rises up like one side of a parallel ruler, a little above and to one side of the rail, and swings over to a new position. The plate connects with a three-way crank, and the latter with bolts which shoot into the cross piece between the points. It is obviously impossible for the plate to swing over during the passage of a train, for the wheels prevent. Red and green levers manage the home and distant signals, and by suitable wire cords either turn the lights or lower the arms, arms being exhibited by day and lights at night. In rear also of the levers is a plate, showing their uses; and numiers on each serve to individualize them in accordance with a plan of the switches, etc. On each signal lever, besides its number, are marked the numbers of the otber levers which must be moved before it can be, so that the operator is provided with every means for showing him instantly what he has to do. It is impossible for him to move No. 2 signal, for example, until he has moved point lever 7 and locked it by lever 8 ; and then after he has pulled No. 2, that very operation prevents his stirring Nos. 11 and 15, which govern points crossing to the line shown clear by the signal; nor can he move No. 14, which might enable him to give a safety signal to lines which the open road crosses. A point lever cannot be stirred when a signal which should be at danger stands at safety. In brief, the device resembles a kind of Dermutation lock, each portion of which is both latch and key; sometimes the projections on the bars which serve as the tumblers cause said bars to be shoved to one side, throwing other bars into or out of engagement-and thus all parts are inter-related in an ingenious manner.

The levers are all worked by one man, and he is instructed by the telegraph, the operator and instruments being located in the same apartment with him. The instant the wires deliver the message the levers are quickly moved, and in a few seconds the smoke of the approaching locomotive is seen far down the line. Should any part of the mechanism break, even at the last minute, there is no perilincurred. If any portion of the locking or switch gear give way or get out of adjustment, the signal lever cannot be stirred, and the semaphore arm remains at danger-its normal condition; so, also, if the signal mechanism itself rupture, the result will be negative, for the arm, being counterweighted, will not fall of itself, and, from the break, cannot be pulled down. The levers are moved in an instant; twenty seconds suffices at the Cannon street station in London to move ten pairs of points and all the signals belonging to them. We need not suggest the number of hands and 'the length of time which would be required to do the same under the old systems, nor the economy in expense and freedom from risk involved in the substitution of the new method.
Mr. Joseph Dixon, Secretary of the Broadway Underground Railway Company, is the agent for Messrs. Saxby \& Farmer in this country, and from him, at the office of the above named corporation, 203 Broadway in this city, further and more minute particulars may be obtained. The mechanism in the locality above described was manufactured in the factory of the inventors, an immense establishment in London, N. W., employing some 1,800 men, and imported hither Certainly, the invention is one of surpassing importance and value; and with that conviction we can confidently direct to value; and with that conviction we can confidently direct to it the attention of the
the public in general.

A kind of tracing paper, which is transparent only temporarily, is made by dissolving castor oil in absolute alcohol and applying the liquid to the paper with a sponge. The alcohol speedily evaporates, leaving the paper dry. After the tracing is made, the paper is immersed in absolute alcohol which removes the oil, restoring the sheet to its original spacity.

Srientific Ammerican.

MUNN \& CO., Editors and Proprietors. NO. B' PARK ROW, NEW YORK.
O. D. MONN. A. E. BEACB.

TERMS.

One copy, one year, postage included.....
One copy, six months, postage included.
Club Ratear
Ten coples, one year, each 8270 , postage included.
Over ten coples, same rate each, postage included.
r
82790
By the new law, postage is payable in advance by the pubilishers, and
Norr.-Persons subscriblng will please to stve their full names, and Pos Offce and State address, plainily written, and also atate at which time thes Wish their subscriptions to commence, otherwise the paper will be sent from
the recelpt of the order. When requested, the numbers can be supplied from January 18t, when the volume commenced. In case of changing reat dence, state former address, as well as gtre the new one. No changea can be made unless the former address is given.

VOLOME XXXII., No 14. [New Series. 1 Tlivirtieth Year.
NEW YORK, SATURDAY, APRIL 8, 1875.

sCIENCE IN COMMON sCHOOLING.

If it were possible to dispossess an average school boy of all the mental development and discipline, with all the knowledge, general and special, which he did not get in school, there would, we fear, be precious little left for the schoolmaster to take pride in. Still more, were it possible to set off,against the certain benefits of schooling of the usual sort, the advantages which a better ordered system of primary culture would afford, the popular appreciation of the schools would, we are certain, be seriously disturbed.
There are few places that can boast a more liberal scheme f public schooling-liberal, that is, in time and materialthan this city of New York. Her children may begin with the alphabet and end with a college diploma without other aid than that which the free schools afford. Yet the records of the schools show that, of the hundreds of thousands of children who have begun their schooling in them, more than half have gone out unable to read intelligently an easy page of print. Of those that are able to stay longer-that is, more than three or four years-1t able, when their school days come to an end, to read with understanding the foreign telegrams in the morning paper; probably to not one in a hundred is the daily report of prices current any more intelligible than a page of integral calculus.
The fault lies less with the brevity of their school life than with the misuse of it which the school system entails-a sys tem which makes a fetich of alphabet and multiplication table, and wastes on these tools of culture the children's best opportunities for gaining power to use them.
To insist that Science teaching be grafted on a system whose practical results are so meager is only to make mat ters worse. The sciences belong to a higher level of educa tion, and should be left for riper years. At this stage of the child's development, the Sciences, as oystematized group
ings of related facts and principles, have no existence, only objects and sensations, palpable facts and tangible relations, have being in the child world; and the child is merely the observing traveler and explorer. The scientific geographer, geologist, and the rest come later. Could we control the work of the common school, therefore, we should rigorously exclude all Science teaching, real or pretended, and all teaching not all Science
scientific.
Schoolmasters who imagine that teaching scientificall means cramming children with facts, principles, and theomeans cramming children with facts, principles, and theo-
ries in geography, grammar, physiology, physics, and what not may accuse us of making a distinction where there is no difference; but the difference is as wide as between right and wrong. The most unscientific teaching which the common schools-and not a few of our higher schools, also-are guilty of appears in their teaching of the sciences. We would have none of it. Nevertheless, we say, as we have said before, that to educate truly, the work of the primary achool, in matter and spirit and method, should be, from first to last, purely scientific. In other words, the work of the primary schools should be shaped to accomplish these three ends: (1) The systematic development and training in quickness keenness, and accuracy of all the child's faculties of sense, through the pleasurable exercise of the senses; for in pri mary culture joy is the great quickener and inspirer of ef fort.
(2) The systematic development of the child's mental fac ulties by varied acts of discrimination, judgment, and mem ory, dealing primarily, if not exclusively, with sensations. (3) The formation of right habits in knowledge-getting, and in applying knowledge, through the personal observation, handling, investigation, and using of common things. As the young surgeon is set to study the human body; as the student of mining engineering is made sensibly acquainted with the ores he expects to deal with, their mineral associates, and the conditions of their existence ; as the practical machinist studies mechanics, so the child should be taught to study the world he has come to live in; not as a specialist in Science, but as a practical man, determined to master his environment. In this way only can his powers of sense and intellect be rightly developed and trained, and he be fitted to play well his part in the great game of life.
To this end letters are useful as auxiliaries, and for the cultivation of the wide fields of thought that lie without the pale of Science; but they should not be made the beginning nor the end of instruction. If one part in ten of a child's school life be devoted to letters, and the rest employed as we have indicated, he will not make less progress in reading than if the whole time be given to them; and he will be immensely better fitted to turn the art to advantage in after years. Besides, if the child's schooling be untimely cut short, as now happens in the majority of cases, his scientific training would fit him to make something, nay, to make the most, of his out-of-school opportunities. Far better absolute ignorance of letters, with the inquiring habits of mind and educated senses to be got by scientific traising for a year or two, than the half-acquired art of reading, which the majority of children carry from the sehools, weighted with the unawakened faculties and apathy of knowledge which they too commonly exhibit.

BYRIAN BPONGES.

The latest project before the Acclimatization Society of Paris is the cultivation of the celebrated Syrian sponge in the waters of Southern France, a valuable and most useful product, which. like many another gift of the sea, is in danger of extermination through excessive fishing.
The sponge-producing grounds of Syria occur along the coast, from Mount Carmel in the south to Alexandretta in the north, the centers of production being Tripoli, Ruad, Lattakia, and Bartroun, on the coast of Mount Lebanon. The best qualities are found in the neighborhood of Tripoli and Bartroun. According to a late report of the British vice consul et Beyrout, as many as thred though falling off through the fishery; the an the grounds, still amounts to $\$ 100,000$ to $\$ 125,000$. The majority of the boats used are ordinary fishing boats, from eighteen to thirty feet in length, three parts decked over, and carrying one mast with an ordinary lug sail. They are manned by a crew of four or five nary lug sail. They are manned by a crew of
men, one to haul and the rest to serve as divers.
In former years the coast was much frequented by Greek divers from the islands of the Archipelago; the number is now restricted to five or six boats a year, the skill of the Syrian combined with his better knowledge of the fishing grounds, enabling him to compete successfully with his foreign rival.
Diving is practised from a very early age up to forty years after which few are able to continue the pursuit profitably The depth to which the diver descends varies from five to thirty "brasses," or from twenty-five to one hundred and seventy-five feet. The time he is able to spend under water depends on natural capacity, age, and training; sixty seconds time is reckoned good work-in rare instances eighty seconds are spent under water. The Syrian diver uses a heavy stone to carry him quickly. to the bottom, and is drawn up by a comrade. On the bottom, he holds the guide rope with one comrade. On the bottom, he holds the guide rope with one hand and tears off the sponges with the other, placing them
in a net which he carries. No knife, spear, or instrument of any kind is used in detaching the sponges; nor does he, like his Greek competitor, ever use the diving dress, having an antipathy to it on the score of its reputed tendency to produce paralysis of the limbs. Two or three fatal accidents oc cur annually, mainly among the skillful and daring, who sometimes drop the rope to secure a tempting prize, and

