Chiet Enzineer's Once, U. S. Navy Yard,

 followlng report: : . . $\underset{\text { excellent and conventent forge. It works eass and with }}{\text { That }}$ But little en oiso, and the power belng applied wltha a lever,
It can be worked without Interfering with the mantpula toin of the fire.
I can recomme I can recommend it
shtp board or shop use.

$\begin{array}{c}\text { Very } \\ \text { [signed] }\end{array}$

Very respectrully, your obedient servant,
EDWN FITHAN,
WIN FITHIAN,
Chiet Eagineer, U.S.N

Zusitess and extsual.

The Charge for Insertion under this head to $\$ 1$ a Line.
Agricultural Implements, Farm Machinery, Seeds,
Ferillizers. R. H. Allen $\&$ Co.. $189 \& 191$ Water St..N. Y .

 We will sell the re righ of a few states for Cole's
Automatlc Boller Feed Regulator cheap, if appled for soon. Has been in use orera year, and 19a
cess. H. S. Cole $\&$ Co., Milwauke, Wis.

 Price 10 cents per lb, leses than $\%$ price of other preparatiloes, and superior to all otbers.
N. Spencer Thomas, Elmira, $\mathrm{N} . \mathrm{Y}$.
Partner Want:2- 8,000 to $\$ 20,000$-in a Wilming
ton Coal Mna, 57 milles South of Cilicago. Open, with Trotabishea Trade. Address J.Q.A. King, Jollet, III. Trojan Brick Machine-with Trucks and full set
Mouldss been used part of a season-ln perfect order-

 M. Mowbray, North Adams, Mass.

Wanted-Estimates on finest wood engravings-
Ax thanes-Landacapes. Send spectmens. H. L. A. Culmer, Salt Lake clty, Utah.
For Sale - A Valuable Patent, for what one State
right can be siawn to be worth. Address W. M. . Coombs right can be sian
Tituusilie, Pa .
Wanted-Second Hand Fire Brick Block Presses.
s. B. Muller, son south 5 th St, Phlladelphla, Pa. Miller's Brick Presses for firs and red brick. Fac-
tory, soo south stu St., Pulladelpha, Pa. Amechanical draughtsman, of 12 years thorough
expertience in idferent branches, 18 open to an engage. ment. Best of references given. Addres
of Markt $\#$ Co., 143 Centre St., New York.
For Sale-Valuable Manufacturing Property;
commodious bulldags; driving-power, shatting, betting,

Carpenters Wanted-As Agents for "Patent
Tool., Address Nicol Beact $\&$ Co., Rockford, Ill.

 tlonal Sarety Boller. Terms Ilberal.
dress S . T. Ruseil. springgeeld, obio.
The Whitmore Engine, 4 , sand 10 H.P.-CCheapest,
beest, and satest. Vertical Tubular Boilers, all sizes, at reduced prices. Lovegrove \& Co., Plilladelpbia, Pa.
For the cheapest and best
and See N. F. Burrham's Turbine, Water Wheel ad-
vertisement, next week, on page 237. Diamond Carbon, of all sizes and shapes, for
drlling rock, sawing stone, and turring emery wheels,
aliso Clazierer' Dlamonds. J.DIckinson,64 Nassau St, , N.Y.
The Varrishes and Japans of the London Mcf'g Co. compare tavorabaly In price with, and are unancelled
in purty, durabllty, and color by, any drst class houses In parity, durabiltt, and color by, any Arst class louses
in Europe or Amertca. Hyatt Co.,
New York Fatcory. Newark. N. J. J.
Seam and Water Gaugeand Gauge Cocks Com-
Dinea, requilring only two holes ti the Boller, used by aill boller makers
St., New York.
 Telegrap. A compact working Telegraph Apparatus,
for sending messages, maklig magnets, the electric light,

 Tin Manufaeturers, Whohave wastestrips, pieces,
or round blanks to sell, addressZeronefrigerator with Water Cooler. Best in
the World. Send tor Catalogue. A. M. Lesley, 221 W . The Lester Oil Co., 183 Water St., N.Y., Exclusive
Manuacturers of the renowned Synovial Lubricating oul. The most perfect
Send for Clrcular
For small lize Sorew Cuting Engine Lathes and
Drill Latres, address Star Tooi Co., Providence, R. I. Wash Stands, New Styles, Marble Tops, oan be
ased In ann stuation. Prices very low. Send for a cataogue. Balley, Farrell \& Coo, Plttsburgh, Pa
Pecr's Patent Drop Press. Solll the best in use.
Adress Mllo Peck, New Haven. Conn. Genuine Concord Axles -Brown,Fisherville, N.H. Spinning Rings of a Superior Quality-Whittns
Jille spinning rang
Co., Hydraulic Fresees and Jacks, new and second
nand. Lathes aud Macchinery for Pollaning and Buffing Metals. E. Lyon. 470 Grand Street New York. Send for Circular of a very Superior Boiler Feed
Pump. D. Frsbole © Co., New Haven, Conn. W. Campbell's Self-Acting Shade RoH
Trade sapplited, 87center Street, New York.

The "Soientifc Amercan" Ofice, New York, lio
Atted wth the minataure Electric Telegraph. By touching little eutons on the desks or the managers
to persons ingals are sent
the various departments of the eatablishment. Cheasp and efrective. Splendd for shops, offleses,
dweilings. Works for any ditance. Price 86, with good
dit. Battery. F. C. Beacan © Co., 2es Broadmay, New York,
Makerg. Send for free lllustrated Catalogue. For best Presses. Dies, and Fruit Can Tools, Blise

* Willame, cor. of Plymount and Jay, Brooklyn, N . Y . Buy Boult's Paneling, Moulding, and Dove-talling
Machine. send tor clrcular and bample of work. B. c. Mach's Co., Battle Crees, Mich., Box 227 .
Small Tools and Gear Wheels for Models. List
free. Goodnow $\&$ Wibhtman, 23 Cornhlll, Boston, Mase. For Surface Planers, small size, and for Box
Corner Grooving Machineg, send to A. Davis, Lowell, Mass.
Hotchhlss Air Spring Forge Hammer, best in the
market. Prices low. D. Frisbe \& Co., New Haven, Ct. For. Solida Wraught-iron Beams, etc., Bee adver-
tisement. Address Unton Iron Mille, Plttoburgh, Pa. for ittograph, \&c.
Remples and
Temples and Oilcans. Draper, Hopedale, Masa. For Solid Emery Wheels and Machinery, pend to
the Union Stone Co., Booton, Mase, tor circular. ${ }_{20}$ Mechanical Expert in Patent Cases. T.D. Stetson, Au Fruitccan Tools, Ferracute, Bridgeton, N. J. Grindstones $-4,000$ tuns. Berea Stone Co.,Berea, O

W. H. A. will find directions for bleaching beeswax on p. 298, vol. 31. - W. M. Will find a recip
for silver-plathg solution on p. 299, vol. $31 .-W$. H. M. will find directions for coloring putty on p. 107 vol. $31 .-$ R. C. J . can plate iron with silver by the
processgiven on p. 314 , vol. $24 .-\mathrm{w}$. H. W. will find an explanation of sailing faster than the wind on
p. 176, vol. 28.-R. H. H. will find directions for bronzing on iron on p. 283, vol. 31.- H. E. will find
directions for case-hardening iron on p. 69 , vol. 31 -F. E. H. will find a recipe for marine glue on 43, vol. 32 .-E. E. W. will find the recipe for furniture polish and also for finish for black walnut on
p. 315 vol. $30 .-\mathrm{J}$. K. S. and J. S. S. should each consult a physician.-C. G. M. will find a description of the wonder camera on p. 26 , vol. 31-C. C. S.
will find directions for preparing muriate of amnonia for inhalation on p . 3 , , ,ore is. 1 .W. H. an not be an instrument for indicating hidden treas-ure.-J. D. will find directions for softening and toughening wood on p. 319, vol. 31.
(1) W. J. A. asks: Will nitro-glycerin ex-
plode througha capillary tube? A. If we under stand your question, yes.
(2) C. D. B. asks: What kind of oil is the best Yo preserve shoe lenther, and to
A. Yu will find neatsfot oil the best.
Will a compound of cologne, hartshorn, thncture of cantharides, oil of lavender, oil of rosemary,
and oil of nutmeg injure the skin? A. Probably and oif of nutmeg injure the skin? A. Probably quantity. Cologne is mostly all aleohol, which has
a very injuriouseffect upon the skin if used frea very injurious effect upon the skin, if used fre--
quently, by dissolving out the natural oils, leaving quently, by dissolving out the natural oils, leaving
the skin harsh and dry. If in the formula you
 ogne, then the cologne is of no use on the ski
and can be dispensed with; if, on the other hand the cologne is in excess, the oils are of no use, as
the uncombined alcohol is free to unite with the oils and fats of the skin. Unless the skin is dis
ase
(3) F. S. asks: How can I use india rubber
neither turpentine or naphtha without impairing In eithor turpentine or naphtha without Impairing its elasticity? A. Ououtchouc dissolves in bisul-
phide of carbon, coal naphtha, and rectifled oil of phide of carbon, coal naphtha, and rectifled oil of
turpentine. In these liquidsit Arrat swells up very considerably, and eventually forms a ropy liquid, which, on evaporation, leaves the caoutchouc with its original elasticity.
(4) F. W. asks: How is nitro-glycerin mad Is the is it exploded? A. See p. 91 , vol. 32 . Is there such an invention as the screw of Arch-
medes for eleating water? Archimedes, called after the philosopher that in vented it, is one of the simplest machines for rais ing water, and operates at only short distances.
consists of a tube wound spirally round a solid cylinder, the lower end of which dips beneath the water at an angle of about 35°, the upper end be ing supported by a suitable arrangement, and fast-
(5) R. S. G. asks: What are the ingredients of Selalitz powders? A. Rochelle salts 1 drachm, Garbonate of soda 25 grains, tartaric acid 20 grains.
Disolve the two frrst in a tumbler of water, then Disoolve the two first in a tumbler of
add the latter, and drink immediately,
(6) N. P. K. asks: 1. How can I prepare hard enamel? A. Mix 100 parts of pure e lead with
20 to 25 of the best tin, and bring them to 1 low red heat in an open vessel. The mixture then burns nearly as rapidily as charcoal, and oxicizese very fast; skim off the crusts of oxiue succescine
y formed, till the whole is thoroughly calcined Then mix all the skimmings and again heat as be fore, till no flame arises from them, and the whol of a uniform gray color. Take 1 (i) parts of thi
oxide, 100 parts of white sand, and 25 or 30 of com mon salt, and melt the whole by a moderate heat. Tiis gives a grayish mass, often porous and apparently imperfect, but which runs to a good en
amel when afterwards heated. 2 . How can I brin low quality of gold to the oolor of 18 carat gold A. Aloy it with the proper proportion of silver
and copper. 3 . I have a quantity of silver melted with lead; it is so brittle that I oannot roll it. Ho can I get it in condition to work? A. Thedesired object may be attained by meltng the alloy in cupel formed of bone ashes. The lead is gradual
ly oxidized, melted, and absorbed by the porous ly oriaized, meited, and absorb
materital composing the cupel.
(7) H. P. A. says: I am now using the sap of 36 to the inch. In order to cleanse it of the sap and woody taste, I boil and frequently change the
water, yet do not get it tasteless. How can I water, yet do not get it tasteless. How can I
cleanse it of the taste without injuring the strength of the wood? A. Try weak lye, and water after-
(8) T. B. C. asks: Is there any way of restoring marble that has been spotted with lemon Juice? A. Marble being a carbonate of lime, the
action of such an acid upon it would be to enter action of such an acid upon it would be to enter
into combination with the lime, expelling the carinto combination with the lime, expelling the car-
bonic acid, forming a different body from the original marble; and from the fact of its being a der, it was easily wiped awa the surface of the polished plate you speak of We do not think it can be remedied.
(9) H. S. says: What is the simplest way to make an apparatus for blowing glass, such as is used by men that travel the conntry A. What
you require is a current of air forced upon a Game produced from a wide illuminating surface, as a then subjected to the a garent dame widened an
(10) A. C. B. asks: 1. Is there any way to harden coin silver? A. We do not know of any.

2. Is thereany hard metal or alloy that can be used 2. Is there any hard metal or alloy that can be used
for fine work, and will not scale wheu heated? A. Try the alloy known as packfong, or German sil-
ver, a compound of nickel, zinc, and copper, in ver, a compound of nickel, zinc, and copper, in
which the proportions vary considerably. A good alloy consists of 5 equivalents of copper, 3 of zinc and 2 of nickel. Packfong is of a yellowish whit color, and, when new
ilverin appearance.
(11) F. C. asks: Will anything dissolv Yes, ammoniacal salt.
(12) H. H. asks: How can I make bisul phate of tin? A. You probably mean bisulphide
of $\operatorname{tin}\left(\mathrm{Sn} \mathrm{S}_{2}\right.$), known also as mosaic gold; it form beautiful yellow flaky compound, which is ob tained by preparing an amalgam of 12 parts of tin and 6 of mercury; thisis reduced to powder an mixed with 7 parts of sublimed sulphur and 6 of sal ammoniac. Thismixture is introduced into lask with a long neck, and is heated gently so lon as any smeil of sulphited hytrogen is percept calomel and cinnabar are sublimed, and a seal mas of Sn_{2} remains. If the heat be pushed to far, part of the sulphur is expelled and the operation fails; the sal ammoniac appears by its volatilization to moderate the heat produced during
the sulphuration of the tin, which would other se rise so high as to decompose the bisulphide. (13) F. C. and others.- Most medical authortuee agree that the rightside is the better to silee
upon; but this is not always the case, the numbe upon; but this is not always the case, the number
of persons who sleep upon the left being as many as those who use the right side. It is simply a matter of convenience and ease, it being folly to nsist upon a person to use one side when it is scomfort.
(14) J. W. asks: 1. What is the tenacity of old wire having a sectional area of a square mil imeter, if the gold be annealed. If the gold be drawn, it wil require 61.60 ibs . to break it .
When gold is consumed by fire, what is the color o the flame? A. Molten gold exhibits a sea green through a pellicle of silver? A. Bluish. 4. When sil ver is consumed by fre, of what color is the flame A. The spectrum of silver is green. . 5. How can
cinnabar be converted into a yellow pigment A. Continued pulverization will change the brick ed color of cinnabar to an orange yellow.
(15) F. W. B. says: I have some white silk Which has become yellow by washing. How can restore it to its original color, without injuring vinegar or lemon juice, after having perfectly
vist vinegar or lemon juice, after
cleaned it. Rinse in cold water.
(16) J. H. L. asks: How can I illuminate tableaux with a strong light, and have changes on
color without resorting to the use of disagreeable compounds? How can I prepare and use the cal cium light for the above purpose? A. The magne sium light is sometimes used for this purpose The method of obtaining it consists in burning maguesium ribbons which may be obtained fron any chemist or dealer in theatrical goods. In th calcium or lime light, an ignea jet of the com
pound gas (oxygen and hydrogen) is caused to im pinge against a small cylinder of caustic lime. In he apparatus used for this purpose, the gaees ar conducted by separate tubes to the burner, which they enter at opposite sides, a few inches from the
tip of the burner. The burner or jet should b tip of the burner. The burner or jet should b
bent towards the verlical surface of the lime at an bent towards the verical surface of the lime at an
angle of about 45. The lime should approach the tip of the jet within $\frac{1}{18}$ of an inch. The gases oxygen gas is obtaiued by heating together, in a iron or copper bottle, chlorate of potash with one
quarter its weight of peroxide of manganese. Hy drogen gas may be obtained by acting upon scrap The first portion of the gas if ebtipnuric acid The first portions of the gas, if obtained in this
manner, should be allowed to escape, otherwise its mixture with the air in the apparatus forms very explosive misture. Ordinary illuminating or coal gas, if obtainable, will answer the purpose as well as pure hydrogen. Both the above gases are
washed before being allowed to enter the bags washed before being allowed to enter the bags This is arranged as follows: A small bottle is ob-
tained, which is partially filled with water; through a tightly fitting cork in the mouth of the bottle pass two glass tubes, one of which passes down and dips beneath the surface of the water, the
other barely pasees through the cork. In order to other barely pances through the cork. In order to
use this washer, the tube which dips under the
ting flask, and the end of the other tube, which
just pases through the ust passes through ine cork, is attached to the re-
ceiving bag. Thus arranged, the gas as generated ceiving bag. Thus arranged, the gas as generated
is required to pass through the water. Care should be talen (in the generation of the oxygen) at the does the operation that the water in the botter does not run back into the generating flask, other-
wise an uncontrollable quantlty of steam will be generated from contact of the moisture with the not metal.
(17) F. N. J. and others.-The statements
made as to the preparation of musk are on the made as to the preparation of musk are on the
authority of a work recently published on perauthority of a work recently pub
fumery, and presumably reliable.
(18) D. S. M. asks: 1 . What effect will ling water have on linurwhen used for dampening wheat before grinding it? A. Probably the
same as when applied after the wheat ig ground as is often done by bakers. 2. Will it toughen the wheat so as to give a better yield? A. We think
not. 3. Is it injurious to health? Δ. Yes. This
method of whitening the bread is prevented by method of whitening the bread is p.
heavy fines and penalties in England.
(19) S. C. B. asks: Does soap boilers' refuse conturan anything unfavorable to its use for agri(20) W. O. P. says: We frequently find melted lead flowing from stove ana grate in which we are burning coal. A boy once showed me a piece of what I presume was lead ore; I could cut it we heard a snapping report in the stove, and melted lead splashed out on the floor and burnt my brother's hand. Are not these facts indica-
tions of lead in quantity somewhere in the dis trict? A. Yes. 2. If so, would it be found above or below the coal vein? A. It might be found beow as well as above. 3. If there be lead, how fully examining the exposures of the rocks for the vein, and by surface indications of minerals containing lead.
(21) K. B. F. asks: Is carbolic acid a poison taken internally or applied outwardly? A. It is a (22) S. T. asks: How are paper magnetic shmade, so that when they are put in the palm of he hand they will draw up and turn over as if alive? A. They are made of thin gelatin, called for the same purpose.
Will tobaco Will tobacco smoke have any effect upon soft
rubber tubing? Will vinegar corrode it? A. Neither will have any permanent effect.
(23) J. S. \& Co. ask: What is a good solution for tempering steel for drilling rock? A. Be careful not to overheat it in hardening and forg-
ing, and quench in salt water, drawing to a brown ing, and
color.
(24) J. P. S. says: I recently came across a strange stone; it weighs 2 or 3 tuns, and is formed
of small stones about the size of a hen's egg. It f a mile from a mall small stream, and on a hill fully 100 focks are called conglomerates, and are quite common in some (25) O. A. J r. asks: How can I drill hard drill to a straw color, and run it slowly. Shoul 251 vol 31 (26) W. W. B. says: An apparatus for gold ozs 4 ozs. cyanide of potassium and 4 ozs. carburet of
ammonia,dissolved in 1 gallon rain water. Then add 2 grains gold (orsilver), apply battery,and add blue vitriol until a blue color is obtained. Eattery put nitric acia in the porous cup, and dinted sul in the porous, and zinc in the outer, with small copperwires. I use the gold solution hot. I am very careful to clean thoroughly thearticles plated, but thework will not last six months. Can you in form me of a process by which I can do plating hat will last one, two, or three years? A. To make a silver solution, dissolve the silver in fou partsof nitricacian one water; the diluted degrees. After the metal is diesolved, put it in arge vessel and dilute with water. Then add a eo ution of cyanide of potassium so long as a white precipitate is formed. When the precipitate of cs nide of silver has settled, the clear solution is cate which is agsin decanted as soon as the precipitate hassettled. Repeat this threeor four times, and the add a solution of cyanide of potassium until the precipitate is all dissolved. The solution is the ready for use, after filtering. Dilute the cyanid of potassium so that theplating solulion chall conain one ounce of silver to a gallon. A prepara-
ion of solution of gold is prepared by discolving old in three parts muriatic acid ond one of nittic cid, which forms the chloride of gold. This is di ested with calcined magresia, and the gold is pre cipitated as an oxide. The oxide is boiled in strong itric acid, which dissolves any magneeia in unio with it. The oxide, being well washed, is diseolve in cyanide of potassium, which gives cy cyide of
gold and potassium. A Smee or Daniell battery is better than a carbon battery for silver and gold plating.
(27) B. D. T. asks: How are plow castings them cool in the mold.
(28) L. G. akks: 1. What kind of grease is best to use in the oil cups of engine cylinders ? A.
Tallow. 2. Which oil is most to use on engine lides? A. Lard oil
(29) Y. P. says: I have made a nickel solu moniac or chloride of ammonia to a gallon of sul-
phate of nickel. I used fuld ammonia to make it have two pipes leading from the bottom, one down
neutral. I use a 3 cell Smee battery. The work to supply the water to the crlinder neutral. I use a 3 cell Smee battery. The work comes out black. Can you give me a remedy?
A. Dissolve the nickel in nitric acid and then add Wash t'iis well and dissolve it in cyanide of potas Wash tis well and dissolve it in cyanide of potas-
sium. Use a plate of nickel for a positive elec-
trode. Dissolve your platinum wire in a mixture of trode. Dissolve y ourplatinum wire in a mixture of
mitric and muriatic acids. Wash your silver plate in nitric acid and brush it until a frosted appeary , and place it in a vessel containing dilute sulphuric acid and a little nitro-muriate of platinum. Place in the vessel a porous tube containing a few drops of dilute sulphuricacid. Put in the tube a ;iece of zinc and connect the zinc with the silver posited upon the seconds the platinum will be deiatinized silver is ready for use
(20) H. M. D. asks: What is the best method of truing up an ordinary carpenter's grind-
stone ? A. Use a $3 / 4$ bar of iron, or a gas pipe, for stone? A. Use a $3 / 4$ bar of iron, or a gas pipe
(31) A. J. G. says: I have a tin roof laid on airtight, without any windows. In cold weather a very heavy coat of hoar frost collects inside; and when it thaws, the moisture drops down to the plastaring and is spoiling all of the ceilings in the
upper stories. Can I prevent the hoar frost collecting by putting a ventilator in the center of the roof? If so, what construction is bost? A. The
appearaz_ce of water in such quantities under your roof would seem to indicate a concealed leak in the tin; but if the frostshows itself in every part, and there is evidence that it arises from the con-
densation of water from the atmosphere, it is, to say the least, rather unusual, and the remedy should be sought in a:1 increased ventilation. Your best plan to effect this will be to provide openings
under the eaves of tho house, and on two opposite sides thereof, so that the air may pass through the roof space: these may be placed close under the roof cornice, so that they
the entrance of rain, etc.
(33) W. M. L. asks: What kind of treadle should I put on a foot lathe to use either end of the lathe?
lathe bed.
(33) F. E. W. says: In your answer to W. E. W. you say that musk is prepared from a root.
In Griffith's "Universal Formulary" may be found the following: "Musk is a peculiar concrete substance obtained from the moschus moschiferus, a
small animal of the deer kind, inhabiting the mountainous regions of Central Asta. The musk near the ganerative orgars. It is found in com-
merce in these sacs; it is concreted or granular, of a brownish color, soft and greasy to the touch, of a powerful, penetrating odor, and of a bitter, unpleasant, and somewhat acrid taste. From its
highprice, it is very liable to adulteration. It is used in spasmodic diseases of all kinds, as well as used in spasmodic diseases of all kinds, as well as from five to ten grains.
(34) W. M. N. asks: How can we temper steel springs made from the ends of Bessemer
rails? A. Try a very low red heat, and quench rails? A. Try a ver
right out in water.
(35) S. C. C. D. says: 1. F. wants an inter nal gear made with pinion turning on same center,
both to revolve in definite proportions (say two or both to revolve in definite proportions (say two or
three to one). I contend that there must be an intermediate to transmit the motion. Am I right?
A. Yes. 2. Please give the relative proportions. A. Yes. 2. Please give the relative proportions.
A. The proportions are the same as for outside gears.See p. 187, vol. 29.
(33) J. L. H. asks: 1. How can I temper
oold chisels and punches? A. Heat to a red, and quench in water, drawing to a blue. 2. Can I make quench in water, drawing to a blue. 2. Can I make saws ${ }^{3}$ inch thick? A. They are excellent material for the purpose. 3. How can I anneal and
temper them? A. Anneal in lime, and draw to a brown color
(37) W. P. S. asks: Will a circular cutter on a lathe mandrel answer for beveling the edges
of pasteboard for bookbinding? A. No. Such of pasteboard for bookbinding? A. No. Such
material should be cut with shears, to avoid a burr material shou
What kind of wood is best for cutting
with a chaser or screw box? A. Boxwood.
(38) R. T. W. asks: What can I use in lard A. A good variety of kerosene oil would answer your purpose much better.
How can I procure the drawings, etc., of all ma-
chinery patented in the United States? chinery patented in the United States? A. Apply by letter at our office for copies
See our prospectus in this issue.
I have a mercurial thermometer which indicates -55° Fah. this winter. Canitbe correct? I I thought
mersury congealed at -390. A. Mercury frezes mersury congealed at -39°. A. Mercury freezes
at $39^{\circ} 5^{\circ}$ Fah. Lower temperatures are measured by thermometers in which the mercury is replaced
(39) H. L. C. asks: How much fuel is re quired to melt 1 tun of cast iron? A. Probably
2 or $21 / 2$ times theweight of the iron.
(40) N. D. S. says: I have a water tank
ade of two inch pine planks. It is round and made of two inch pine planks. It is round and
hooped like a barrel, and is about 4 feet high and 4 feet in diameter. It is about 20 feet above the
supply. I want to attach a supply pipe to the tank, put in a check valve with a safety valve on the
top, and fill the tank with steam: and as it condenses, let it fill ltself by the supply pipe. Will the tank stand the pressure? A. It will most like-
ly be difficult to malse your wooden tank stean ly be difficult to make your wooden tank steam
tight and keep it so. A better way to fll it by the tight and keep it so. A better way to flll it by the
direct action of steam is to provide a small cylin-
up, through which to force the water to the tank. Provide proper valves to these pipes. Let the the steam by a jet and the water will enter from
the supply pipe and fill the cylinder; let the steam enter again on top of the water and it will force it down and out through the rising pipe to the tank will be repeated. Now, if you make your valves
wo ork automatically, you have an \&utomatic pump (41) N. C. H. asks: What will remove
coating of paint from windows? ine and linseed ofl.
(42) W. B. W. asks: 1 . Are the carbon Bunsen's batteries? A. Yes. 2. Would a double convex or a plano-convex lens increase the bril liancy of an electric light any more than a plain window glass with a strong reflector placed be-
hind it? A. No.
(43) F. B. asks: What are the arrangements of the circuit in an induction coil, and what
is the best material for the core? The coll is intended or a shocking machine. A. An induction wound into a bobbin, or each may be wound con separate bobbin, and the one placed inside the other. The primary coil is made of wire $1 \frac{1}{2}$ of an
inch in diameter and covered with cotton or wool; he secondary coil is made of sill-covered wire ${ }^{1}{ }^{1}$ of an inch in cliameter, and is ten or twenty
ti mes as long as the primary. The core consists of a bundle of iron wires. Attach a battery to the cwo ends of the primary coil, and when the circuit is closed or broken, a shock will be produced
by taking hold of the two ends of the secondary coil.
(44) W. E. D. asks: 1. Which is the strong-
est magnet, one wound with fine or with coarse est magnet, one wound with fine or with coarse
wire? A. For lifting weights, coarse wire; for working over long telegraph circuits, fine wire. maes the size of the iron of which the poles are
made make particular difference as to the satrength of the magnet? A. The fron should be
about one third as thick as about one third as thick as the coil. 3. I have
made a magnet with spools $21 / 2$ inches long $x 194$ inches diameter, outside measurement, and made the poles of 3 ininch iron. I wound thespoolswith would be. What is the cause? A. If you use morebattery, your magnets will be stronger. 4.
Will lightning strike insulated wire? A.Lightning Will lightning strike insulated wire? A.Lightning will strike anything. 5. Supposing a line of gal-
vanized wire is used outside, and is oonnected with insulated wire where it enters the house, would that be dangerous if I do not use lightning arrest-
ers? A. It would be dangerous to the instruments You had better use the arresters.
(45) B. J. K. asks: 1. Is it true that, with Edison's automatic telegraph, 500 words can be
transmitted per minute? A. Yes, on short lines, say 100 miles long or less. 2. Do you thinks it will
ever be generally adopted and drive the sounder out of use? A. No. 3. Can you give me a de-
scription of it? A. It is substantially the same as Bain's telegraph. The additions are a new me chanical puncher and a method of neutralizing, to should a telegraph student read to obtain a perfect knowledge of telegraphy ? A. Culley's, Sabine's,
Pope's, Turnbull's, Spafnerner's, Prescott's, Jenkin's, Pope's, Turnbull's, Sbaffner's, Prescott's, Jenkin's,
and Bakewell's in Engligh. In German, Schellen's most complete work.
(46) Λ. F. O. says: I have heard just enough about the single fuid bichromate of pot-
ash batiery to cause me to desire to know more about it. If it is, in point of simplicity and ef-
ficiency, what it seems to be, it is a most desirable addition to the laboratory. It uses but a single fluid, thatcan be kept in bottles for any length of time; the zincs and carbons cannot deteriorate
when laid away, and must be ready for immersion when laid away, and must be ready for immersion
at any time. No porous cells are needed. What are the chemical reactions, and in what manner does the exciting fluid deteriorate, how may it be
renovated, and when must it be renewed? A.The single fluid bichromate or potash, or Grenet, batlery is a very good form of an experimental bat-
tery where constancy of current is not required tery where constancy of current is not required,
as, for example, in the laboratory and mechanical workrooms. The cell is in the form of a bottle and contains a mixture of 2 parts bichromate of
potash, dissolved in 20 parts hot water and 1 part sulphuric acid. The top is frame wooden cover. To this cover are attached two carbon plates which
permanently dip into the fluid; and between the carbon platesa zincplate is suspended, which may be plunged into the fluid or withdrawn at pleasure.
When the zinc is withdrawn,the action ceases. The When the zinc is withdrawn,the action ceases. The
battery gives a powerful current for a short time, but rapidly polarizes. The length of time during which the fuid will retain its power depends upon the use which is made of the battery. It is not
suitable for continuous use; but in all cases wher a powerful current is required for a brief period,
(47) C. E. G. asks: Can I warm a three story wooden building, 80×45 feet, thoroughly by
putting two hot air furnaces in the cellar? A. putting two hot air furnaces in the collar? A.
Your building is not so large but that it may be Your building is not so large but that it mat heated by two good sized ordinary hot air furnaces. Apply to the party from who you intend
to procure your furnaces before you build, so that the location and size of the flues (which should be large) may be properly determined.
(48) I. O. T. paps: 1 . I am making an in-
duction coil; it is
i $1 / 2$ bundle of soft iron wires or $5 / 8$ inches a diameter, and I propose to make it with a diameter of about
4 inches. The inducing coil consists of copper 4 inches. The inducing coil consists of copper
wire (100 feet to 1 lb.) and there is about 40 yards
feet to 1 lb .) and I get quite a strong shock. How much more of a smaller size (18,000 feet to 1 lb) inch long? A. You would require to add a con denser to accomplish this. 2. My battery is of the
Callaud gravity kind, made in quart glass jars. How many of these will equal one of the Daniel ind? A. One. The electromotive forces of the Callaud and Daniell battery are similar. 3. In ingthe wire from the copper plate on the bottom If the strength of the induced current depend upon the intensity of the inducing current, why not pass the current into a small induction coil and then use the induced current as an inducing the intensity, but upon the quantity. 5. What is the black substance that falls from the zinc to the bottom of the Jar? A. Copper, deposited in a metallic form. 6. Does it do any harm to let it collect? A. It ought to be removed occasionally.
The zinc is sheet zinc amalgamated. Is this right The zinc is sheet zinc, amalgamated. Is this right?
A. It ought not to be amalgamated. 8. What is A. It ought not to be amalgamated. 8. What
the best form of battery that can be transported, nd used while it is being transported, or while th clanche's 9 What is the white salt-like substanc that accumulates in the top of the Jars? A. Sul(49) C.
(49) C. M. B. asks: Should the follower pinch the rings of the piston, or should they be
loose so as to be acted on by the springs? A. Let loose so as to be acted on by th
them be just movable by hand.
(50) C. F. B. says : 1 . I made a battery o
two cells, which fails to two cells, which fails to givea current. I filled the
outer glass Jar, 6 inches deep and 4 inches in diam outer glass Jar, 6 inches deep and 4 inches in diam sal ammoniac. In this I put an amalgamated zinc carbons were packed tightly into the porous cup with a mixture of finely powdered black oxide of manganesc and gas carbon, 3 parts of former to 1
of latter. Where is the mistake? A. You should use coarsely powdered maaganese oxide. 2. In the
battery made by C. and F. Fein, of Stuttgart, are the platinum plates used to make the connec tion between the copper wires and the charcoal plates? A. They are clamped together. 3. How large are the plates? A. They vary according to
the size of the Jar. 4. How many Leclanché cell are required to ring an electric bell with 300 yards ordinary telegraph wire, insulated? A. About 4. (51) A. M. R. asks: How can I get inter-
mittent rotary motion of a wheel, 12 inches in dimittent rotary motion of a wheel, 12 inches in di-
ameter, by cogs, an 8 inch wheel being on the ameter, by cogs, an 8 inch wheel being on the
driving shaft? A. Have cogs on the driving wheel that only act during a portion of the revolution. Is there a dry color lighter than blue that will dissolve in water when cold? A. Wethink itquite
likely. Apply to a manufacturing chemist.
(52) R. B. R. asks: How does the engine, illustrated as operating the water belt on p. 278 of
Science Record for 1875 , operate? A. A reciprocating engine will answer, as all that is necessary is to make the large wheel revolve at a high speed. (53) J. V. asks: Will ice form on the bottom or a riveras well as on the surface, on eitherrocky
or sand
(i5) E. B. T. asks: What is a good preparation with which to cover the deck of a boat? A.
Good timber, well seasoned, is advisable. There Good timber, well seasoned, is advisable. There
are numerous patent processes for preserving timber by w
durable.
(55) X asks: Why does the lead eccentric on any kind of a link motion engine wear away
more quickly does more work than the other.
(56) H. P. asks: What sizes of cast iron press, pressing 500 or 600 lbs. bales with for a cotton A. Cast iron, 3 to 4 inches diameter; wrought, 2 to 3 inches. 2. Will an ordinary lifting pump raise wa-
ter 32 or 33 feet? A. No. 3. What is the probable horse power of an engine, with a cylinder 6×12 inches stroke, pressure 10 tos.
per minute? A. From 10 .
(57) F. H. H. asks : 1 . Will any object sunk in very deep water remain suspended after reach-
ing a certain depth? A. It is quite probable. Is it true that divers have to hang weights upon themselves so as to keep at their work? A. It is
frequently neceseary, because the diving suit infrequently necessary, because the diving suit in-
creases the displacement, and the waterat the bottom is more dense than at the top.
(58) C. asks: Which part of a wheel revolv-
ing on the ground travels fastestgoinghorizontally through the atmosphere? A. The top.
(59) L.E.D.asks 1.Does a native of a tropcal climate suffer as much from cold in his own country as in a temperate one? A. A person accus-
tomed to a tropical climate suffersmore from cold. 2.Will he,going from a colderclimate int from warmer one, s:iffer as much from cold as in the colder cli-
mate? mate. A. He will suffer more by a certain fas of
temperature in the warm climate than by the same
(for) w I covo. Thowo onivotatolo
(60) W. L. says: I have a private telegraph line about one quarter of a mile long, and use a cent storm, a bracket came off one of the poles and for about one hundred feet the wires are wound one around the other. I supposed that the
current from the batteries at either end would foll low one wire to where they came together, and low one wire to where they came together, and
then retura by the other wire to its original battery, and so make two local circuits, butno through
current. But on opening my key, I fourd I could communicate with the office at the other end without any difficulty whatever, and we have been
working with the line in that condition for a week working with the line in that condition for a week
with scarcely any inconvenience. It recently
rained nearly all day, and for a short time I was had no difficulty. I have that exception I hav hat the wires are very rusty and thus insulated. The wires swing enough to scrape all the rust off of each of them. Am I right in supposing that they
are insulated by the rust? A. When two or more are insulated by the rust? A. When two or mor aths are open for the passace of an clectric cur ies afforded. In the case in point a portion of the current returned via the cross, but enough got through to work the instrument. If the two wire had been a couple of huudred miles in length, very ittle of the current would have reached the dis round end. If your two wires were laid on the bround without any insulation, they would work, o the earth for so short a distance.
(61) I. M. W. asks: What is the difference between a galvanic and a faradic current, or be-
tween galvanization and faradization? A. The term galvanic is sometimes applied to currents produced directly from a battery, and firadic to those produced by induction. In other wor'cs, the former term is applied to primary and the larter
to secondary currents. The distinction is rather fanciful, and not sanctioned by the best authors. (62) T. B. S. asks: What is the rule for determining the electromotive force necessary t quired depends upon the power pou wish to r c velope. The Atlantic cable can be operated with a battery consisting of a percussion cap, a bit cif zinc wire, and a pinch of salt. This minute bat
tery, which has an electromotive force of only tery, which has an electromotive force of only
half a volt, is sufficient to overcome the rcsistance of a wire extending across the ccean, and thien to meter. On thoughi worts Twomsolectric moio reguently only has 50 feet of coarse wire, and re quires a battery of 50 volts to worls it. The power
or strength of currentis a certained by dividing tbe electromotive force by the resistance. Thus if E represents the electromotive force, R the resist ance, and P the power of the current, then the $\mathrm{P}=\frac{\mathrm{E}}{\mathrm{R}}$.
(63) F. G. asks : What is the momentum of 1 lb . after 17 inches fall? What is its momentum solve such problems? A. Multiply the weight in bs. by the time in seconds.
(64) J. I. B. says: 1. I am running an 8 horse power portable enzine, and am troubled prevent it? A. It is probably caused by dirty water. Clean the boiler, and blow ofr frequently it may be due to a defect in the boiler. 2. The inch iron, the firebox being a little thicker. Aoinch iron, tive frebox belig a litie theker. Ao working prossure about 80 lbs . per equare inch.
Would it be unsafe to carry 100 lbs, which would Would it be unsafe to carry 100 lbs , which would
be but little more than $\frac{1}{6}$ of the bursting pressure? A. We would not recommend it. 3. In a recent andfr and frequent blowing off to prevent scale. Do you mean to blow off a portion of the water from the
bottom of the beiler? A. Yes. 4. Suppose two tight cylinders or ber A. Yes. 4. Suppose dicular pipe inserted, the pipes being of cqual hight but of different ameters ($8 / 2$ inch and two ter, would the pressure per square inch be the in each, it would. (65) W. H. G. asks: How is brass spun?
A. The brass is secured to a pattern on a revolving mandrel, and a blunt tool is pressed agairst it. 2.
Is there any work on the subject? A. We think $\substack{\text { not. } \\ \text { Wha }}$ What is meant by mule spinning? A. The mule is a te
ton.
(66) W. H. C. says: 1. I supposed that wa ter is only silghtly condensed by the greatest prescure, but Steele's "School Philosophy" says the
water at the bottom of the ocean is very much condensed by the great pressure. Is this correct?
A. Water is compressed about $0.00000 a 3$ for each pressure of one atmosphere that is applied. 2.How much does this condensation amount to at the
greatest depths? Is it true that, in the deepest greatest depths? Is it true that, in the deepest
parts of the ocean, heavy bodies, sich as rocks or even iron and lead, do not sink to the bottom? substances pendently of the condensation of the water? A. It is easy to see tbat,even with this slight compresslon, water may become much more dense at great depths. A submerged body is pressed downward by its own weight, and upward by the weight of
an equal volume of water, so, of course, if the water is sufficiently compressed, any substance will foat in it. 3. Do you think the freshly drowned human body, divested of clothing, will sink to the bottom of the deep sea? A. No.
(C7) E. G. says: 1. I am making a sawing macline to run by foot power. What sized saw
can I use? A. About 6 inches in diameter. 2. How many revolutions per minute should the saw run?
A. About 400 or 500 . 3. How many revolutions should a bit in a boring machine run per minute? About 400 or 500
(68) T. B. K. seys: Our steam tug ordinarily draws 9 feet of water, when loaded 10
feet. Her propeller is 7 feet 1 inch in diameter,with 4 blades; the greatest width of blades is 30 inches. It is placed as low down as admissible, so that its ordinary mmersion is 2 feet below the surface of
the water. It is driven by anupright 24 inch drect action cylinder, of 24 inches atroke. With 45 to 50 lbs. of steam she handles the wheel like a toy, and
tows well. We are about to build a new hull, with tows well. We are about to build a new hull, with
same draft of water. We can carry 80 to 100 lbs

Can we not, with perfect propriety, carry a larger
wheel? Ourpresent shaft is $5 \% /$ inches. If we enlarge the wheel, will it be necessary to enlarge the shaft? A. We think that you can safely increase the diameter of wheel to 8 feet, and that a 5% inch shaft will be large enough.
(69) L. H. R. asks: 1. I heard a gentleman from Utica say, the other morning, that his mercury thermometer stood at $-41^{\circ} \mathrm{Fan}$. . Is it not to be doubted? A. The thermometer could not quite
indicate correctly, as mercury freezes at -395° indicate correctly, as mercury freezes at - 39
Fah. 2. Has alcohol ever been frozen? A. No.
(70) J. D. S. asks: Why would not the rotary boury, 23 , 845 , make a admitting the steam at D and exhausting at E ? A. It would probably not be economical.

How much will a cubic inch of nitro-glycerin expand on explosion? A. A bout 13,000 times.
(71) C. S. A. says: The amount of rain that has fallen in this country for the past ten years
will average about 46 inches. If a vessel is set to will average about 46 inches. If a vessel is set to catch rain water, and the water allowed to stand in the vessel as it falls during the year, what perof the year, allowing the water to escape only by evaporation? A. It will vary in different localiies, and must be determined by experiment. What is meant by dry steam? A. It is steam
that has no water mingled with it, and is commonthat has no water mingled with it, and
ly produced in a well designed boiler.
y produced in a well designed boiler
What is the average cost of building a rallroad feet and lower base of 28 feet, of earth dug along the sides of the embankment? A. Your question is too indefnite. You will find some valuable estimates for different cases in Trautwein's "Engineer's Pocket Book."
Are the engineers now at work on the tunnel
from Jersey City to New York? A. No.
(72) S. T. says, in reply to L. H. H., who asked what to do with belts that hare become號 ill. Attend to it once a month with the scraper and oil ; the scraper should not be too sharp nor be straight on edge, but rounded a triffe. If your belt cannot be run slowly, take it off: but it is (2) C. L.
(73) C. L. says, in reply to M. W. H., who ged Herry treegum is of any value for muchge: Having made use of it for two years, I can answer, yes. It is
(74) H. A. H. says, in answer to several cor espondents inquiries regarding the power necesobtained by theuse of a definitea nount of power: Assuming that we wish to give the vessel a motir
ate speed, we calculate the resistance from the reatest immersed section
$V=\sqrt{K L H}$, and $H=\frac{V^{2} A}{K L}$ where $K=$ coefficient for
speed and horse power, $V=$ velocity in miles per
hour, $A=$ area greatest immersed section, $H=$ horse hour, $A=$ area greatest immersed section, $\mathrm{H}=$ horse power, $\mathrm{L}=$ length of boat on waterline. In words, the speed in miles equals the square root of the and by a coefficient, K, and divided by area of ond formula is : The horse power equals the squa of the speed multiplied by the area of greatest immersed section in square feet, and divided by the ength on water line multiplied by the coefficient The coefticlent mentioned above varies with the Aneness of the lines, from $1 \cdot 1$ in very full lines to
$1 \cdot 9$ in very fline lines. The above rules are found to agree very ne:arly with the performance of va rious steam yachts now constructed.
(75) H. M. W. says: It may perhaps interest fit the tin from tinned plate without acid. I rea a short account of it in the Jahresbericht der Chemie. It consists in boiling the scrap tin with
soda lye in presence of Itharge. This ought to pay, as there are plenty of objections to the u (76) C. says, in answer to G. W. B quires about removing elinkers from oughly hot, a few lumps of lime, or even oyster shells, are placed in the stove, as near the clinkers as possible, the latter will be softened or fluxed and as the fire burns down, they may be scrape
(i) W.
(77) W. says, in reply to the question of A. B., asking the distance passed over by a fly on
the rim of the driving wheel of a locomotive while he locomotive runs 50 miles, the driving wheel be ing 8 feet in diameter: The fly passes over a cy
cloid at each revolution of the wheel, and with cloid at each revolution of the wheel, and with
such a wheel he will travel 32 feet at one revoluly will travel 63 miles, $3,4944_{\mathrm{T}^{4}}^{4}$ feet.
Minerals, etc.-Specimens have been re ceived from the following correspondents, and examined, with the results stated:
J. F. W.-Itis galena, a valuable lead ore.-A. B -No. 1 is suide of iron, with silex. No. 2 is coppe pyrites, a valuable copper ore. No. 3 is black ox ideof iron. Nos. 4 and 5 are talcose schist, no
valuable. No. 6 is chlorite schist, not valuable. No. 7 is chlorite and micaceous schist. Nos. 8 and 0 are yellow oxide of iron in schist, not valuable No. 9 is magnetite in steatite. No. 11 is red oxide o ron in schist. No. 12 is iron ore. No. 13 is coppe pyrites, raluable. No. 14 is magnetic iron ore lex. No. 14 is mica schist, containing quart No. 17 is micaceous schist. Two other specimen of copper, not valuable.-J. M. H.-It is a carbo
nate of lime and magueesa, containing iron pyritee. of iron. No. 2 is silicate of lime with augite. No. 3 is augite, a silicate of iron, manganese, lime, and magnesia. No. 4 is copper pyrites.-E. P.C.-It is bog iron ore, containing a large amount of insoluble silicious matter.-W. H. L.-It may be used as polishing or cutting powder for metals and min erals.-G. S.-It is marcasite or white pyrites, and
contains 47 per cent of iron and 53 of sulphur.-J. J. T.-It is composed of the same material as pure sand, which is used in glass making, etc., but it is too common to be of especial valuc. Finely crystallized pieces are prized as rock crystal. Some of the lower priced ornaments are sometimes cut f torm lines. Y. T.-It is blende, and contains 67 per cent of zinc and 33 per cent of sulphur.- We havereceived, in a box without any address, 1 specimen of valuable hematite ore, 1 of trap rock, and 4 of a con-
glomerate containing red hematite, from Bucks county: Pa.
H. L. asks: What kind of a purchase have used a ch great deal of trouble and hard work to keep the chain from slipping.-C. W. J. asks: What is the best and speediest plant for a good, compact, and secure hedge?-G: W. W. asks: How can I pulver ize mica very fine in large quantities?-W. E. C asks: 1. Has chloride of aniline been successfully wool, more especially on felt hats? 2. Which is the best mode of dyeing a bright black on felt hats? -G. H. F.asks: What is the ornamental work on stove patterns made of? What will make it adhere oo the wooden pattern?-A. J. H. asks: How is a silver gray color produced on fancy panel work, indigenous to the North importedinto the South by means of our armies during the late war (see p. 131, vol. 32)?

COMMUNICATIONS RECEIVED.

 The Editor of the Scientific Ampricin ac iginal papers and contributions upon the followin subjects:On Talking Ants. By W.C
On Spiritualism. By T R By R. B. W.
On a New Tempering Composition. By T. J. B.
On a Prolific Snake. By A. A. R.
On Glycerin in Boilers. By W.
On Domestic Medicine. By G. H.J. On Kaolin. By C.T.S.
A so enquirles and answers from the following: J. M. S.-J. D. H.-A. O.-W. M.-C. B. L.-C.C.-
T. B. G.-R. T. P.-E. A. M.-L.A. E.-O.K.-C.S.B.

HINTS TO CORRESPONDENTS.

Correspondents whose inquiries fail to appear sould repeat them. If not then published, the nay conchudethat, forsood reasons, the Edior de ways be given.
Enquiries relating to patents, or to the patentab:lity of inventions, asignments, etc., will not b published here. All such questions, when initials only are give, are turown into the waste basket, twould all half of our paper to print them all but if the writer's addrees is given Hundreds of enquiriesanglogousto are sent: "Who sells aniline blue dyes? Wh deals in manganese? Who makes wooden pape hangings? Who sells horse radish graters? Who sells giant powder? Who sells a substitute fo cloth for billiard tables? Who sells the cheapest buildings? Who will sell a right to neating larg ting process?" All such personal inquires are printed, as will be observed, in the column of "Business and Personal," which is specially set apart for that purpoos, subject to the charge men loned at the hesd of that column. Almost an tously obtaned
[OFFICIAL.]
INDEX OF INVENTIONS

Leiters Patent of the United States were Granted in the Week ending

Narch 2, 1875,

and each bearing that date

[Those marked (r) are relssued patents.]
Apron supporter, W. H. Chipley (r).
Bag holder,L. Crofoot
Bale tle, W. A. Jordan.
Bale tie, G. N. Ongood....................
Bath, Turkith and vapor, H. S. Firman
Bed bottom, D. C. Kellam..............
Bed spring connection, A. C. McMains
Belt shifter, T. S. Crane
Dtl hle, R. H. Ho
Btll nle, R. H. Hoffman................
Bit, rubber-covered, F. J. Nodine
BIt btock, W. Tucker
Boot heels, making,
Boot heels, trimmlng, w. H. Rounds
Bottle stopper, T. J. Hoimes...........
Brick machine, E. Deshler
Rrush, Bhoe, A. McElrath.
Rrush, shoe, A. McElrath.
Bucket, earthen, W. F. To
Bucket, earthen, W. F. Towns...
Burner, , otove vapor, F. Rosengr
Burner,

Butter worker, F. B. Aldrich.
Button fastentng, J. H. Keatin
Cable atopper, D. G. Thompaon
Calendar, J. J. Caulon.
Calendar, J. J. Caulon
Cams, turning pattern, W. Tucker
Candlestick, W. Kilburn.

Candy mixing

Car brake, L. T. Hay
Car brake, G. M. Hopkins...
Car brake, soobodo and Luxa
ar coupling, C. F. Bake.
Car coupling, B. F. Cadernhead.
Car coupling, Hoopes and Smith
Car coupling, W. C. Scoles.
Car couping, W. C. Scoles.
Car, frelght, Paal and Sibley.
Car wheel, G. Palmer
Care, apron for stock, C. R. J......
Carbureter, etc., H. J. Ferguan
Carrlage, hand, W. O. C'mstead.
Cartridge, D. C. Farrington.
Cartrldge holder, N. S. Goss.
Cartridge shell holder, Holabili............ and Park
Cheese safe, w. P. Quackenbush
Churn, Georke and Stutzman.
Churn, J. W. SImmons...........
Churne, etc., motor for, H. Ode
Chute reverser, drop, crowthers and wiking
Cligar machlne, J. Wettstetn.
clothes and quilting frame, M. Churchill
Clothes line support, J. s. Fuller.
Clutch, friction, E. S. M. Fernal
Coffee ronster, G. Boyd
Colter, A. M. Davis....
cooler, Deer, J. B. Wels
Cooler, nillk, McEwan and Gibson
Copyler, tinning eheet, w. Jenkin
Corn sheller, S. H. Moore.......
Cotton gin, Bucklln and Stearne
Culttvat.or, P. D. Roquemore....
Cultivator teeth, grass, E. Leond
Curtain fxture, s. H. Phinney..
Dental engIne, Edson and Evans..........
Dlamonds in drills, setting, C. Λ. Terrey Dish, airtight, P. Shaw
Door check, G. Royle.
Door checks, etc., attaehing rubber to, J. Shep................
Door plate, B. D. Stevens.............
Dough-kneading board, L. L. Black.
Draft regulator, J. Woodruff
Drilling machine, portable, M. Stephenson
Elevator, H. J. Reedy
Engine, oscllating, G

Englne, pyrometer, G. B. Dixwell.....
Englne, prro-indicator, G. B. Dixwell
Engine reveralng lidk, J. Simpson.
Equalizer, draft, L. J.
Faucet, F. Mesmer.
Facet, F. Messmer....
Faucet, J. D. Seagrave.
Feed-cutting machne,
Feed-cutting machne, W. J. Jones....
Fire wheel, Barracloukh and Prttche
Fire escape elevator, Thounas and .Jerna
Flue cleaner, w. G. Pike.
Frult dryer, H. J. Allen..
Frult dryer, T. C. Walter.
Furnace for burning petroleum, c. Hilbert.
Furnace, smoke-consuming, Argerbright et a
Farnaces, regulating alr to, T. s. Prideaux..
Furnace dampers, J. Woodruf
Furnace ateam jet, G. Steele
Furnace steam Jet, G. Steele.
Gas exhauster, tteam Jet, E. Korting
Gas governor, H. J. Ferguson....
Gas governor, H. J. Ferguson..
Gas machine, carburetlng, A. C.
Gas regulator,
Gas regulator, A. Hickenlooper.
Gas retorts, charger for, J. Weat
Graln conveyer, w. Stanton
Graln sampler, F. A. Furst.............
Grape and.fower plecer, L. B. Snow
Grate, shaking, J. Mahony
Hammer, drop, N. C. Stile
Hammer, drop, N. C. Stlle
Harrow, sulky, J. Kimball...............
Harvester sheaf dropper, S. G. King
Hem folder, hand, F. Henry..........
Hinge, double reversible, E. Halsey
Horse collar, L. W. Harbaugh .
ndex, A. J. LJ.
ndex, \mathbf{c}. Virgo.
 Lamp for lighting:and heating,
Lamp holder, J. D. Plerce.
Lap board, w. F. Mitchell.

Lock. Beal, wheeler and La:...................
Loom shedding mechanisa, \mathbf{Q}. Crompton (r)
Loom ahuttle guard, J. L. Dow.........
Magnet for relays, etc., 'T. A. Edison
Magnet for relays, etc., 'T. A. Ediso...
Matches, making, McC. Young...........
Mattresses, stuflng, Spurgin and Freemun
Mcechantcal movement, Hart and Scot t.
Medical compound, J. M. Adameon
Metal rollingmachine, J. Holmes...
Metals with metal, coating, I. Adams, Jr. (r).
Mill, cider, E. Curtiss.
Millstone balance, H. C. Byr........
Millstone balance, C.
Millstone balance, c. E. Goehert....................
Mining, apparatus for, Buechley and Thorn. Mitten, J. H. Peabody...
Molding machine, G. W. Wetmore. Mortislng machine, W. I. Ludlow
Motor, H. Odell...................... Motor, H. Odell.................. Music leaf turner, G. L. Mmpfel.
Music leaf tarner, E. A. Maedel
Nall plate feeder, w. H. Fteld... Nall plate feeder, w. H.
Necktle eupporter. B. F.
Needle case, A. Fowler. Ordnance, breech-loading, B. B. Hotchkls
Ogan attachment,reed, J. R. Lomas rgan tremolo, reed, L. K. Fuller.. organs, etce, pedal achack Pall, housemald's.E. C. Wooster.
Paper bag machine, W. Liddell. Paper, cutting wet, J. Eachus Peat-molding machine, Bocquet \& Benard Patanofte a ction, apright, ©. E. Rogera...
Planoforte name board, Behntng \& Diehl.

