THE MODERN THEORY OF COLOR.

A macture hy president henry morton, of the atevene ingtitute of tecenolooy.

In a lecture, recently delivered at the Stevens Institute of Technology, President Morton explained our perception of color in accordance with the generally received modern theories on the subject, which he illustrated by means of many ingenious and striking experiments. The following is the substance of the lecture:
Color, physically considered, is synonymous with wavelength, light being composed of minute undulations or waves, varying in length from the 35000 the 60 of on anch, the former being the length of the red, and the latter of the violet wave. These waves strike the eye with a velocity of 185,000 miles per second. Nearly 200,000 miles of them, therefore, enter the eye in every second; and every inch of these miles contains between 35,000 and 60,000 little waves. The whole number in a single ray is so enormous that it conveys no impression to our minds. Counting five every second, day and night, it would take about three millions of years to count what the eye receives in a single second. Yet the eye, when perceiving colored objects, not only takes cognizance, in some mysterious way, of these rapid motions, but even distinguishes their rates of velocity. Between the rates of motion of the colors at the extremities of the spectrum, there might be an infinite number of intermediate rates, and hence of intermediate colors and shades. Evidently, however, the eye is incapable of discriminating more than a very limited number. And this brings us to the consideration of the eye itself, and the means by which we perceive color.

Fig. 1.

is supposed to be tuned to the reception of color vibrations, just as the rods of the auditory nerve are tuned to sound vi brations. Fig. 3 gives a still more enlarged view of the rods and cones, showing their peculiar structure much more
 plainly. Each of them is
in communication with a n communication with a so-called granule, forming an enlargement which con tains a nucleus. In life the granules are entirely transparent. Professor Max Schultze says: "The rods and cones mast be consi dered the nervous terminal rgans of the optic nerve them must take place tranation of the ac ion light into the acction, which procervous aty lies process ulti ion of the foundation of the act of vision." On still further magnifying these curious organs, it will be seen, from Fig. 4, that even they, minute as hey are, are divided into till more minute parts. What the functions of these ultimate parts are we cannot tell; although we have reached the extreme ond of the optic nerve, and have seen its wonderful complexity, we can only reason that the conversion of light into sight must take place here; but we do not seem to have approached a knowledge of hovo it is accom plished by a single step. The whole subject lies far out in the terya incognita of Science, and it is only intended here to state the problem as it stands at present, and to show through how tangled a jungle the path of knowledge lies in this direction.
Passing now from the anatomical considerations of the subject, we will examine the theoretical view proposed by Thomas Young, and more fully developed by Helmholtz. Ac cording to this theory, the eye perceives originally but three colors or wave lengths, and all the other colors and shades known to us arise from the compounding of the primary ones in the eye. Accordingly, we assume that the eye has three sets of nerves-one affected by red, another by green, and a third by violet. In other words, the nerve for red is tuned to vibrate to red waves of light, just as a tuning fork is set in vibration by communicating with a body sounding its note; and so with the oth-

Fig. 1 exhibits the general structure of the eye. It is like photographic camera, or dark chamber, with its lens in frontand a sensitive plate behind; only, instead of being coated with collodion, the sensitive part is a hollow sphere, covered with a delicate network of nerve structure, called the retina, which it is well worth our while to examine a little more in detail.

Fig. 2.

Fig. 2 shows the layers of the human retina magnified 400 times. There are no less than ten of them, all of which, with the exception of the two terminal ones, are made up of nerve tissue and connective substance. As the Gigure stands, the light enters from the bottom. The vibrations communicated to the nerve substance finally reach the ninth layer, where experiments, which it would take too long to describe here, have led investigators to believe that the sensation of sight is located. This layer, called the "rods and cones," from the shapes assumed by the optic nerve substance there, er nerves. Each of these nerves, however, is capable of being affected, though in a much inferior degree, by colors be-

longing to the others. Thus the red nerves would be some ${ }^{-}$ what sensitive to green waves, but would perceive them as a faint red. If, for example. we look at blue light, whose rate of vibration is intermediate between green and violet, it will affect the green and the violet nerves, producing a mixed impression, which we call blue.
Let us try and prove this. If blue is to the eye simply the result of a combined impression of green and violet, then, by exciting both the green and violet nerves by means of the corresponding colors, we ought to get a perfect impression of blue; butif the eye recognizes blue as a distinct thing, then a misture of green and violet light will give the impression of something notidentical with blue.
The lecturer then threw two disks of light on the screen, one violet and the other green; where they overlapped the result was a beautiful blue, as represented in Fig. 5.

Fig. 5.
Fig. 6.

Similarly red and green disks of light, thrown on the screen, produce the compound impression we call yellow (Fig. 6).
It may be asked, however: Is not blue, being an intermediate wave length between green and violet, in fact their true average and equivalent? To show that this is not the proper manner of considering the question, it is only neces. sary to look at the manner in which waves combine. In the We are indebted to Messrs. Wm. Wood \& Co. Por the electrot
uta FIg. 2, 3, and 4, from Stricker's great work on "Histology."
engraving, Fig. 7, we have two waves, one twice as long ahe other, and below them is their resultant, obtained as folows: Both waves, starting at A, pass up in the same direc, tion; their combined effect is therefore equal to their sum

Fig. 7.

which is represented at the point, I, below; again, at the point, C, the effect of the motion of one curve below the axis, A X, is diminished by the motion of the other above the axis; the resultant point being their difference in hight, and on the same side of the axis as the greater. This point is represented at J. By combining, in like manner, all the corresponding points of the two curves, the resultant curve, given below, will be produced, and this curve certainly does not look like the average wave of the two being in fact, not diferent hind of 1 fror But to foll But, to folt ligh though white light, as we know from the prism, is composed of all colors, the eye directly perceives but three of them. Therefore if we take these three colors and present them at once to the eye, the effect ought to be white.

Fig. 8.

The lecturer then threw on the screen disks of green, red, and violet by means of three lanterns. Where all three overlapped, the result was white; where red and green combined, the result was yellow; and where green and violet combined, the result was blue; thus satisfying the requirements of Young's theory (Fig. 8).

The lecturer then proceeded to prove these important re sults by other means. When an image is presented quickly to the eye and then withdrawn, the eye retains the impression for a short time after the actual image has ceased to exist on the retina. This is the phenomenon known among physicists by the name of persistence of vision. To illus trate this property, which was soon to be employed in eluci dating the theory of colors, a series of dots, moving forward and back like shuttles, was thrown on the screen. As the velocity of their motion was increased, the impression made by each of them, at every part of its course, remained on the retina long enough to allow it to come around again and refresh the memory thus seeming to describe continuous refresh the ligh A wreaths of light. A the same principle by having a large revolving disk, with globes in different positions with regard to hoops painted upon it, illuminated with fiashes of intermittent light produced by revolving before the source of light a disk of pasteboard with a number of slits cut radially on it. The large disk seemed to stand still and the balls to roll through the hoops with great rapidity.

Fig. 9.
The principle of the persistence of vision may be applied to obtaining the blending of colors upon the retina, by presenting them in quick succession to the eye. Professor Rood's chromatrope is an instrument for effecting this. It consists of a disk of glass, clear at the center, opaque in the shaded parts, and colored green and violet, as indicated by the let. ters in Fig. 9. On revolving this disk rapidly, there was an outer zone of green and an inner zone of violet; but between them, where, by its revolution, green and violet are presented successively, the impression of green remained long ed successively, the impression of green remained long
enough for that of violet to combine with it in the eye and
to produce a zone of blue. Disks with other combinations of colors were also shown
The most stribing effect of the lecture, however, was produced by means of a very ingenious invention of Professor Morton. He calls it the "chameleon top," and its construction is well worth studying. An opaque disk, with W (Fig. 10) for a center, is made to revolve before a lantern by means of the large pulleys, M and P. It has no axle, but is in friction gearing with the little pulleys, $x x x$. In this opaque disk, there is a transparent one, W R B, composed of seg Fig. 10.

ments of white. red, and blue glass, as shown in the engraving. The transparent disk, moreover, is set in the other one loosely, so that its motion may be suddenly checked by means of an elastic pad, E P, while the large disk is in full revolution. By this means the center is shifted from on color to another. Now let us see the result of that. When the instrument is at rest, nothing appears upon the screen, except a very unpromising disk divided into three portions, But the moment it begins to revolve, the colors blend in va rious ways, forming rings of ever changing hues, which suc ceed each other like those of the most gorgeous pinwheels of pyrotechnics. Suppose the disk revolves with its center in the white, then the blending of colors in each zone can be studied from the circles of Fig. 11; Fig. 12 represents the

Fie. 11.
Fig. 12.

effect when the center is changed to blue, and Fig. 13, when it is shifted into the red. The dotted portions of the zones are those seen by persistence of vision. Now, by means of
rapidly pressing the elastic pad against the projecting rim of the transparent disk, there is a constant shifting of centers. Fir. 1 .

and the result is an infinite va riety of splendid effects.
There is still another way of proving the theory of color. By throwing on the screen the intense light obtained by burning mercury, and by burning steel in the electric arch, the eye does not distinguish them; but by passing these lights through a prism, they are proved to contain very different elements. In primary con the same to the eye, if only the three primary colors existed and no others, for the result would be the same; when combined they would form white light.
Now, how do we know that the primary colors are red, green and violet, and not red, yellow, and blue, as we were taught years ago, and as Sir David Brewster maintained? An experiment will answer this question. If red, yellow, and blue are the primary colors, then green must be a mixture of yellow and blue. According to Young's theory, however, yellow and blue are equi valent to white; because by them we excite all the nerves, yellow being equal to red and green, and blue being equal to green and violet. If Brewster is right, blue and yellow light will make green; if Young is right, they will make white. The lecturer then threw the two colors from two lanterns on the screen by means of
colored glasses. The result was white. The same result colored glasses. The result was wh
was obtained with the chromatrope.
How does it come, then, that blue and yellow paints mixed produce green, as every child knows:
The color of paints is due to the light passing through them to the paper and reflected from the paper under them. Now, white light passing through blue paint is robbed of every color except blue, green and violet; passing through yellow paint, it is robbed of all but yellow, red, orange, and green. Green, therefore, is evidently the only color that both are agreed in transmitting through them. The same effect is combination just produced white, and allowing the same white light to pass through both, instead of having separate sources of light. The result is green, because the combined sources of light. The result is gr
glasses cut off every other color.
There is another property of the eye with regard to the perception of color, which must not be overlooked. Like all other organs of the body, the eye is easily fatigued. If we look at red light for a long time, the nerves vibrating with it become so tired that they cease to act; if now the red is suddenly withdrawn and white substituted, the other two sets of nerves, namely, the green and violet, either act alone or are but faintly seconded by the red; and the consequence is we do not see white at all, but a shade of green. This was strikingly shown by an experiment. Two lanterns, side by red. Atter the audience had looked at it awhile, Profes.
sor Morton placed himself in such a position as to cast course but on the screen, one of them was red, of course, but where only white light fell the shadow was blue
green. On substituting green light for the red, the shadow green. On substituting green light for the red, the shadow
falling on the white part of the screen looked red. This is falling on the white part of the screen looked red. This is
the principle of contrast in color, which many an artist has the principle of contrast in color, which many an artist has
no doubt carried out in practice wittout suspecting the cause. As an illustration of a well known erect of contrast, the Professor threw on the screen a piece of statuary, and then gave it a background of green foliage by means of another lantern, the effect of which was to endue the statue with a warm tint of red.
In conclusion, the lecturer remarked that he did not wish perfections of the eye. "Helmholtz, one of the most emi nent physicists of the day, has used an expression with re ference to the subject, which, when quoted alone, withou the general spirit of the context, might convey the idea that he considers the eye as a bungling piece of workmanship unworthy of any skillful optician. Any candid reader who peruses the whole article will find that this is as far from the meaning of the author as it is from the fact. Discrimination between wave lengths is not only not the true ofice of the eye, but would be quite inconsistent with its varied
and indispensable functions as an organ of vision. It is perfectly true that the eye, as a spectroscope, is a very poor in strument; but who, when gazing at the glories of a crimson sunset, at the beauties of a variegated landscape, or the blended roses and lilies of a pretty face, would exchange his eyes for a pair of the finest spectroscopes that ever left th shop of the most skillful physicist?"
C.F.K.

How American Workmen Live

A recent annual report of the Massachusetts Bureau of Statistics contains some interesting facts touching the wage and manner of living of working people in that State. It may be assumed we think, that in no State of the American Union is the average situation of the working man any better, but, if any different, will be found rather below than above that of Massachusetts.
The statistics, upon which the facts given are based, were gathered by personal visits of the Bureau officers in all parts State, and were obtained from the workmen in all branches of skilled and unskilled labor. Complete returns were ob tained from 397 families, and the condition of this number is presented in detail, as shown in the following example:

carpenter.

Annual earnings of father (American), $\$ 760$, being an average of $\$ 2.43$ cents per diem, paper currency
Condition: Family numbers five, parents and three children from three to ten years of age: two go to school. Have a tenement of five roomslocated in a good neighborhood with pleasant surroundings. The rooms are well furnished and the parlor carpeted. Have a sewing machine. The family resses well.
Food: Breakfast, hot biscuit, butter, meat or eggs, cake and tea ; dinner, bread, butter, meat, potatoes, vegetables pie; supper, bread, butter, sauce, cake, and tea

Rent.	\$132.00	Fish.	\$10.00
Fuel.	37.00	Milk.	17.90
Groceries..	346.22	Boots and shoes.	26.30
Meat.	80.50	Clothing.	50.00
Dry goods.	19.84	Relligion.	10.00
Papers....	8.00	Sundries...	13.24
Cost of living			760

All of the statements are presented with this same de.ail and give a picture of the home economies of the State tha is both interesting andinstructive to all wage laborers. By hese statements it is shown that five families out of 397 in rasted in furniture and carpets; 264 families, or $66+\mathrm{pe}$ cent of the whole number, expended an average of $\$ 9$ yearly for books and newspapers; 34 per cent paid eociety dues,and the same percentage devoted money to religion. Of the 397 families, $11+$ per cent have pianos or cabinet organs; $34+$ er cent have sewing machines, and, in addition to this laboraving article, many possessed wringing machines, as wil cent by reference to the family statements; $52+$ per cent had one or more carpeted rooms, in many instances, as
stated in the individual presentations, the entire tenement of five or six apartments being carpeted; $26+$ per cent paid ates for church pews.
Of the 142 families in which the father was the only worker, the average income was $\$ 723.82$. Of the 255 fami lies in which the wives or children assisted, the average in come was $\$ 784.38$. The average income of the families of killed laborers (including overseers) was $\$ 823$ 60, while of unskilled laborers' families $\$ 687.05$ formed the average income; and of the total expenditure of the 397 families, 58 per cent was required for subsistence, 14 per cent for cloth ng, 16 per cent for rent, 6 per cent for fuel, and the balanc of 6 per cent was devoted to sundry expenses.
From the statements and tabulatedreturns, the Bureau has drawn the following conclusions:
As regards earnings: That in the majority of cases work ingmen in the Commonwealth do not support their familie by their indi vidual earnings alone; that the amount of earn ings contributed by wives, generally speaking, is so smal that they would save more by stayitg at home than they gain by outside labor; that fathers rely, or are forced to de pend, upon their children for from one fourth to one third of the entire family eari ings; that children under 15 year of age supply, by their labor, from one eight to one sixth of he total family earnings.
As regards expenses: That, judging from the proportion ate outlay for dress, as regards entire expenses, there is no
vidence that the working men we visited, in obedience to fashion, indulge in an excessive or disproportionate expendiure; that, from our investigations, we find no evidence or ndication that working men spend large sums of money ex ravagantly or for bad habits: that, as regards subsistence ents, and fuel, the working men's families which we visited aid therefor larger percentages of their income than do vorking men's families, with like incomes, in Prussia and other European countries; and that, as regards clothing and undry expenses, our working men's families paid therefo smaller percentages of their income than do working men families, with like incomes, in the countries mentioned above.
As regards manner of living: That, among the families visited, those containing the greatest number of child workers occupy the most crowded rooms and the inferior class of tenements; that about three quarters of the working men's homes which we visited are in good condition as regarde ocality and needful sanitary provisions, but that nearly one half of the unskilled laborers live in the inferior tenements; hat the working classes of Massachusetts, judging from ou investigations, are well fed; that, as far as our investigation xtended,our working men are, on the average, well and com ortably clothed; that their manner of dress is, at least capable of most favorable comparison with that in foreig countries; that a large proportion of the skilled working men visited have sewing and other labor-saving machines in use in their families; and that, as evidences of material pros perity to a certainextent,significant numbers of the families, he aid of child labor being fully allowed, own pianos or cabinet organs, have carpeted rooms, and maintain pews in church.
As regards savings: That more than one half of the fami ies visited save money: less than one tenth are in debt, and he remainder make both ends meet; that without children's assistance, other things remaining equal, the majority of hese families would be in poverty or debt; that savings, by families and fathers alone, are made in every branch of oc upation investigated; but that in only a few cases is ther vidence of the possibility of acquiring a competence, and in those cases it would be the result of assisted or famil labor; that the higher the income, generally speaking, th reater the saving. actually and propurtionately; that the verage saving is about three per cent of the earnings, and that, while the houses of the working men visited compare most favorably with those in foreign countries and other States of the Union, yet in certain of the United States working men have better opportunities for acquiring home of their own.
From these conclusions, it is asserted that, while the wage ystem enables a minority of the working men to maintain hemselves and families comfortably by their individual ex rtions, in a majority of cases they have to have aid from wife or children to accomplish this result.

Pnoumatic Railway Signals.

At Wilmington, Del., the Philadelphia, Wilmington and Baltimore Railroad Company has recently put down, on trial, a new railway signal and gate system. Along or between the tracks,or under the road, a pipe is laid, 2 inches in diameter, in which compressed air, 85 lbs . to the inch pressure,is carried When the train moves out of the depot, the locomotive strikes When the train mous gong or bell is set ringing, to warn persons that a train is ap gong or bell is set ringing, to warn persons that a train is ap proaching, and a gate extending across the street descends
to within two feet of the ground. The gate remains closed until the train has passed. The locomotive then strikes an other lever, when another bell is rung, and another gate square ahead is closed; and the gate behind the train is caused to rise to its place, and that crossing is left free. In his manner every train that passes through a city is made automatically to fence itself in, as it were, by closing and opening gates over each street,one or two squares in advance as may be desired.
When the train starts, by its striking the lever already described, a danger signal is instantly thrown around at ight angles to the track behind the train, and another a mile head of i i. When this one is reached another lever is struck and the last mentioned signals are thrown back to their former positions, showing the first mile to be clear; and he two other signals, one behind and one a mile ahead of the train, are exposed, and so from mile to mile along the whole road. At every point of its progress a train is thus between two signals, one to warn trains coming toward it, the other to warn trains following it.

The Way to Get Along.

Twenty clerks in a store, twenty hands in a printing office wenty apprentices in a shipyard, twenty young men in a village-all want to get along in the world, and expect to do o. One of the clerks will become a partner, and make a ortune; one of the compositors will own a newspaper, and become an influential citizen; one of the apprentices will be come a master builder; one of the young villagers will get a handsome farm, and live like a patriarch-but which one in he lucky individual? Lucky? There is no luck about it. The thing is almost as certain as the rule of three. The
young fellow who will distance his competitors is he who young fellow who will distance his competitors is he who
masters his business, who preserves his integrity, who lives cleanly and purely, who devotes his leisure to the acquisition of knowledge, who gains friends by deserving them, and who saves spare money. There are some ways to fortune shorter than this old, dusty highway; but the staunch men of the community, the men who achieve something really worth having, good fortune, good name, and serene old age, all go in this hard, dirty road.-Exchange.

