Sricutific Ammerian.

MUNN \& CO., Editors and Proprietors. published weenivat
NO. 3 Y PARK ROW, NEW YORK.
о. D. MUNN. A. E. BEACH.

Onecopy, one year, postage TERM
One copy, siz months, postage included.
Club Rates:
Ten coples, one year, each $\$ 270$, pos age included...
Over ten coples, same rate each, postage included...
ver ten coples, same rate each, postage included....
By the new law, postage is parable in advance
Note. - Persons subscribing will please to give their full names, and Pos Office and State address, plainly written, and also state at which time they wish their subscriptions to commence, otherwise the paper will be sent from
the recelpt of the order. When requested, the numbers can be sapplicd the recelpt of the order. When requested, the numbers can be sapplicd
from January 1st, when the volume commenced. In case of changingrest dence, state former address, as well as glve the new one. No changes cas be made unless the former address is given.

VOLUME XXXII., No 16. [New Series. 1 Thirtieth Year. NEW YORE, SATURDAY, APRIL 17, 1875.

TRADE MARKS

The law presents to every one inducements and facilities for honest effort. The inventor of a new manufacture is, by way of comoensation,secured in the exclusive right to make use, and sell the same for a limited number of years
But withouthaving created a new entity, he may wish to engage in manufacturing some special commodity, and by his skill and honesty may seek to establish a reputation that shall secure a preference for his goods over those of any of his competitors. This reputation is a property in which the law also aims to protect him. He may, in any way he pleases, inform the public how his own productions are to be distinguished dulent deception on their part, in that respect, will be the dulent deception on their part, in that respect, will be the
subject matter of an action at law against them, and all this subject matter of an action at law against them,
without any statutory regulation on the subject.

Any mark or device attached to his goods is sufficient for this purpose. A word or a symbol is generally selected for thus designating them, and this constitutes what is known as a "trade mark." When by long custom it has become known to the public in its signification, its use by another person embodies a falsehood, and can be dealt with as such, so far as that can be done in a civil suit. It is morally the same as a theft, a forgery, or a counterfeit, but cannot be punished as a crime without a special statutory provision 0 that effect.
The statute in relation to trade marks operates in aid of fixing specifically the penalties attached to transgression, facili tating the giving of the requisite testimony in any remedial proceedings, and providing for a registration which fixes at once the rights of the proprietor, of which every one is bound to take notice at his own peril. In other respects the rules flising the rights and liabilities of the respective parties seem to remain substantially unohanged by the statute. Some of these rules will now be briefly considered.
The Commissioner of Patents is prohibited from receiving and recording any proposed trade mark which cannotlawfully
become such. This condition refers to the rules and principles on this subject which are dictated by reason, and especially those which have been adopted by the courts.
One of these rules prescribes that the name sought to be used as a trade mark should not be descriptive. If one should seek to appropriate the word "inexplosive" as a trade mark on his preparation of an illuminating fluid,or the word " indelible" on a new marking ink, such a trade mark would not be received or recorded at the Patent Office, or sus tained by the courts as legitimate. Any other person who had contrived preparations for such purposes would have just right to commend them to public favor by like designa tions respectively. Any law or regulation that should pro hibit him from the exercise
wholly tyrannical and unjust.
Again it has been held that the name of any particular lo cality could not, as a general rule, be selected as a legal trade mark. A party who had sought to appropriate the name "Lackawanna" as a trade mark for his anthracite coal, was not sustained in that attempt by the highest of our courts (sec Canal Company vs. Clark,1 Official Gazette, p. 279.) The ground on which this decision chiefly rested was that no other person who should be engaged in mining coal in the Lackawanna district could legally be prevented from desig nating it by that name.
For a similar reason, the statute prohibits the registration of a trade mark which is merely the name of a person, firm, or corporation, unless such name is accompanied by a mark sufficient to distinguish it from the same name when used by other persons. And also, as a matter of manifest justice, no one is permitted to select as a trade mark a word or sym-
bol which so nearly resembles one, previously appropriated bol which so nearly resembles one, previously appropriated
by another person, that it will be likelv to deceive the pubby an
lic.
But it must not be supposed that any one can with impunity attach a name to his productions, although such name could not have been appropriated by any other person as a trade mark. The great underlying rule that fraud will not be allowed to achieve success, wherever it can be detected will interpose to prevent the consummation of an effort to compass its ends by falsehood or deception. If, therefore, a salt manufacturer at Onondaga should adopt the word "Onondaga" as his trade mark-although that trade mark would be wholly invalid as such, unless at all events he had monopolized all the manufacture of salt at that localitystill,if another manufacturer at Saginaw or Kanawha should label his commodity "Onondaga salt," he would be liable to an action by the Onondaga manufacturer. This would not be on account of the trade mark adopted by the latter. He might maintain such an action irrespective of his trade mark, and so might any other person who had sustained an injury by the fraud.
A trade mark then should be novel, that is to say, so fa differing from any one previously attached to a like commo dity that there will be no danger of causing deception; it should not'be descriptive of the quality of the goods to whic it is attached; it should not consist merely of the name o any person, firm, corporation, or locality; and finally shoul not be attempted to be used for an immoral or illegal pur-
pose. Subject to these conditions, it may consist of any de vice, symbol, or word-nomatter how arbitrary or unmean ing in itself-that the proprietor sees proper to select.
These rules are believed to be sufficient to serve as guides
in most of the cases which shall present t'emselves to the in most of the cases which shall present t'lemselves to th mind of the honest inquirer.

HOME NEWS BY WAY OF THE SUN.

" Go abroad to learn the news" is a very old saying. Just now the study of the sun's constitution furnishes a remarka ble verification of the correctness of the proverb: that far way orb affording a better and closer view of the early stages of the earth's development than could possibly be gained at home, and furnishing at the same time an alto gether unexpected means of estimating the relative charac ter of the earth's chemical structure as compared with the ther members of the solar system.
It is well known that the elements which compose the earth and its atmosphere are very unequally distributed. Of the part which we are acquainted with, oxygen constitutes by weight fully one half. Silicon makes up a quarter. Alumi um, calcium, magnesium, potassium, sodium, iron, and the remaining quarter. There is left only nine tenths of the remaining quarter. There is left only one tenth of a
quarter to be made up of the other fifty-five non-metallic and quarter to be made up of the other fifty-five non-metalic and
metallic elements. Nor are these various elements uniformly mixed in the parts of the earth open to our investigation The outer pprtions, being mainly sedimentary strata, derived from an original nucleus of primary rock, are of no assist ance in determining the primal distribution of the elements For this we must interrogate the basic rocks. These are na definite granite and other plutonic rocks rich in silica, moderately rich in alumina, and poor in lime, iron, and magnesia. Below are basaltic and volcanic rocks poorer in silica, equal in alumina to the upper series. and mnch richer in iron, lime, and magnesia, and containing also a great variety of other ele ments as occasional constituents: the proportion of the dense metals increasing downward. These relatively precious con stituents of our earth, as we all know, reach the surface only hrough veins which traverse the outer layers.
How did it happen that a few of the elements are provided so plentifully for us, while there is such a scanty provision
of the rest? And why are the useful metals chiefly hidden in the depths?
The Pope, the Turk, and-not the devil, as the old litanies
ran, but his chief opponents-theclergymen, (some of then
at least) reply: "It is the will at least) reply: "It is the will of God," and that ends the in quiry with them. But Science rests with no such thought repressing dogma. Present conditions are, because some other conditions were: what were those conditions? In pur suit of the answer to this question scientific men stop a nothing short of "interviewing" the Universe. Naturally the ruler of our planetary system is the most instructive wit ness in regard to the genesis of his family, the earth included It appears to be pretty conclusively shown, by spectroscopic analysis of the sun's light, that the following twenty terres trial elements (with indications of perhaps two otherwise un known elements which need not be taken into this account exist in the sun's atmosphere:

Aluminum	Chromium	Lead	Sodium
Barium	Cobalt	Magnesium	Strontium
Cadmium	Copper	Manganese	Titanium
Calcium	Hydrogen	Nickel	Cranium
Cerium	Iron	Potassium	Zinc

These various substances are not indiscriminately mixed in the vapors which surround the sun. Thanks to the inter posing face of the moon in total eclipses, it is possible to study the sun's atmosphere in sections,so to speak: by whicl study it appears that, by virtue of the high temperatur which prevails there, and the varying specific gravity of the which prevails there, and the varying specitic gravity of the
different elements, the latter are enabled to arrange them selves in layers, in spite of the storms and gaseous outburst selves in layers, in spite of the storms and gaseous outburst:
which would tend to disturb their positions. It is observed which would tend to disturb their positions. It is observec
too that, in the main, the number of elements increases down too that, in the main, the number of elements increases down
wards. The outer "coronal" atmosphere contains cooled wards. The outer "coronal" atmosphere contains cooled
hydrogen. The "chromosphere"shows incandescent hydro gen, magnesium, and calcium. The "reversing layer, which lies next the photosphere, exhibits sodium, chromium manganese, iron, nickel, and the rest, with the probable ex ception of aluminum, the place of which has not been deter mined by observation, but which most likely lies between magnesium and calcium.
Theoretically the metalloids should lie, as a group,outside the metallic atmosphere: and Mr. Lockyer has submitted some evidence to show that they probably do, explaining why, under the conditions which prevail, their record among the Fraunhofer lines should be a feeble one, and insisting that, in the lack of such lines, we have no argument against the presence of some quantity of the metalloids in the sun although that quantity may be small. As collateral evidence it is proper to add in this connection that, in the spectra o granite, greenstone, and lava, no trace of metalloids is seen notwithstanding the (chiefly) non-metallic character of those rocks.
Assuming, in accordance with the nebular hypothesis, that the earth was once in the condition which the sun now pre sents, we can readily understand why its chemical constitu tion should be what it is. From the known behavior of the elements, it is inferable that, as the external metalloidal va pors cooled, they would condense and fall upon the underly ing layer forming these binary compounds capable of exist ing at a high temperature, such as the vapors of water and hydrochloric acid, silica, carbonic acid, and others.
As the cooling went on, the precipitation of these binar compounds would give rise to numerous reactions, forming silicates, chlorides,sulphates,etc. With still further cooling, he condensation of water and the formation of mineral would ensue, and the consolidation of the outer shell would begin. The condensation of the metals would come much ater and nearer the center.
The same line of facts and reasonings give a clue to the probable constitution of the planets. Assuming the solar nebula to have once existed as a nebulous star at a tempera ture of complete dissociation, and to have contracted with loss of heat, throwing off the planets successively, we may infer that the outermost would be chiefly if not entirely metal oidal; the inner ones would beincreasingly metallic as thei rbits approached the central portion of the nebula. Mr Lockyer considers that the low density and the gigantic and ighly absorbing atmospheres of the outer planets accor with their being more metalloidal than the earth: on th ther hand the high density and comparatively small an eebly absorbing atmospheres of the inner planets point to a more intimaterelation with the inner layers of the original ebulous mass, and consequently a more metallic constitu ion. For the same reason we should expect to find the me alloids scarcer in the sun than in the earth. The otherwis mysterious fact that the moon is of lower density than the earth, and the moons of Jupiter similarly less dense than their primary, is easily explained by this hypothesis.
The news which we have brietly summarized awaits con firmation, though (as the newspapers say) it comes direct and from a trustworthy source. It is certainly good enough to be true, commending itself, as Professor Prestwich ob erves in his review of the present aspects of geology, no only by the simplicity and grandeur of the views presented but for their high suggestiveness for future inquiry and re search.

GERMAN PATENT LAW.

At present the various States, comprising the German Empire, have each a separate patent law. At the time of the Vienna Exposition it was proposed to initiate a general pa ent law, and to abrogate the State laws. For this purpos the German Patent Protective Association was formed, and they have prepared the details of a new law, which ha been presented to the Federal Council, with a petition for its enactment.
The proposed new law is substantially a codification of xisting provisions, and embodies the current continental
otions about patents and inventors. The latter are regarded
as interlopers or trespassers, who must be watched, surround ed by restrictions, and compelled to surrender their property to whoever demands it.
In this country, the inventor is regarded as a public benefactor, enjoys entire freedom in the possession and working of his patent, is encouraged in his work, and honored by the people. It is chiefly when he goes before Patent Office officials that he meets with rebuffs and discouragements.
The proposed German law provides for a commission who shall decide as to the propriety of granting patents. Official fees small. Duration of the patent, 14 years. Annual payments to be made; neglect to pay forfeits the patent. Within six months after the application is made, but before the patent is granted, the applicant must show that the invention has been actually worked within the Empire. The Patent Office may extend the term for working to a year in special cases, and will then decide whether or not to grant the patent. Patentees are compelled to grant the right of use to any persons who desire; and if the parties cannot agree as to terms, the Patent Tribunal shall name the price which the inventor must accept. The government may use any invention, without negotiating with the patentee; the Tribunal will name a sum, which the patentee must accept, or get nothing.

A STREET RAILWAY IMPROVEMENT WANTED.
We publish in anothercolumn a note from the president of the Third Avenue Railway of this city, inviting the attention of inventors to a needed improvement in the joints of the rails of street railways. The Third Avenue Railway is one of the most extensively patronized roads in the world. Its length is eight miles, and it carries about thirty millions of passengers per annum. Its rails are spiked down upon longitudinal wooden beams, with an iron plate under the ends of the rails. In addition to the enormous traffic of the company, the rails are subjected to much wear and tear from heavystreet vehicles. The improvement called for must be of such a nature as to be readily applied to existing rails.

A NEW DODGE.

We have frequently hadoccasion to warn patentees against the persistent efforts of designing persons in all parts of the country to abstract money from their pockets under various pretexts. The most numerous class of these impostors have hitherto been those who send circulars and letters to patentees, announcing their extraordinary facilities for selling patents, insinuating that they have a customer for the invention, etc., and all they require to consummate the sale is a power of attorney and a small fee in advance.
Our exposure has very nearly effected an extermination of their operations in this line, but now they turn up in a new rúle.
Instead of sellers of patents, they now appear as solicitors. They look through the list of patents each week, and write to the patentees, stating that their claims do not appear to cover the whole of their inventions, and advise reissues in each case, and set forth special facilities for obtaining these reissues. We have before us a letter from one of these reissue solicitors which a gentleman has sent us, with the usual enquiry as to what we know of the writer. The solicitor's letter goes on to state that his only means of judging of the strength of the patentee's claims was from the published report. The writer had not even read or seen the gentleman's patent, but he has written advising him to apply for a reissue, stating that for $\$ 70$, including all fees, payable when the order is given, he will do his best to get broader claims; but, he adds, the inventor must take all risk of failure. The writer is evi dently a novice at this new dodge, and is either very stupid or has a streak of inherent honesty left; for he admits, as be frankly states in another portion of his letter that he does not know whether the patent can be strengthened, adding truthfully that the result would depend altogether on what had been done in this line before the patentee made his application. But he winds up by stating that he believes that better claims can be "engineered through." What is meant by "engineering through" is not explained; but the expression would seem to be a part of the means used for impressing the patentee as to the magnitude of the solicitor's influence in getting allowed such claims as he may ask for.
It is not a large number that will be deceived by such specious communications; but some will be made nervous, and wonder to themselves if they have a valid patent. We would advise such persons to consult their own agents for information, but under no circumstances to place their business and money in the hands of these lett
solicitors, with whom they have no acquaintance
It is not often that unsolicited advice from a stranger is worth very much, and the motive that prompts it may usually be looked upon with suspicion. We do not assert that advice thus tendered is necessarily given from pernicious motives; but we believe that it is not wise to follow the advice of strangers whose opinion is volunteered; and that those who place their business in the hands of such persons will be likely to find the experiment an expensive one.

HOW TO BUILD A WINDMILL

The principal data connected with windmills were dis covered by experimenters early in the present century, the best proportions for sails being ascertained, and most of the important details of construction being worked out. We do not mean to say that manufacturers have made no improvements since that time, only that nothing of any great novelty has been produced. We must refer the reader to some standard treatise on mills and millwork, and to the circulars
of manufacturers, for information in regard to the various de tails and patents, and will content ourselves with a descrip tion of a standard mode of construction and proportion. Windmills can be either horizontal or vertical, but the latter are almost exclusively employed. In the vertical windmill, the shaft is inclined to the horizon at an angle of from 5° to 15°, when the wheel is placed at the top of a tower; so tha the wheel will clear the sides of the building, and allow space for the action of the wind. If the wheel is supported by a post, the shaft may be horizontal. The connection of the shaft with the pump or other mechanism may be made either with gearing, or by means of a crank and connecting rod. The shaft must be free to swing around in any direction, so that the wheel can always face the wind. Itis moved in the case of small windmills, by the use of a weather vane on the end of the shaft opposite to the wheel. With large windmills supported on towers, the top of the tower is generally arranged so that it can be rotated, and a small auxiliary wind wheel, connected by gearing, moves it into the proper position as the direction of the wind changes. The wheel of a windmill may be covered with cloth, or with slats of wood or metal, the cover in either case being technically known as the sail. It is frequently necessary to reef the sails, when the force of the wind increases; and windmills are often ar ranged so that this reefing is performed automatically. A common method of effecting this is to make the sail of a series of jointed slats, that present a close surface to wind of the ordinary velocity, and open, thereby decreasing the surface, as the velocity of the wind increases. A good number of the windmills in use, however, are covered with cloth, and reefed by hand as occasion requires. The best velocity for a windmill is such that its periphery moves about $2 \frac{3}{5}$ times as fast as the wind. Thus, if the wind is moving a the rate of 20 feet a second. the tips of the sails should move at the rate of 52 feet a second, so that, if the wheel were 12 feet in diameter, it should make about 83 revolutions a minute. Of course, if the velocity of the wind varies greatly, it will be impossible to keep the speed constant, so that windmills are not ordinarily well suited for work requiring steady motion; although they answer very well for moving pumps. if an intermittent supply of power is not a serious obstacle. In some sections, however, the prevailing winds are quite steady, and in such cases windmills can be applied with advantage to grist mills and other useful work. The force and velocity of the wind can only be determined by experiment, but the results of previous experimenters may be useful to our readers, and we give below a summary of the most recent and reliable:

5aw

10	6.82	$0 \cdot 33$	Gentle pleasent wind.
20	13.64	C. 91	Brisk gale.
30	20.56	$2 \cdot 04$	Very brisk.
40	$27 \cdot 27$	3.92	High wind.
50	34.09	$6 \cdot 25$	Very high.
60	40.91	9.25	Very high.
70	$47 \cdot 73$	12.75	A storm.
80	54:55	16.34	A storm.
90	$61 \cdot 36$	$20 \cdot 74$	
100	$68 \cdot 18$	$25.28\}$	A great storm.
110	$75 \cdot 02$	$30 \cdot 89$)	
120	$81 \cdot 84$	36.75	A hurricane.
130	88.65	43:26	A hurricane.
140	$95 \cdot 47$	$50 \cdot 32$	A violent hurricane.
150	102:29	57.56	A violent hurricane.

For C D-7 ${ }^{\circ}$
of a windmill, it having been found that four sails of proper proportion produce the best effect. The piece, P B, is called the whip of the sail ; C D, E F, G H, etc., the bars of the sail. The bars are inclined to the plane of revolution, at different angles, the angle made by any part of the sail with this plane being called the weather of the sail Making the distances A O, N L, L I, etc., each equal to $\frac{1}{12}$ of the diameter of the
wheel, the best values for the angle of weather are as follows:

For $\mathrm{N} \mathrm{O}-18$
For L M-19
For L M -19°
For J K -18°
For $\mathrm{G} \mathrm{H}-16$
For E F-12 $\frac{1}{2}$
The sail stretched over these bars will be a warped surface, somewhat resembling the blade of a screw propeller. The part B D O, called the leading sail, is triangular, and $B D$ is $\frac{1}{15}$ of the diameter of the wheel, $B C$ being $\frac{1}{10}$, and CN, $\mathbb{1}_{12}^{5}$, of the diameter. The main body of the sail, B CN O , is commonly rectangular. A windmill of the best propor-
tions, running under the most favorable circumstances tions, running under the most favorable circumstances,
utilizes about $\frac{2}{109}$ of the energy of the wind that acts on an area equal to a circle having the same diameter as the wheel. It would not be advisable to count on realizing more than half this power in general practice; and on this assumption, we have the following empirical rule, for determining the diameter of a wheel, to give a certain amount of power, with an assumed velocity of the wind:
Divide the required horse power by the cube of the velocity
of the wind in feet per second, take the square root of the quotient, and multiply it by the number 2024.8. The pro duct will be the required dianeter in feet. An example illus. trative of the preceding principles is appended. A wind mill is to be erected in a locality where the general velocit; of the wind is about 20 feet per second. It is to be attached to a pump, the work required of it being to raise 1,000 gallons of water per hour through a hight of 20 feet: 1,000 United States gallons of water weigh about 8,320 pounds, and, taking into effect the resistance of the pump, the power required will be about $\frac{1}{6}$ of a horse power, or 0.167 horse power. Dividing this by 8,000 , the cube of the velocity of the wind, extracting the square root, and multiplying by $2024 \cdot 8$, we obtain $9+$ feet as the required diameter of the wheel. R c. ferring to the figure, we find that, in this case, $\mathbf{C} N$ is 3 feet $10 \frac{1}{4}$ inches, B D, $7 \frac{8}{8}$ inches, and B C, $11 \frac{3}{32}$ inches. The velocity of the tips of the sails should be 52 feet per second, or the the wheel should make about 108 revolutions a minute. These explanations will probably be sufficient to enable any of our readers who desire it to construct a wheel, and we shall be glad to hear of the success of their efforts.

gCIENTIFIC AND PRACTICAL INFORMATION.

nitro-glycenin

Professor Mowbray, in a recent lecture before the Stevens Institute of Technology, on the subject of explosives, stated that nitro-glycerin is now largely made from the fatty waste of stearin and soap factories. Its density, which is $1 \cdot 6$, water being 1, enables it to exercise its tremendous force; for in : given bulk, there is 60 per cent more gaseous matter than would be contained in it were it only of the density of water. new imitation silver ornaments
In several stores in Munich various objects of art havi lately been displayed, which are remarkable for their brilliant silver hue. It appears that they are mere plaster models covered with a thin coat of mica powder, which perfectly replaces the ordinary metallic substances. The mica plates are first cleaned and bleached by fire, boiled in hydrochloric acid, and washed and dried. The material is then finely powdered, sifted, and mingled with collodion, which serves as a vehicle for applying the compound with a paint brush The objects thus prepared can be washed in water, and are not liable to be injured by sulphuretted gases or dust. The collodion adheres perfectly to glass, porcelain, wood, metal, or papier macké. The mica can be easily tinted in different colors, thus adding to the beautr of the ornamentation.

NEW PROCESS Of gilding on glass.

Professor Schwarzenbach, of Berne, has recently devised the following new method of gilding on glass: Pure chloride of gold is dissolved in water. The solution is filtered and diluted until, in twenty quarts of water, but fifteen grains of gold is contained. It is then rendered alkaline by the addition of soda. In order to reduce the gold chloride, alcohol saturated with marsh gas and diluted with its own volume of water is used. The reaction which ensues results in the deposition of metallic gold and the neutralization of the hydrochloric acid by the soda.
In practice, to gild a plate of glass, the object is first cleaned and placed above a second plate slightly larger, a space of about one tenth of an inch separating the two. Into this space the alkaline solution is poured, the reducing agent be ing added immediately before use. After two or three hours repose the gilding is solidly fixed, when the plate may be re moved and washed.

The Clark Revolving shutter.
It is announced in the advertising columns of this issue that Messrs. Clark \& Company, of London, Eng., patentees and manufacturers of self-coiling shutters made of steel iron, or wood, have an agency at 218 West 26 th street in this city. Messrs. Clark \& Company's shutters are to be found in all parts of the world, and are known for their ease in working, security against burglars, and finished and orna mental appearance. The firm have other branches at Bos ton, Mass., Dublin, Edinburgh, Manchester, Liverpool, Mel bourne (Australia), Paris, Berlin, and Vienna, their headquarters in London being a very large and complete manufacturing establishment. In New York city, the Clark shutters are to be seen on the new building for the Lenox library 100 of them having been put into the structure; and the Delaware and Hudson Canal Company's new building and the Tribune offices are also being supplied with them. They are to be seen in many other of our principal cities,and there cannot be two opinions as to their convenience and efficacy in use and light and ornamental appearance.
New subscribers to the Scientific American will here after receive the papers from the time of our receiving the order, unless they specify some other date for commencing. All the back numbers from the commencement of the volume (January 1) may be had if requested at the time of sending the order, or on request, after receipt of first number.
Preparing Soil for Pottins.-We find the following under the heading of "House Plants" in a popular and ex cellent family magazine: "Ladies who find their efforts to raise house plants frustrated by worms may be able to win success by boiling the earth before setting the plants. Lse of hard boil."

The New York city authorities, who once peremptorily refused to allow the American Telegraph Company to lay its wires underground, are now seeking to compel all the com panies to bury their wires.

