"The first requisite," sáys our correspondent G. W. D., " is to have a wellshaped, well tempered and well (water) ground razor; unless very truly ground, it will be impossible ground razor; unless very truly ground, it will be impossible
to hone it properly. Take an Ilalian hone, of not too fine to hone it properly. Take an ILalian hone, of not too fine
grit, face it perfectly with fine emery paper glued on a board; grit, face it perfectly with fine emery paper glued on a board;
dust it off, and drop 6 or 8 drops of sperm oil on its face. dust it off, and drop 6 or 8 drops of sperm oil on its face.
Hold the razor perfectly flat on the stone, draw firmly but Hold the razor perfectly flat on the stone, draw firmly but
lightly from heel to point (from the further right hand corlightly from heel to point (from the further right hand cor-
ner to the lower left hand corner), against the edge; if a wire edge be produced, run the edge lightly across the thumbnail, and a few strokes on the hone will remove all trouble on that score. If you will examine the edge of the razor now, by aid of a magnifier, you will find that the fine grooves or teeth incline towards the heel.
I would here say that the hone must be kept perfectly clean, as, after using a few times and then neglecting it, the pores will get filled with steel, and in that case it will not be possible to get a keen edge on the razor. I have had a hono in use for forty years, for my own and friends' razors. I have kept it perfectly true, and yet there has been no perceptible wear
I make mg own straps as follows: I select a piece of satin. maple, or rose wood, 12 inches long, $1 \frac{1}{4}$ inches wide, and inch thick; I allow 34 inches for length of handle. Half an inch from whire the handle begins, I notch out the thickness of the leather so as to make it flush towards the end. I taper also the thickness of the leather; this precaution prevents the case from tearing up the leather in putting the strap in. I then round the wood very slightly, just enough (say $\frac{1}{18}$ of an inch) to keep from cutting by the razor in strapping and turning over the same. I now select a proper sized piece of fine French bookbinder's calfskin, cover with good wheat or rye paste, then lay the edge in the notch, and secure it in place with a small vise, proceed to rub it down firmls and as solid as possible with a tooth brush handle (always at hand or should be), and, after the whole is thoroughly dry, trim it neatly and make the case.
Use cold water for lather,as it softens beard and hardens the cuticle; hot water softens both and makes the face tender. Always dip the razor in hot water before using, and also after use, as it will dry it and prevent rusting.'

RED DEER.

The deer family, species of which are indigenous to all countries in the world except Australia, are every where renowned for their graceful and elegant form and their timi dity, their remarkable fleetness of foot enabling them, in open country, to keep away from the haunts of man. The race includes genera of all sizes from the little muntjac to the moose, and the chief peculiarities of the species, the horns, the hairy skin, the habit of rumination, and the feet,
each with two principal and two rudimentary toes, are to be found in all of them. The American deer (corous Virginia$n u s$) has a long head with a sharp muzzle, with large eyes; and the legs are long and slender. It is easily domesticated but requires a spacious range to keep it in health. The hind produces two or three young at a birth, but no accouche ment takes place till she is two years old; she conceals her young carefully, visiting them only three timss a day.
The subjects of our illustration are the red deer, formerly found in all parts of Great Britain, but now seen only in the mountains of Scotland and on one or two extensive moors. The red deer are so exclusive in their habits that they will not feed with inferior animals; they have an especial abhorrence for sheep, leaving the place at once if there are foot prints of sheep on the herbage.
The kind usually kept in parks in England is the fallow deer, a native of Africa originally; but it has been domesticated in England for some centuries. It is humbler in its tastes, and accommodates itself well to a small park or pad dock. Like all its tribe, it sheds its horns annually, retir ing as if in shame till the new growth appears.

Chemistry of Milk.

C. A. Cameron, M. D., states that the opacity and white ness of milk are due, not to the liquid being an emulsion of fats, but to the reflection and refraction of light by solid caseous mattor suspended in it
Cow's .Milk.-Ferty analyses of pure milk from Dublin dairy cows gave the following average results: Water, $87 \cdot 00$ fats, $4 \cdot 00$, albumenoids, $4 \cdot 10$, sugar, $4 \cdot 28$, mineral matter. 0.62 .

Mare's Milk.-The average of the fourteen specimens gave: Water, $90 \cdot 310$, fats, $1 \cdot 055$, albumenoids 1.053 , sugar 6.285, mineral matter, 0.397 . Mare's milk is bluish white specific gravity about 1.031 ; reaction neutral, or faintly alka line.
Sow's Milk.-The sow parts with its milk (except to its young) with great reluctance. Its specific gravity is 1.041 its reaction faintly alkaline, and color yellowish white: 100 parts contain (mean of two analyses): Water $81 \cdot 760$, fats $5 \cdot 830$, albumenoids. $6 \cdot 180$, sugar, $5 \cdot 335$, mineral matter $0 \cdot 895$. These results show this species of milk to be very rich. It is remarkable that in the lactometer it shows up no cream. Drying on the water bath, it exhales the odor of roas pork, and on putrefying that of putrid bacon.

Salting, Packing, and Selling Bintior.

Blanchard's Butter Manual recommends one ounce of sal to a pound of butter as sutficient for keeping it ; but the bet ter paying class of customers, who are a little more fastidious about the quality, prefer about one half as much; and this is found sufficient, if the casein has been properly removed. Butter makers in the vicinity of large towns should seek out
regular customers for their produce, in which cases it may be put up in balls or any other form adapted to the demand "Philadelphia prints," which have acquired a worldwide re putation, are pound balls, with a small figure upon the top They are usually enclosed in a white linen napkin, and packed in a cedar, zinc-lined chest, with apartments at each end for ice, to keep it hard while being transported to marizet For the great mass of butter makers, the wooden tub, holding from fifteen to one hundred pounds, must ever be the mos economical form of package. In the vicinity of New York city, heavy return pails, of the best white oak, with thick covers, having the owner's name branded on them, are used and re-used year after year. In some parts of the West, mis erably poor oaken tubs are employed,which affect the butte very injuriously. In other localities, ashen tubs are favorites, while in Northern Vermont the most approved tubs are spruce Spruce is unquestionably the least liable of all timber to af fect the flavor of butter injuriously; while it is generally be lieved that, for long keeping and much exposure, good white oak is preferable. Stone jars and crocks are sometimes used but we do not recommend them. Much depends upon the purity of the salt-it must be perfectly white, and completely purity of the salt-it must be perfectly white, and completely
soluble in water. The office of salt is, first, to remove the soluble in water. The office of salt is,first, to remove the
buttermilk from the pores of the butter, and,secondly, to ren der harmless what cannot be removed.

New Utilization of Refuse Material

A very important discovery has recently been made by MM. Croissant and Bretonniere, of Mulhouse, France, which consists in producing dyes of a largevariety of brown hue from substances not merely refuse but in themselves color less. The pigments are obtained by the reaction of alkaline sulphides upon ordinary wood sawdust, humus, horn, feathers, linen, silk, cotton, and paper waste, gluten, blood, and a number of other materials. In certain cases, when treated with the sulphides or polysulphides, the sulphur directly combines with the organic body; in others sulphuretted hy drogen becomes substituted for the hydrogen atoms elimi nated.
The same body gives different shades, according to the degree of temperature, the duration of the operation, and the proportion of sulphide employed. The longer the heating and the higher the degree, the nearer the dye approaches to black. Humus gives a fine bistre shade, which does not fade and is unalterable by organic or mineral acids, caustic lyes, soap, oxalute of potassa, etc. With bran, a color is produced which subsequently, with bichromate, yields a fine brown ish yellow or rosin color, which can be changed to gray by the addition of carbonate of soda. Sawdust, preferably of oak, chesnut, andother non-resinous woods, gives a soluble dye of a brownish black, which appears upon the fabric of a greenish hue. It is possessed of high coloring properties and is very permanent.

Phosphoras steel Making.

M. F. Gautier, engineer of mines, France, gives the follow ing useful sketch of the various methods for producing phosphorus steel, or, to use a more correct definition, phosphorus cast metal. This metal, says M. Gautier, cannot be em.
ployed in industry except on condition that it ployed in industry except on condition that it is nearly deprived of carbon, consequently every process which will
yield extra soft steel will, with inferior materials, produce phosphorus cast metal.
I. The Bessemer Process.- 1 . The ferro-manganese process practised at Terre Noire.-The silicious pig iron used contains but little manganese; the first stage, that which precedes the appearance of the yellow ray in the spectroscope lasts about a quarter of an hour, according to the richness o the pig iron in silicon. There is no explosion, the flame is
pure, without smoke; the completion of the operation is posipure, without smoke; the completion of the operation is posi-
tively marked by the disappearance of all the rays of the tively marked by the disappearance of all the rays of the
spectroscope with the single esception of the yellow sodium ray. For the production of extra soft metal, the refining is prolonged for about twenty seconds, the blast is stopped, and the converter is laid on its side. Manganese iron, previously heated to redness, is then thrown in by means of shovels, taking care that the pieces pass through the scoria and enter the metal. The manganese iron used is an alloy containing a little carbon; the manganese in it reduces the oxide of iron in the converter, and the greater part of the carbon is con; verted into oxide of carbon in the form of brilliant flames. When the agitation ceases, the charge is drawn. The metal is even and quiet, without bubbles or other irregularities and, which is of essential importance, the product is always
equal and regular in practice. This is the method also which equal and regular in practice This is the method also which
is adopted at the Seraing works, with the same manganese is ado
iron.
2. Sweedish method, with highly manganiferous pig iron.The pig iron used is without silicon, but rich in manganese the proportion running from 4 to 5 per cent. The character of the operation is such that there is not what is called a first period; the yellow ray appears at once. There are abundant
explosive projections, which would render the process ruinexplosive projections, which would render the process ruinous if care were not taken to have enormous converters relative to the quantity of metal treated. The flame is veiled by smoke and gases, the principal of which is oxide of mangan
ese. It is difficult to control the operation; for if the temperature be reduced by additions of small quantities of steel and iron, the object is not attained, for the heat must be retained in order to keep the metal in such extreme fluidity as will permit the oxide of iron to separate itself and arrive at the surface, for no addition is made of spiegel. The work is carried on blindfolded, for the intermittent flashes of flame are blinding; the heat caused by the explosions is annoying and the spectroscope is misleading. From time to time samples of the scoria have to be drawn to find how matters are proceeding; after a certain amount of ex perience, the state of
the metal is ascertained by the behavior of metallic globules the metal is ascertained by the behavior of metallic globules
under the hammer, and from the color of the scoria. But the under the hammer, and from the color of the scoria. But the
results are uncertain, and have to be classifed. The ingots, results are uncertain, and have to be classified. The ngots, mode is adopted at Fagersta, in Sweden ; at Zwickau, in Sar. ony; and Maxhütte, in Bavaria; but it requires all the value that attaches to the production of extra soft steel to induce any one to continue a method so uncertain.
3. English method, that of spiegeleisen by explasion.-In this process, silicious pig, such as that of Cumberland, for example, is employed, and the operation is carried considerably beyond complete decarburation. In order to succeed, a cer-
tain quantity of oxide of iron, neither more nor less, must be tain quantity of oxide of iron, neither more nor less, must be
produced in the bath, and which carries off by explosion the produced in the bath, and which carriee off by explosion the
carbon of the spiegeleisen which is added. This instantaneous production of oxide of carbon is dangerous, a part of the metal, and sometimes the whole charge, being projected out of the converter, and endangering the operator and his men. Generally the product is soft, but it is liable to Hlaws, which are not much felt in sheet iron, but which unfit it for rails. Steel makers will choose whichever of these three methods appears to them the most advantageous for the production of phosphorus steel with pig iron of second quality. M. Gautier adas. The Bessemer process is destined to lose much of its of the Martin-Siemens process, which, he considers, will take the lead in future, and regulate prices. It is capable of using up old iron, and employing almost all kinds of ore, for puddiling is still the only known method of practically getting rid of the greater part of the sulphur and phosphorus; while the Bessemer process, requiring silicious pig iron containing
little sulphur, must always be of a limited application. The true mode of making phosphorus steel is then in the sole furnace
II. The Martin-Siemens Process.-In this method the matter is more simple. In order to produce extra soft metal there is but one way, that is to say, to act chemically upon sorted to iron in the bath. Manganese iron must be retion is the same as in the Bessemer process, namely, 1 per cent of the whole, or about 2 per cent of manganese iron to 40 or 50 per cent of useful metal. When a sample is procured which bends perfectly when cold, the manganese alloy
heated to redness is added, the bath is stirred slightly, and heated to redness is
the charge run off.
the charge run off.
An account, by
An account, by M. Griner, of the process followed at Zwickau and Maxhiltte, supplies a striking confirmation of the fundamental properties of phosphorus steel; ; you may
introduce phosphorus into cast steel on condition of eliminat., introduce phosphorus into cast steel on condition of eliminat.-.
ing the carbon, and the less the amount of the latter the ing the carbon, and the less the amount of the latter the
greater may be that of the former. Practically, by the German method, which is really but that of Fagersta applied to ess pure materials, metal is produced which may almost be
said to be without carbon, and, as no spiegel is introduced, there is no element of recarburation. It is not, then, astoneable the metal thus obtained should be perfectly mal hat is yet contain a notable proportion of phosphorus, ruly soft steel when produced in a Martins Siemens furnace with manganese iron

Having a Hobby.

The question "is there money in it 9 " is said by some men o be the test by which everything is to be received or re jected. And those who offer this very mercenary gage claim o be the only "practical" men, and the true prophets for these times, and indeed for all times. The science of getting, the art of keeping, and the process of increasing are deemed by them to include all that is useful in the circle of sciences, the field of art, and the aims of thought. Most people con cede in the abstract these pretensions of the mercenary
philosophers, though the great majority in practice are bet. philosophers, though the great majority in practice are bet er than their theory.
The maxim, roughly expressed, that "everybody should have a hobby," is a good one, provided that the "hobby" one rides should be a mental rather than a sensual one. It should carry the rider over the route of mental improvement to the development of his reasoning and analytical powers, and thus promote the growth of the attributes which distingo back to the question alluded to above, in regard to education, the first question asked may very well be: "Is there money init?" But if this be the last question as well as the first, and the sole object of learning be mercenary, the seeker will find relief in bodily excesses, from his mental discipline.
Or, classing drudgery of the mind with drudgery of the body, Or, classing drudgeryof the mind with drudgery of the body,
he will look for enjoyment where the intellect may be laid will look for enjoyment where the intellect may be laid hant.
It was well said in a recent address to young men, in the evening classes of the City of London College, that "they must extend their mental horizon by raising the level of their sight; that they had to adorn their lives as well as to sustain them ; and that they had not only to be tradesmen but men." The speaker told them that they must not only pursue their technical studies, but, as a relief and re creation, follow themes calculated to raise the tone of their minds and carry them beyond the routine of their daily lives. He said that they had not only to live but to enjoy
their lives. He recommended them to take up one subject, 'to which they could devote themselves with such enthu siasm that it would become a pleasure and a relaxation." To man immersed in any business pursuit, it is highly desira ble that he should change the cur rent of his thoughts and prevent his whole existence from being confined to one rou
tine, which, without such relief, must inevitably dwarf his intellect and weary his body.-Philadelphia Ledger.

Steam Fill Climber.

A new locomotive foruse on Ithaca Hill, N. Y., has mad its appearance. The incline has fire tracks, of which the two outer are of the usual width, used in the ordinary man ner. When the engine starts up the hill, it rests upon a pair of rails just within the usual track and upon a set of double flanged small driving wheels which are upon the same axles
with the big drivers-they being only about thirty inches in with the big drivers-they being only a bout thirty inches in inches above the track is raised aboungh so that the big drivers do not touch the track at all; the engine rests now upon the small drivers, and is independent of the outer ones; then in the center of the track is placed a wide cogged rail, which exactly meshes into the cog wheel which is between thesesmalldrivers, directly under the center of the lo comotive. Thus it will be seen that, by applying power to the big drivers, in the ordinary way, the power is applied to the cogged wheel, which does the climbing. The cogs are about three inches from tip to tip, and the wheel is eight inches wide.

Bright Deep Blue on IWool

The following is said to yield a tolerably fast color, of desirable luster, similar to that of dark vat blue: The wool or cloth is prepared by boiling for an hour in a hot kettle, with $2 \frac{1}{2}$ lbs. alum, $\frac{1 \mathrm{lb}}{4}$. chromate of potash, $1 \frac{1}{2}$ lbs. sulphuric acid, and 2 ozs. tin salt in solution, for 40 lbs. of material. It is then opened out and well cooled, and allowed to lie for 12 hours. The day after, 8 lbs . of logwood are boiled in a fresh bath, and then 3 ozs. of aniline violet (the bluish, soluble in water) are added, and, as soon as it is dissolved, an other $\& \mathrm{lb}$. of sulphuric acid. The prepared articles, after being washed or rinsed, are placed in the bath at 122° and, after half an hour, are worked at a boil for an hour. More aniline violet affords a stronger blue, more logwood a
deeper blue. The color can easily be cleaned in cold water.

Prodoction of Ozone.-Ozone may be easily and abund antly generated in any apartment by means of an aqueous solution of permanganate of potash and oxalicacid. A very small quantity of these salts, placed in an open porcelain dish. is all that is necessary, the water being renewed occasional
as it evaporates. Metallic vessels should not be used.

At the Edinburgh Literary Institute, Professor Geikie stated it to be his opinion that his colleague, McCroall, had pitched upon the precise epoch in which the glacial era had aken place, and attributed it to a period of great eccentricity of the earth's orbit, which took place about 240,000 years ago and lasted about 160,000 years.

```
nventiong Patented in England by American:
            Complled from the Commlssloners of Patents' Journal.]
            From February 2 to February 2
Balanced Slide Valve.-E. T. Smythe, New York city.
Boilgr FtrNace.-H. A. Studwell, Brooklyn.N. N
Botle, yto.-A. W.Thomas, Phlladelph
Fritilizer.-B. Ackerman, Nevy York cit.
FilinNe Bottleb, gto.-J. B. Bradford, Boston, Mabs,, et al.
Finfer.-J. Outerson et al., Wladeur Lockb, Conn.
Frerzing, Chitming, eto.-W. Redheffer, St. Louls, Mo
Ftrnaor Grate.-J. B. Larkin_Pitsburg m, Pa
Harvertr.-D. M. Obborne, Auburn, N. Y.
Imitation Leather, ktc.-C. H. Knelleg, New York elty
l
Motive Power Engine.-G. Webtlnghouse, Jr., Pittbburgb, Pa
illitiples Trlzeraph, etc.-T. A. Edison, Newaik, N. J.
OrpNayce,-G. H, Yelt Yew Yorkcit
Overallb,-H.F.Woodward, New York clty.
patching Bullets.-H. Borchardt, New Haven, Conn,
Mortable Lathe.-F. Scott, BonnIngton, Vt,
Rtbber Boot and Ladt.-I. F. Willamy, Bristol, R. I.
ccber boot and lat.-I. F. Willamy, Bristol, R. I
SCrew Propeller,-A. C. Fletcher, New York elty.
tram Engrne.-A. S. Cameron (of New York clty), Loudon, England
Tl
```


zecent Amertran and foreign 2atents.

Silas W. Holbrook, CatakiU, N. Y.--The invention relates to an rrangement of yielding plates forming the continuous inner wall of the suda box, and being free to move at each end between paralel guide blocks. The clothes are put into the space between the through said space by the revolution of the and are carried aroun washed clean by be'ng rubbed against said plates, and by being car ried around through the water.

Improved Seat for Extension Carriages.

 James V. Randall, Newtown, Pa.-The rear seat is made adjustale toward or from the front of the carriage, and the elastic front arsons pivoted and supported, so that the weight of the person or ends to throw the lower ends of the standards outward, and thu ends to throw the lower ends of the standards outward, and thus
Improved Lamp Burner.

Walter McKinley, Tremont, Ohio.-The object of this invention se to provide a lamp burner of improved construction, which shal same, more convenient to clean and easy to keep in repair. It consists in a burner cap provided with a groove, in combination with a detachable wick tube, a detachable set of spur wheels for adjusting he wick, and a detachable shaft for operating said wheels. It also consists in the peculiar construction of the spur wheels, and in th mproved Ditching
Improved Ditching Machine.
SenatorTheodore F. Randolph, Morristown, N. J.-Ex-Covernor
Randolph has for some time past been engaged in developing the novel form of ditching machine which forms the subject of this patent. The device now completed presents many excellent points of merit, and, in the opinion of the inventor and many of his friends, is the most practical and efflcient of the many machines for ditching purposes now before the public. Its construction is such that it will work equally well in clayey or sticky solls and in sandy or looee soils. It may be readily adjusted and controlled, so as t ing wheel may be readily fed down as the ditch increases in depth There is a novel combination of parts for adjusting the angle and hight of the shoe with relation to thie ditching wheel. By suitable construction, the wheel and frame can be raised and lowered with out affecting the axle, and the axle can take any inclination the surface of the ground may require without affecting the ditching
wheel and its frame. The rear axle may be inclined in either direc whee and commodate it to the surface of the ground. The edges of
tion to accommer the flanges of the ditching wheel are made sharp, so that they may be sunk into the soil at the bottom of the ditch by the weight of the wheel and frame, so as to separate the sides of the slice of soll to be ralsed from the sides of the ditch. As the soil passes over the top of the wheel it is delivered into a chute, by which itis discharged
upon the side of the ditch, and which is provided with a tongue, upon the side of the ditch, and which is provided with a tongue,
which enters the channel of the wheel and serves as a scraper to disengage the soil from said channel. The frame and ditching wheel may be held in a vertical position, while the axle is inclined in either direction by its wheels in passing over uneven or inclined ground. By this construction, all the necessary adjustments can be made without stopping the machine. Knives shave off the sides of the last previous cut to widen the ditch, and enable the ditching

Improved Sheep Holder
Improved Sheep Holder for Shearing.
Joseph R. Virgo, Texas, Mich.-This consists in an adjustable the legy of the sheep. When a sheep is fastened on the table, it is in an easy position and convenient for the shearer, and can be turned by turning the table to the right or left, as may be required

Improved Fifth Wheel for Vehicles.
George F. Putman, Fonda, N. Y.-The head block or axie is pro-
vided with guard plates at both sides and opposite points of the George F. Putman, Fianda, Noth sides and opposite points of the
vided with guard plates at both
fffth wheel, for protecting king bolt and wheel.

Improved Parlor Fountain

Herman Wenzel, Now York city.-Air is forced by the upward pressure of water in the base through a pipe, over the water in a chamber below, and, by its compressive force, ejects the liquid
through the nozzle. A pump operated by a treadle is a within the base, and connected with the lower chamber of the basin by a pipe, so as to enable the water in the base to be forced into the ower chamber of the basin, and kept there in full supply.

Improved Combined Fluting and Sad Iron.
Charles Raymond Rand, San Francisco, Cal.-This invention re-
lates to an improved fluting and sad iron which is heated internally with gasoline or other volatile distillate of petroleum. It may be readily used on different sides, either as a sad iron or for fluting. A detailed illust
rent volume.

Improved Bridle Bit.

Peter Casey, Newport, R. I.-Side pieces pass through mortises in the ends of a movable bar. The side pieces, in order to render them screws, so that the bar is securely held in place. The driving lines are attached to the loops of the bar.

