Correspontence.

A Fosell Skeleton.

To the Editor of the Scientiflc American:
About three weeks ago, there was a report circulated in this vicinity that some men, while digging for water, had come across the skeleton of a most gigantic beast, the like of which had never before been found.
On hearing that the skeleton was on exhibition in this town, I went to see it. There were not many of the bones to be seen, but there were enough to give an idea of what the beast must have been.
The horn, which was the most conspicuous, I found to be eight feet nine inches in length and two feet one inch in cir cumference. It is slightly spiral and considerably curved in form tapering almost to a point; it is hollow for about four feet from the large end, which bears traces of hav ing partly wasted away. There are three pieces of the jaw, one of which is two feet long and contains the two back molar teeth, and is one foot five inches from the joint to the first molar tooth. A similar piece of an ox jaw is about one half the whole length ; so this,in the same proportion, would be about four feet long. This piece, which is of the lower jaw, is about six inches thick and eight deep. The largest of the teeth are seven incheslong, and three and one half broad measured on the face. A joint of the back bone measured thirteen inches in breadth and twenty-one in hight; but it is broken on the upper end. The joint at the back of the head measured eighteen inches across. A bone, saill to the the third short rib, is four feet five inches in length, and the bone from the lnee to the ankle is seven inches across the top.

The horn in its present state weighs one handred and iive pounds,and one of the teeth weighsfive and one half pounds. The bones are in a very good state of preservation, and also the horn; but the tecth (which are tubercular)are perfect, the enamel being as hard and intact as ever.
These remains were found in marshy land on the north shore of Lake Erie, eighteen inches underground; and ove them there stood an oak tree three feet in diameter. There is more of the skeleton still under the surface, which will be taken out as soon as the frost is out of the ground

Is this skeleton similar to that of a mastodon?

St. Catharine's, Ontario.

Kaolin in the United Staten.

To the Editor of the Seientific American:
Thir.y-five miles from Omaha. Neb., there is a deposit of kaolin, about 30 feet thick and underlying about 100 acres It crops along a bluff for over one half mile, with but a few inches of earth covering it. Beginning at the top, it is coarse and of a granulated nature; but as we descend, it grow finer, and is very fine and white near the bottom. It quarries in lumps,like chalk, and very readily dissolves in water Pure and free from foreign substances, it readily be comes pliable, and can be turned or molded into almost any form; and its shrinkagein drying is remarkably small. The difference of grades in fineness adapts it to the manufacture of a very large class of goods, such as are in demand throughout the West; and as it lies near the Burlington and Missouri Railroad, shipping facilities are convonient.

It makes a beautiful white brick, suitable for fronts and trimmings; and it seems well adopted for terra cotta, chimney tops, drain pipes, and all classes of jugs, crocks, etc., and is very superior for fire bricks.
This immense deposit, located as it is with timber, water and all conveniences for manufacturing, offers, I think, good opening for some capitalist to build up an immense business. I hope to see such a one take hold of and develo this material.
Omaha, Neb. J. M. Gondwin

Setting Locomotive Valven

To the Editor of the Scientific American:
In your issue of February 20, W. S. W. asks whether lo comotive valves can be set without opening the valve chests? If the face of the valves and their seats are in good order, their adjustment may be determined with sufficient accuracy water cocks in the bottom of the cylinders. This may be water cocks in the bottom of the cylinders. This may be
best done when there is but little pressure in the boiler, not best done when there is but little pressure in the boiler, not
quite enough to move the engine. Set the reverse lever to quite enough to move the engine. Set the reverse lever to its extreme forward position, then open the water cocks
and the throttle; then bar the engine forward, and, as the cranks approach their dead points, note carefully when the steam begins to issue from the water cocks. If the valves are correctly set, steam will begin to issue just before the cranks arrive at their dead points, owing to the lead of the valves. The amount of lead may be determined by placing a straight edge against the gland of the stuffing boxes of the valve stems, and marking (with a fine scratch awl) on the valve stem, just at the point wheresteam begins to issue, and then again just as the crank reaches its dead point; the distance between the scratches will of course indicate the for passenger engines, and less than one sixteenth of an inch for freight engines.
One revolution of the drivers is sufficient to examine each of the four dead points and adjust the lead and range of the valves, the range being adjusted by varying the length of the rods, of course, and the lead by moving the eccentric on the shaft, forward or back, as the case may be.
In setting valves as above explained, it is well to repeat the observation at each of the four dead points by moving the engine back sufficiently to take up the slack of the valve
gear, and then bar it forward again and apply the atraight dge as before.
To set the valves for the backward movement of an engine, the reverse lever must of course be placed at its extreme back position, and the engine must be moved backward in tead of forward,otherwise the adjustment is of course precise ly the same as for going ahead, except that all adjustment in the range of the valves must now be done by varying the length of the eccentric rods, because the least variation in the length of the valve stems would now upset the previous ad stment for going ahead.
F. G. WOODWARD

Worcester, Mass.

To the Editor of the Scientific American

In your issue of February 2π, a correspondent gives short mothod for squaring numbers ending with 5 . There
is an excellent rule for squaring any number; and by its aid s an excellent rule for squaring any number; and by its aid
he operation can be performed mentally on any number of ot more than two figures. It is as follows:
Take the nearest number ending with a cipher to the numer to be squared; if such number be greater than the one to be squared, subtract the difference between the two from he number to be squared, and if it be less add the difference; then multiply the number thus obtained by the one ending with 0 , and to this product add the square of the foresaid difference. The result will be the square of the numbers.
For example: Take the number 64. The nearest number nding with 0 is 60 . The difference between the two is 4 which add to 64 , making 68 . Then 68×60, which can easily oe performed mentally, is 4,080 , to which add the square of the difference, which is 4×4 or 16 . The result is 4,096 , the
square of 64 . quare of 64.
If the number to be squared were 68 , the operation would then be $(70 \times 66)+2^{2}=4,624$.
This rule is always correct, easily remembered, and will Newark, Ohio.

A New Rifle Projectile.

To the Editor of the Scientific American:
I enclose a sectional sketch of a projectile which I have invented. It is principally adapted to rifles. I believe I may safely say that I have made the longest shooting with it that was ever accomplished, ceteris paribucs. Out of ten shots which I fired at a barn, at a distance of 2,773 yards, five passed through two boards, each over an inch and a half in thickness, and the sixth passed through the first board and afterward became imbedded in a post.
I used a common rifle, an old one, without any of the mol n improvements; judging from the circumstance thatit or ginally had a flint lock, it nust have been made at least orty years ago.

A is the projectile. B is a wooden cov er in which the shot is placed. It serves two purposes: 1. That of filling up a ypace. \quad. That of preventing windage,
which it effectually does. C D is the which it effectually does. C D is the
waist. It comes, or was intended to come, in contact with the rifling of the cylinder. Proportions: $C D=$ diameter, $E \quad G=1$
diameter, $F G=2$ diameters. Were the diameter, $F G=2$ diameters. Were the
projectile designed for a field piece the waist would be broader, and would be fluted for the purpose of receiving a band of softer metal. upon which situds would be placed.

Colonel Strange, R. A., Dominion (Cana a) Inspector of Artillery, whose opinions on such matter are worthy of consideration, and who was one of the officer selected by the British Covernment to report on the artillery
and arms of Prussia and France during the recent war, writes and arms of

J. Meadonoll, Esq., London, Ont.

anuary 8,1875, inclosing description the receipt of yours of y you, and asking my opinion. 1 I a projectile proposed having an extremely long range. The form is exceedingly fa yrable not only to overcome resistance from air in front, but ne projectile would be less retarded than those of the ordiind the projectile when it moves with a velocity greate han the air can rush in behind it, which is a source of retard tion at high velocities.
ight place, if the riflehad of your projectile is in about th right place, if the riflehad a quick twist; otherwise
The causes which led to the good shooting are probably: a. The wood, having a lower specific gravity than the lead, was forced forward by the discharge and filled up the grooves
of the rifle, imparting a twist and preventing windage. If of the rifle, imparting a twist and preventing windage. If
you examine the bullets, you will find probably that not even the waist. was cut by the grooves.
betal comes in contact with the gun.
c. The drawback to your system would be the difficulty o fing a ring or studs of soft metalat the waist, which is and d. The effect of field artillery form.
d. The effect of field artillery depends on the shell power
solid rifled artillery projectiles are obsolete powder in a common shell, on which its destructive pore fo powder in a common shell, on which its destructive po
depends, is much diminished in your form of projectile. e. Also the space for bullets in the Shrapnel ohell.
I would not wish to discourage your researcher, especially
s you have hit on correct principles. Excuse haste and a as you have hit on correct principles. Excuse haste
T. B. Strange, Colonel, Dominion Inspector of Artillery
You are at liberty to make what use you like of this com-
munication.
London, Ontario

Erperlmente with Honey

To the Editor of the Scientific American:
On page 132 of your current volume, I noticed that one of our correspondents has great difficulty in preserving strained honey. Perhaps it would be of interest to him, as well as other readers of your valuable paper, to know that candied or cystalized honey can be permanently restored to transpar ency by the following method, which I have found success ful: Take a flat bottomed pan, as deep as the bottles con taining the honey and fillit with cold water; place the bot tles in it so as not to touch each other, putit on a slow fire, thes in it so as not to touch each other, put it on a slow fire,
and heat it up to 212° Fah., and keep it at that heat until the and heat it up to 212° Fah., and keep it at that heat until the
honey is clear. Remove the pan from the fire, and you will honey is clear. Remove the pan from
have no further trouble with the honer.
Pittsburgh, Pa.
A. L. F.

Tests of Vulcanized Rubber for Belts.

Chemical analysis, in the majority of cases, is powerless to determine the quality of vulcanized rubber, and the con sumer is usually left to mechanical tests of the article fur nished him, in comparison with other and similar products of known excellence, in order to find out whether the former adapted to his purpose or attains a fixed standard of efficien cy. These trials consist in examining the comparative de grees of elasticity and tenacity. The manner in which they are conducted in the French navy appeary to us practicaland easily followed. The first test consists in cutting from the sheets samples, which are left in a steam boiler under a pressure of 5 atmospheres for 48 houss. At the end of this time, the pieces should not have lost their elasticity. The specimens may then be placed on the grating of a valve box under a pressure from above of 85% lbs. per square inch, nd should withstand 9,100 strokes at the rate of 100 pe minute. Specimens not boiled should withstand 17,100 strokes. Thongs of rubber boiled, aud having a section $0 \cdot 6$ inch square and a length of 8 inches, fixed between supports and elongated 3.9 inches, should resist without breaking a urther elongation of 8 inches, repeated 22 times a minut for 24 hours. Thongs not boiled, under the same conditions should resist for 100 hours. These extra elongations maybe easily made by a wheel, to the periphery of which one end of the thong is fastened, while the other extremity may be attached to a support. By turning the wheel, any determined elongation may be given at the rate of from 20 to 25 times per minute. Under the above conditions bands of first quaity rubber, perfectly pure and well vulcanized, break afte 180 or 200 elongations of 8 times the initial length. Bands cut from pure rubber, but of secondary quality, break after 50 or 60 elongations. Inferior caoutchouc, containing mine al matters or residue of old vulcanized rubber, gives no re sults at all.
M. Orier (from whose valuable paper, recently read befor the Paris Society of Civil Engineers, we extract the main facts of this article) has investigated the properties of rul)ber belts made of repeated layers of cloth covered with pre pared rubber. Through the adhesive nature of the caout chonc, the superposed tissues form, after vulcanization, homogeneous substance, comparable, in M. Ogier's opinion to the best curried leather. His experiments, in order to ol tain the coefticient of friction of these belts on cast iron pul eys, give us results varying from 0.42 to 0.84 , as agains the coefficient for leather, $0 \cdot 28$. The minimum value corres ponds to canvas and rubber belts without an exterior rub ber coating. On pulleys of various forms, the maximum value of the coefficient of friction was found on those slightly convex and presenting a roughly turned surface, this re convex and presenting a roughly turned surface, this re
sult being inverse to that obtained with leather belts. Si milarly the presence of fatty bodies has an opposite action on the cloth and rubber belts to that which it has on leather On covering the former with a light varnish of half olive oil and half tallow, the adhesion was found to be considera bly augmented. This fact M. Ogier, who does not counse the use of the varnish but for rubber-coated belts, attributes o a resinification resulting from an action on the mixture of he excess of sulphur, which the caoutchouc always rejects fter a certain period.
Experiments were also instituted on leather and rubber belts, in order to determine their resistance to rupture, and the law of elastic and permanent elongations obtained under increasing stress. These trials were made on belts 117 inches long, suspended from a crane by jaws, and carrying at their lower extremities other jaws which sustained the weight Both pairs of jaws grasped the leather for a sufficient distance to preclude any possibility of slipping. The belts were al lowed to remain under stress for an hour and a half befor he elongations were measured. The results obtained ma e summarized as follows: 1. The resistance to traction o rubber and canvas belts per square millimeter (0.0009 squar $\mathrm{nch})$ of section is at least equal to that of leather belts. 2. This resistance per square millimeter is independent of di mensions-length, breadth, or thickness. Such is not the case with leather belts, and therefore preference should be given to rubber belting whenever the conditions of the powe o be transmitted necessitate the employment of very long very wide, and very thick belts. 3. From two trials it appear that the external covering of caoutchouc adds nothing to the resistance, and hence it is advantageous to use covered belts which, at equal weights and prices, give a superior resis tance. 4. Under the same weight the elastic elongation of leather belts is double that of rubber ones. The permanen elongation, under a change of 0.55 pound persquare millime ter, reached 2 per cent in the former and nothing in the latter.
This last fact is worthy of special note, since the lack of success of rubber belting, in many cases, may be traced
thereby to the fact that a workman, used to leather belting, treats rubber naturally in the same way. He tightens the latter when it slips, a proceeding which results in breakage or rapid destruction through use at too high a tension. M. Ogier concludes that, in the present state of the leather and rubber industries, the price of installation, useful effect be ing considered, of leather and rubberbelts is about the same, but the cost of maintenance of the latter is small when compared to that necessitated by the use of leather belts of large dimensions.

Electric Lathe Chack.

In order to obviate the inconvenience and loss of time in volved in the ordinary mode of fixing upon a lathe chuck certain special kinds of work, such as thin steel disks or small circular saws, the chuck is converted into a temporary magnet, so that the thin steel articles, when simply placed on the face of the chuck, are held there by the attraction of the magnet; and, when finished, can be readily detached by merely breaking the electric contact and demagnetizing the chuck. The face plate of the magnetic chuck is composed of a central core of soft iron, surrounded by an iron tube, the two being kept apart by an intermediate brass ring; and the tube and core are each surrounded by a coil of insulated copper wire, the ends of which are connected to two brass contact rings that encircle the case containing the entire electro-magnet thus formed. These rings are grooved, and electro-magnet thus formed. These rings are grooved, and receive the ends of a pair of metal springs connected with the terminal wires of an electric battery, whereby the chuck is converted into an electro-magnet capable of holding firmly on its face the article to be turned or ground. For holding articles of larger diameter, it is found more convenient to
use an ordinary face plate, simply divided into halves by a thin brass strip across the center; a horseshoe magnet, consisting of a bent bar of soft iron, with a coil of copper wire round each leg, is fixed behind the face plate, each half of which is thus cionverted into one of the poles of the magnet. The whole is enclosed in a cylindrical brass casing, and two brass contact rings fixed round this casing are insulated by a ring of ebonite, and are connected with the two terminal wires of the magnet coils. A similar arrangement is also adapted for holding work upon the bed of a planing or drilling machine, in which case the brass contact rings are dis pensed with, and any desired number of pairs of the electro magnetic face plates are combined so as to form an extended surface large enough to carry large pieces of work. For exciting the electro-magnet, any ordinary battery that will produce a continuous current of electricity can be used; but in machine shops, where power can be obtained, it is more convenient to employ a magneto-electric machine-such a Gramme's, for instance-rather than a battery

The Pyrophone.

At a recentmeeting of the Society of Arts, London, a paper, descriptive of M. Kastner's new musical instrument, the pyrophone, was referred to. One of the instruments was in the room, and was experimented upon in the course of the evening. It was composed of a frame enclosing glass tubes, arranged in the form of the pipes of a small organ. In each of the tubes were two jets of gas, which were made to unite and separate by the action of keys, and thereby produced musical sounds. The paper, after describing the sound of the pyrophone, proceeded to explain the principles on which the sounds were produced. A very simple mechanism caused each key to communicate with the supply pipes of the flames in the glass tubes. On pressing the keys the flames separated, and the sound was produced; as soon as the fingers were ramoved from the keys, the flames joined, and the sound ceased immediately. If two flames of suitable size were introduced into a glass tube, and they were so disposed that they reached one third of the tube's hight, measured from the base, the flames would vibrate in unison. This phenomenon continued as long as the flames remained apart, but the sounds ceased as soon as the flames were united. The chairman, Lieut.-Col Strange, said that this instrument was the invention of a young man who did not claim merit for it as a musical instru ment, but as a scientific experiment, which, he hoped, would be of great value in the musical world.
The engraving of the pyrophone appeared in Vol. XXX Scientific American, page 279.

The Morse Telegraph Alphabet.

At a recent meeting of the Scottish Society of Arts, Edin burgh, Dr. Russell, Demonstrator of Anatomy to the Uni versity, read a paper on "The Telegraphic Alphabet as branch of Technical Education in Primary Schools."
In the course of his remarks, the lecturer explained the structure and uses of the Morse or telegraph alphabet, by means of a diagram, advocated its introduction into primary schools, and more especially into those situated along the coast. He then proceeded to mention some of the advan tanges possessed by the alphabet as a means of communication. Among these were its extreme simplicity and the ease with which it could be learned by very young children; that it helped to prepare for post office omployment and a seafar ing life; that it was already known all over the world by ex perts; and that it could be used with or without any appara-us-an advantage which the lecturer believed was not pos sessed by any other method of signaling; that it involved no expense; that it formed a good alphabet for the blind; tha t developed the sense of time or rhythm; and was impor tant in relation to lighthouses. Dr. Russell further stated that the Morse alphabet had been introduced with marked success into Kilmodan Free Church School and South Hal Public School,

Glues and Cements.

The following article translated from Des Ingenieurs Tashenbuch, seems to contain, in a small space, a great deal of valuable information which will probably be acceptable to many of our readers.
alues.

1. Com
joint is:

Pounds per suare tnch
Acrosis imineratn,
end to end. With the gratn.

It is customary to use from one sixth to one tenth of the above values, to calculate the resistance which surfaces joined with glue can permanently sustain with safety.
2. Waterproof Glde.-Boil eight parts of common glue with about thirty parts of water, until a strong solution is obtained; add four and a half parts of boiled linseed oil, and let the mixture boil two or three minutes, stirring it constantly. (In these directions, and in those that follow, parts by weight are to be taken).

cements.

1. Waterproof Cement for Cagt Iron Pipes, etc.Take equal weights, in dry powder, of burnt lime, Roman cement, pipe clay, and loam, and knead the whole with about one sixth the weight of linseed oil. The addition of more Roman cement improves the quality
2. Cement which Resists Moisture and Heat but not the Direct application of Fire, for Gas and Steay Pipes and Similar Purposes.-Two parts of red lead, five parts of white lead, four parts of pipe clay; fine and dry, and work the whole into a stiff mass with boiled linseed oil
3. Rubt Cement for Water and Steam Pipes, Steam Boilers, etc.-Make a stiff paste with two parts sal ammo niac, thirty-five parts iron borings, one part sulphur, and water, and drive it into the joint with a chisel ; or, to two parts of sal ammoniac and one part flowers of sulphur, add sixty parts of iron chips, and mix the whole with water to which one sixth part vinegar or a little sulphuric acid is added. Another cement is made by mixing one hundred parts of bright iron filings or fine chips or borings with one part powdered sal ammoniac, and moistening with urine; when thus prepared, force it into the joint. It will prove serviceable under the action of fire
4. Stove Cement, for twe Joints of Iron Stoves. Mica, together with finely sifted wood ashes, an equal quan tity of finely powdered clay, and a little salt. When re quired for use,add enough water to make a stiff paste.
5. Iron Cement, which is Unaffected by Red Heat.Four parts iron filings, two parts clay, one part fragment of a Hessian crucible; reduce to the size of rape seed and mix together, working the whole into a stiff paste with a satur ated solution of salt. A piece of fire brick can be used in stead of the Hessian crucible.
6. Cement for Fastening Wood to Stone.-Melt to gether four parts pitch and one part wax, and add four parts brick dust or chalk. It is to be warmed, for use, and ap plied thinly to the surfaces to be joined.

The Vicissitudes of the Sea.

The steamship Abbotsford recently arrived at New York, 108 days from Antwerp, during which the following mishaps occurred: On reaching one of the southern points of Eng land, the ship stopped for a few minutes to land her pilot and while so engaged was run into by another steamer, and so badly injured that the vessel had to go to London for re pairs. Delay one month. The Abbotsford then continued her voyage to New York, but in mid-ocean, during a heav gale, her propeller suddenly broke off. This converted he into a sailing vessel. The captain then put back to Queens town, Ireland. On approaching land, a heavy gale blowing, he signalled for help from another steamer, which, in the ef fort to connect a hawser, dashed into the Abbotsford, knock-
ing a hole forty feet long, happily above the water line. Through this aperture the happily above in whenever th vessel rolled, until the fore compartment was filled. But at last they reached Queenstown harbor; temporary repairs were made, and tugs employed which took the vessel to Liverpool. Here another month was consumed in repairs, and then another start for New York was made. Heavy gales were encountered, and the passage was long but successful.

Petroleum in Algiers.

A petroleum well, capable of giving a large and paying yield, has recently been discovered in Algiers, near the plain of Cheliff. The substance looks like tar, is soft and very teaceous, melts in boiling water, and dissolves in turpentine It burns with a very bright flame, and yields a large variety of products and considerable carbonaceous residue on dis illation. It is neither tar, naphtha, bitumen, nor asphal but seems to possess the properties of all, in a measure. It has most characteristics in common with naphtha, but, unlik

Honors to a Young American Lawyer.

The British Social Seience Association has lately awarded its first prize of $\$ 1,000$, for the best essay on international ar bitration, to Mr. A. P. Sprague, of Troy, N. Y. Mr. Sprague is a young man of great promise and ability. The essay in question occupied 150 pages.

gCIENTIFIC AND PRAOTICAL INFORMATION.
 CURE FOR WARTS.

Lisfranc immerses the parts on which the warts are de veloped in a strong solution of black soap. This causes a slight cauterization of the surface of the wart. The loosened tissue is to be removed and the application repeated every day till the cure is complete. Oil of vitriol should never be used for this purpose; it is very irritating, and infiames the waits instead of curing them.

neogene.

The above name is given by M. Sauvage to a new white alloy composed of copper 57 parts, zinc 27 parts, nickel 12 alloy composed of copper 57 parss, zinc 27 parts, nickel 12
parts, tin 2 parts, aluminum 0.5 part, and bismuth 0.5 parts, tin 2 parts, aluminum 0.6 part, and bismuth 0.5
part. It has a silvery appearance, is sonorous, tenacious, malleable, and ductile, and is recommended for jewelry, as a malleable, and ductile, and is recommended for jewelry, as a
substitute for silver in plate, and for low coinage. The new substitute for silver in plate, and for low coinage. The new
elements in the combination are those of the bismuth and aluminum. The alloy is very homogeneous, and is susceptible of a high polish

A New system of dredging.

M. Bazin,of Angiers,France,proposes to attach, to a steamer with an engine of 60 horse power, two pipes on each side at win 12 feet below the water line. These pipes are to be 10 inches in diameter, about 50 feet in length,and are to be connected to the ship, so as to swing up or down, and also so as readily to yield to the movements of rolling, etc. 'The extremities of the couple on each side are united by tubes of like diameter, open at the forward end. In clearing out a quicksand,the vessel is got underway at the speed of 8 knots per hour ; and on reaching the obstructicn, the tubes are low ered with the soft mass. The water pressure above the sand or mud, which of itself would force the material into and up the tubes, is aided by the onward motion of the vessel, and the result is that the mudis driven throurh the tubes and into the hold. When the vessel is full, the apparatus i raised, and her contents hoisted out or otherwiso discharged in some in some sur with the the size and with the speed above mentioned, 43,200 cubic feet of mud per hour could be raised. He points out that, in case of their becoming obstructed, the tubes can easily be cleared by simply elevating them out of the mass and allow ing the water to rush through them

Useful Recipes for the Shop, the Household, and the Farm.

Themain objection most people have to sending commu nications on postal cards is that the writing is, of course open to general perusal. A good way of avoiding this difticulty is to use sympathetic ink. A solution of 10 grains hyposulphite of soda in 16 teaspoonfuls water is the sim plest fluid for the purpose. Use a perfectly clean pen, nnd after writing go over the letters with a smooth paper cutter to remove all traces of the salt. Exposure to the heat of a bright coal fire turns the writing black.
Soluble glass can be made of pure sand 15 parts, charcoal 1 part, and purified potash 10 parts. Mix and heat in a fireproof melting pot for five hours,or until the whole fuses uni formly. Take out the melted mass, and, when cold, powder it and dissolve it in boiling water.
To make pocket mucilage, boil one pound of the best white glue and strain very clear; boil also four ounces of isinglass, and mix the two together; place them in a water bath (glue kettle) with half a pound of white sugar, and evaporate till the liquid is quite thick, when it is to be poured into molds, dried and cut into pieces of convenient size. This immediately dissolves in water and fastens paper very firmly.
A solution of chloride of lime, in water to which a little acetic acid has been added, is among the many receipts recom mended to remove ink stains from linen.
Marble can be stained different colors by the followin substances: Blue, solution of litmus; green, wax colored with verdigris ; yellow, tincture of gamboge or turmeric ; red, tincture of alkanet or dragon's blood; crimson, alkane in turpentine; flesh, wax tinged with turpentine; brown tincture of logwood; gold, equal parts of verdigris, sal am moniac, and sulphate of zinc in fine powder.
Mounting fluid for microscopic objects is made of gelatin oz., honey 5 ozs., distilled water 5 ozs., rectified spirit $\frac{1}{2}$ oz.,
and creosote 6 drops. Filter through fine flannel. Heat the honey before adding to the gelatin, which last must be dis solved in the boiling water. When cool, add the creosote.
Copies of signatures, which may be printed from on a cop perplate press, can be made by writing the words and then sprinkling the wet ink with very finely pulverized gum arabic. Make a rim of dough, putty, or similar material, about the writing and pour in melted fusible alloy of 5 parts bis muth, 3 lead, and 2 tin. This alloy melts at 199° Fal.
To bleach sponge, wash first in weak muriatic acid, then in cold water ; soak in weak sulphuric acid, wash in water again, and finally rinse in rose water.
A very goodimitation of meerschaum, which may be carved like the genuine article, can be made by peeling common potatoes and macerating them, in water acidulated with pight per cent sulphuric acid,for thirty-six hours. Dry on blotting paper, and for several days on plates of plaster drying.

New subscribers to the Scientific American will hereafter receive the papers from the time of our receiving the order, unless they specify some other date for commencing. All the back numbers from the commencement of the volume (January 1) may be had if requested at the time of sending the order, or on request, after receipt of first number.

