all corners and allowing only room sufficient to allow the latter to open to the neces sary distance.
279 West 12th street, New York city.
SAWDUBT, mised with any resinous substance,cut in small cakes and dried, makes good fire lighters, and saven kindling

