Chief Engineer's Offce, U. S. Nary Yard, Commodore Thos. IF. PAALterson, U.S N., Commandant.
SIB:-In obedience to your order of October 5th, 1874 SIR:-In obedience to your order of October 5th, 187 factured at Troy, N. Y., I have the honor to submit th following report

This is a very
easy and with
excellent and convenient forge. It works easy and with
but littlc noise, and the power being applied with a lever it can be worked without interfering with the manipula tion of the dre.
ship board or shop use
Very respectfully, your obedient servant,
EDWIN FITHINN,
Chigned]
Chief Engineer, U.

Business atd ecrsual.

The Charge for Insertion under this head is $\$ 1$ a Line.

 Dry steam dries green lumber in 2 days, and is theonly Cheap House Furnace. H. G. Bulkley, Cleveland, O Agricultural Implements, Farm Machinery, Seeds Magic Lanterns, Stereopticons of all sizes and pices, for rarlor Entertainment and Public Exhbitions.
Pays well on small investment. Catalogues free. Mesl. Ister.Man'f'g.Optician, 99 Nassau St.,N. Y
Flectwood Scroll Saw, with Boring Attachment
for all descriptions of light Scroll Sawing. See ad't. For Salc-No. 6 McKenzie Blower; cost $\$ 500$; used
two years. Price $\$ 200$. Enterprise N' f g Co., Phila., Pa. Heavy Planer and Matcher(secondhand)wanted
state lowest cash price, maker, and condition. P. P. Housekcepers, House Furnishers in Tin, Tinmen We have had continuous business relations with
Geo. P. Rowell d Co. for between three and four years, and have found them honest and prompt in every in-
stance. Persons contemplating a wide-spread venture in advertising would do well to communicate with G. P. R.
$\&$ Co., 41 Park Low, New York. They have unusual faFayetteville, Tenn
Thomas's Fluid Tannate of Soda never fails to
remove Scale from any Steam boller; it removes the scalc-Iroductng materlal from a 1 kinds of water; cannot
infure Boiler, as it has no effect on iron; saves 20 times its cost both in Fuel and repairs of Boller; Increases steam
 Price 10 cents per lb., less than $\%$ price of other prepara tions, and superior to all others.
N . Spencer Thomas, Elmira, $\mathrm{N} . \mathrm{F}$.
Tin Manufacturers, who have waste strips, pieces,
or round blanks to sell, address-giving sizes-Norton Bros., 44 \& 46 River St., Chicago, Ill.
$\$ 3,000$ in Premiums; Stamp for Circular. Thomas
schotlicle, Grass Vallcy, the best Music Leaf Turner out. or State Rights for
 See N.F. Burnham's Turbine Water Whecl ad-
vertisement, next weck, Wanted-Traveling Agents, to appoint Sub-
Agents, or Canvassers, everywhere. Address E. F. Lan-
Zero-Refrigerator with Watcr Cooler. Best in
the World. Send for Catalogue. A. M. Lesley, 221 W
23e street, New Tork. For Sale-Engine 2x41/2 $1 / 2$ H.P. Will send photo. The Lester Oil Co., 183 Water St., N.Y., Exclusive Nanufacturers of the renowned Synovial Lubricating Oil.
The most perfect and economical lubricant in existence. Steam and Water Gauge and Gauge Cocks Com-
bined, requiring only two holes in the Boiler, used by all boiler makers wis
St., New York.
Millstone Dressing Diamond Machines-Simple,
effective, economical effective, economical aud durable, giving uuiversal
action. J. Dickinson, oi Nassau St., New York.
Position IVanted in a Machine or other Mechani-
ca Works-prcferably Steam Engines-as Foreman or Λ sAlstant, by a practical Machinist and experienced Mcchan-
ical Engineer and Draughtsman. Address Frank II. Pond, M. E., Woonsocket, R. I

2nd Hand Engines and Boilers for Sale at Low
prices. Address Junius Harris, Titusvillc, Pa. Λn old established responsible House wishes, in
connection with their diff erent European Offices, to take the exclusive European Agency for ilst class special Ma-
chinery. Only established firms, who can guarantee the chinery. Only established irms, who can guaran For small size Screw Cutting Engine Lathes and
Drill Lathes, address Star Tool Co., Providence, R. I. W. Campbell's Self-Acting Shade Rollers. The
Trade supplied, 8 i Center Street, New York. Send for Illustrated Circular-New principles of
propeling vessels-speed increased, and power saved. C.H. Jenner, Brockport, N. Y For Sale, or Partner Wanted for Patent on Canal
Boat Propeller. Λ didress G. Ieydrich, New Ulm, Minn. Milter's Brick Presses for tire and red brick
Fartory, 309 South Fifth Street, Philadelphia, Pa. To Machinists.-For Sale, Cheap- $-\Lambda$ partially fin-
ished Engine Lathe, il feet bed, 23 inch swing. For fur-
ther ished Engine Lathe, il feet bed,
ther particulars, call on or address Clark, Smith \& Co.
Fort Plain, N. Y. Price only \$3.50.-The Tom Thumb Electric
Telegraph. A compact working Telegraph Apparatue, for sending messages, making magnets, the electric light,
giving alarms, and various other purposes. Can be put in giving alarms, and various other purposes. Can be put in
operation by any lad. Includes battery, key, and wires. Neatly packed and sent to all parts of the world on receipt
of price. F. C. Beach \& Co., 263 Broadway. New York. Piano and Organ Wire Work of all kinds, Valve
and Key Pins, Iron and Brass Finishing Nails, \&c. \&c. The Hender Machine Co., Wolcottville, Con Send to Atlas Works, Indianapolis, Ind., for a
Photograph of their 20 Inch Engine Lathe. Wash Stands, New Styles, Marble Tops, can be
used in anv situation. Prices very low. Send for a catalogue. Bailey, Farrell \& Co., Pittsburgh, Pa.
Grindstones-4,000 tuns. Berea Stone Co.,Berea, 0 . Send for Circular of a very Superior Boiler Feed
Pımp. D. Frisbie \& Co., New Haven, Conn,

The "Scientiffc American" Office, New York, is Hittle buttons on the desks of the managers signals are sent ment. Cheap and effective. Splendid for shops, oftces,
iwelings. Works for any distance. Price 86 , with good Battery. F. C. B. Beach \& Co...263 Broadway, New York,
Makers. Send for free llustrated Catalogue For best Presese, Dies, and Fruit Can Tools, Blisg
Williams, cor, of Plymouth and Jay, Brooklyn, N. Y. Buy Boult's Paneling, Moulding, and Dove-tailing Machine. Send for circular and sample of
Mach'y Co., Battle Creek, Mich., Box 227.
Small Tools and Gear Wheels for Models. List
free. Goodnow \& Wightman, 22 Cornhlll, Boston, Mass. For Sale-One "Cotrtell \& Babcock", Water
Wheel Regulator, in Wheel Regulator, In no.
Co., Flsherville, $\mathbf{N} . \mathrm{H}$.
For Surface Planers, small size, and for Box
Corner Grooving Machnnes, send to A. Davis, Lowell, Corner
Mass.
Hote
Hotebhiss Air Spring Forge Hammer, best in the
market. Prices low. D. Frisbe \& Co., New Haven, Ct. For Solid Wrought-iron Beams, ete, sece adver-
tsement. Addrees Union Iron Millis, Pittsburgh, Pa, for 1sement. Addr
thograph, \&c.
"Book-Keeping Simplified." The whole system
 Faught's Patent Round Braided Belting-The
Sest thing out-Manufactured only by C. W. Anny, 3018 Best thing out Manufactured only by C. W. Arny, 301
los cherry st., Phlladelpha, Pa. Send for Circular.
Temples and Oilcans. Draper, Hopedale, Mass. For Solid Emery Wheels and Machinery, send to Mechanical Expert in Patent Cases. T.D. Stetson, All Fruit-can Tools,
Peck's Patent Dre Pracute, Bridgeton, N. J. Peck's Patent Drop Press. Still the best in use
Aderess Milo Peek, New Haven. Conn. Genuine Concord Axles-Brown,Fisherville,N.H Spinning Rings of a Superior Qualty-Whiting-
vile spinning ring Co., Whitinsville, Mass. Send for ,
Power Hammers and Bolt Forging Mach ines-
VIne sizes of the former and two of the latter, guarantced he most economic tools of their kind known. For price
nd cuts, address $\mathrm{S} . \mathrm{C}$. Forsat t \& Co., Manchester, N. H . Hydraulic Presees and Jacks, new and second
oand. Lathes and Machinery for Pollshing and Butng Metals. E. Lyon, 770 Grand Street New York.

J.P.S. can utilize old rubber as described on p.3!9,vol. 26. Galvanizing castings is described on p. a46, vol. $31 .-\Lambda$. L. and others will tind a recipe for
blackboard composition on p. 91, vol. $3 C .-\mathrm{S}$. H. will find a formula for proportioning cone puleys on p. 100, vol. 25.-F. P. can keep moths out of clothing by the process given on p. 225, vol. 27 . nkstains can be removed by the method given on
p. 139, vol. $29 .-\mathrm{T}$. \& L. will find directions for purifying rancid butter on p. 119, vol. 30.-J. D. V. Jr. will find a recipe for bronzing brass juice for suga p. 331, vol. 29.-S. M. can bleach cane juice for sugar
by the method given on p. 3ǐ, vol. 311 .-O. K. will find directions for making rubber stamps on $p .156$,
vol. 31.-S. A. T. can fasten paper to brass by painting the brass with oil paint,letting it dry, and using ceadily run into plaster molds. A recipe fer is readily run into piven on p. 43 , vol. 31 . \cdots W.S. will find directions for galvanizing iron on p . 12 , yol. 346 . Rubber can be fastened to wood with glue.-T. R. B. will find a recipe for transparent varnish on p.
11, vol. 31, which will do for making eloth airproof. 11, vol. 31 , which will do for making eloth airproof.
-S. M. E. will find a formula for the dimensions of -S. M. E. whll find a formula for the dimensions of leach skeletonized leaves by the process given on p. 155, vol. 31.-P. B. will find directions for bend
ing wood by steaming on p. 26 , vol. 31.- . M. J. and others are informed that no preventive for boiler scale can be recommended unless the nature
f the mineral deposit is known.-W. M. ought not to try and remove canceling ink from postage
stamps, as it may lead to fraud.-J. F. H. will find a recipe for Babbitt metal on p. 364, vol. 29.-E. T. D. will find a description of artificial pearls on p. , vol. 3J.-J. H. R. should consult a dictionary will find a rule for calculating gears on p. 18%, vol 29.-L. K. Y. will find full descriptions of solder of all kinds in our last three issues.-P. S. can join his
water spouts with waterproof glue; see p. 91, ol. 31.
(1) S .
(1) S. A. T. asks: How can I cement a
orcelain mortar? A. Use a mixture of black japan varnish and white lead.
(2) W. B. B. asks: Having a good violin, to improve it I removed all polish and paint with al-
cohol, which spoilt the tone. How can I restor cohol, which spoilt the tone. How can I restore
it? Λ. Take coarsely powdered copal and glass, each 4 oake, alcohol (64 over proof) 1 pint, camphor Yoz; heat in a water bath, stirring frequently he clear portion. This is an excellent varnish for any musical instrument of the violin species.
(3) J. J. D. asks: What is meant by slack coal? A. Coal dust. The term is commonly apmine, which is frequently piled in heaps at the pit's mouth.
(4) F. O. asks: What metal is best for making candy molds? I want to find one that cools
quickly. A. Tin molds are commonly used. Dust hem with powdered sugar to prevent the adher ence of the candy.
(5) C. F. F. asks: Which is the front side of (6) D. G. K. asks: How can I prepare coach arnish? \boldsymbol{A}. Fuse 8 s. fine Λ frican gum copal, add 2 gallons clarifed oil, boil for 5 hours until
quite stringy. Mix with 3% gallonsturpentine, and quite stringy. Mix with $31 / 2$ gallonsturpentine, and
straln
(7) P. H. K. asks: Can you give me a rule
to measure corn in a crib? M. Multiply the depth of the corn in inches by the length and width of the crib in inches, and divide by 215042 . The quo-
(8) M. A. B. says: The best thing for ta-
king dirt and grease off the hands without injury is bicarbonate of soda, used in place of soap.
(9) I. R. M. asks: How can I calculate the speed of a train of pulleys? M. Proceed as in vul gar fractions, placing the number of the revolu-
tions of the prime mover as the numerator of a tions of the prime mover as the numerator of a thedriving wheels in inches also as numerators as denominators, and proceed by cancelation.
(10) A. E. S. asks: How can I paste newspaper clippings ints a scrap book without the arabic musilage with some refined sugar dissolved in it.
(11) A. B. L. asks : How can I make a washing crystal? A. The soda ash and soda crystals of not make them on a small scale to advantage.
(12) C. asks: Is there an animal generaly known as the sea otter? $\boldsymbol{\Lambda}$. Yes. It is found in the Northern Pacific.
(13) S. says : I read an article on the beneperiment, and the result was the reverse of beneficial. We got rid of most of the earthy matter the effect of depositing the carthy matter in a hard crust, and the surface blower showed clear water in the boiler. Λ. The use of glyeerin, as a solvent for the salts in impure matters, has been recommended for cleaning woolen fabrics, but your expcriment of its use in steam boilers is the first of which we
have heard. It is possible that, by blowing off have heard. It is possible that, by blowing off
from the bottom, you might get rid of the deposit. We shall be glad to hear further on this matter any information.
(14) J. K. asks: What constitutes a yard of N. Nine square feet of surface.
(15) J. B. S. asks: What is the best way of
polishing holly wood? A. Use a white shellac varpolish
nish.
(16)
(16) J. H. asks: Is the Pacific Ocean higher than the Δ tlantic at the point whereit is proposed o connect them by a canal? $\boldsymbol{\Lambda}$. No.
(17) W. R. B. says : In Dick's "Practical Astronomer" is a description of Rogers' achroma-
ic telescope on a new plan. It consists of placing a small compound lens of flint and crown glass in a small part of the cone of rays of a large crown glass objective, and thus correcting the rays, enabling a person to use a large crown glass objec-
tive and making it achromatic by the small compound one. 1. I have a good crown glass double convex lens, of 5 inches diameter and about 100 focus of each of the lenses forming the compound one,to produce the proper correction for the above mentioned lens? A. Plano concave of double
dense fint, of $24 / 4$ inehes diameter, $31 / 2$ inches radius, and plano-convex of plate glass same dimenpound lens be placed from the object glass? Δ bout 60 inches. 3. With the compound lens adjusted, what would be the entire focus of the instrument? Λ. Twelve feet six inches. 4. Are you
acquainted with any telescope on the above plan and is it satisfactory? A. An inch dialyte, by
Plossl, of Vienna, divided γ Ctronce, distance $0^{\circ} 6^{\prime \prime}$.
the carth were to cease, would all the loosc bodics n the surface fall into space? $\boldsymbol{\Lambda}$. No.
(19) J. C. C. asks: Where is the best place atmosphere? A. If it is desired to know the temperatire of the surrounding atmosphere, the instrument should be placed in some shady spot, protected alike from the direct rays of the sunand
cooling drafts of air. If exposed to the direct racooling drafts of air. If exposed to the direct ra-
diation of the sun, the instrunent itself will become overbeated (the materials of which it is composed being better absorbers than the surrounding air), and the consequence will be that the thermometer will indicate the temperature of the materications of cheap thermometers are never abso
(20) P. E. R. asks : How can I cement glass together, to withstand the action of electro-plating
solutions? \quad. Try a solution of shellac in alcohol solutions? $\boldsymbol{\Lambda}$. Try a solution of shellac in alcohol
(21) G. A. N. says: I want a small engine, o run a sewing machine or s nall lathc. Would a $34 \times 11 / 2$ inches cylinder, 20 or 33 lbs . pressurc, and
300 or 400 revolutions per minute, be large enough 30 or 400 revolutions perm
for the purpose? A. Yes.
(22) II. S. P. asks: 1. What weuld be the inches bore by 6 inches stroke, running at 300 inches bore by
strokes per minute, with $\% 0$ lbs. of steam? Λ. It would develope from 4 or 5 horsepower. 2. Would
it do to run a circular sav 15 inches in diameter th do to run a circular saw 15 inches in diameter
through two inch oak plank? $\mathbf{A .}$ Yes. 3. How large a boiler would this engine require? Λ. Make boiler with 60 or 70 square fect of heating surface. 4. Will an upright boiler last as long as a horizon-
tal one? A. Upright boilers, when well made, are uite serviceable.
(23) P. B. asks: 1. What is the average
weight of freight locomotives? A. There is a very weight of ireight locomotives? A. There is a very great variety, an average example being somewhat
as follows: Weight, $60,000 \mathrm{lbs}$. 2 . What is the diameter of the drive wheels? Λ. Five feet. 3.What is the length of the stroke? A. Two feet. 4. What is the diameter of the cylinder? A.Sixteen inches
5. What is the weight of an averagefreight car . Eight tuns.
(24) W. P. asks: 1. What size of engine
ould it take to run a boat 15 feet long at the rate of 8 miles per hour? Λ. Make the cylinder $24 \times x 4$. . I have a boiler 36 inches high $x 15$ inches diamesquare inch. Would it be large enough? Λ. The square inch. Would it be large
boiler is too small for the speed.
(2̃) H. J. asks : 1. Will an engine having a cylinder 3×6 inches, steam pressure of 60 lbs ., run-
ning at 390 revolutions per minute, with a cut-off at $3 / 4$ stroke, do to run a circular saw 6 inches in diameter with? The fly wheel of the engine is 24 inches, and the mandrel pulley 6 inches, in diame-
ter. \quad. The engine is quite large enough.
$2.3 y$ ter. Λ. The engine is quite large enough. 2. My boiler is 13 inches in diameter by 5 feet in length, a plain cylinder in form. Is it big enough? A. No.
What will tate the stains of varnish or paint off marble? try a pute composed of solh, pum cestone, and chalk.
Where is the best place to put exhaust steam in smoke stack, at top or bottom? A. The top.
(06) S. E. P. asks: How can I remove rust piece of wood. This also answers S.A.T.
(27) W. W. says: I have a small upright enginc, cylinder 4 inches diameter by 6 inches
stroke. Would it do to run an ordinary row boat" How fast would she go, and what would be the best kind of propeller wheel to use? What kind of boiler would be best? Would it be necessary to
have a counterbalance on the crank? A. Your engine is large enough for a boat 25 feet long, with a propeller 3 inches in diameter and a boiler from
30 to 36 inches in diameter. Some slig ht counterbalance may be fut on, but it is not a matter of any great importance.
(28) G. asks: What amount of sulphuric acid will it require to entirely dissolve 1 lb . zinc? A. For its complete conversion into sulphate of zinc, 1 lb . of pure zinc requires $11 / 2 \mathrm{lbs}$. of sulFah. 2. What volume of hydrogen gas will the mixture give off? A. One pound of pure zinc, by erate about 40 gallons of hydrogen.
(29) C. S. R. asks: What is the cause of the bursting of wacks? Two such aecidents oc circulating pipes, so that the stcam which wa formed could not escape. Under such circumformed could not escape.
stances, tire should never be permitted in a range. (30) K. K. asks: What would be the difference between the pressure necessary to explode a steam boiler from the inside, and that necessary to
crush or flatten it from the outside? $\boldsymbol{\Lambda}$. In the crush or flatten it from the outside? Λ. In the
case of a wrought iron boiler, perfectly cylindricase of a wrought iron boiler, perfectly cylindr
cal, the internal pressurc that would rupture it is cal, the internal pressure that would rupture it is
thickness in inches \times tensile strength in lbs. pes crushing fore is: $111, \frac{000}{} \times$ (thickness in inch(cs) ${ }^{2}$ diancter in inches \times length in fect.
(31) B. R. asks: Can ice le torn off a dam by powder? The ice is 18 inches thick and the
water 12 or 13 feet deep. A. We advise you not to attempt this kind of blasting, unless you have had some previous experience.
(32) J. H. asks: 1. İow are red mortar and black mortar made, for laying face bricks in? Λ. Mortar is made red by mixing therewith a certain black, but neither is sufficiently permanent to be satisfactory. 2. Is fresh water better than salt fo making mortar in winter? A. Pure water is bet in any weather
(:33) H. says: The atmosphere in a certain building is raised from 0° to $\tilde{5^{\circ}}$ by water at 212°,
passing through coils of iron pipc. Suppose this passing through coils of iron pipc. Suppose this to cool the atmosphere at 90° by cold water at a temperature of 33°, provided the circulation were kept up, to what degree of temperature could the
atmosphere be reduced? A. This question cannot be answered except by experiment
(34) J. S. asks: How much water can bo boiled away in 10 hours in a vat, 5 by 12 feet, with $11 / 4$ inch pipes laid close together over the bottom
of the vat, with steam at 60 or 70 lbs. per inch? A. of the vat, with steam at 60 or io ibs. per inch? A.
It will depend upon the arrangement whether you boil away ${ }_{25}^{5}$ or $\overline{3} \mathrm{i}$ per cent as much water as you have steam. With a good apparatus, you may ealculate to evaporate $\frac{3}{3}$ of a gallon of water in the
vat for every gallon of water evaporated in the vat for
boiler.
(35) S. G. says: Suppose a water tank, 8×10 $x 5$ feet deep, is placed on top of a house, 1,600 feet from an engine house, what kind of an indicator would be best to show how much water there is in
the tank? M. Put up a stand pipe, say one inch in the tank? A. Put up a stand pipe, say one inch in
diameter, in the engine house, and connect it at diameter, in the engine house, and connect it at
bottom with the pipe running from the pump to the tank. Enlarge the upper part, which must be on a level with the tank, so as to introduce a float connect this float by a cord over a pulley, with an indicator in the engine room below. As the water the tank it will be nigher, when pumping to stop the pum o find the true hight.
(36) F. S. says: 1. Please give me a rule for inding the strength of a boiler when diameter of shell and thickness of iron are given. A. For ingle riveted iron boiler, the safe working strain, in pounds per square inch, may be found by multiing the product by the diameter of the boiler in nches, would it make any diftere boiler in working of an engine which end of the boiler I ook the steam from, or at which end I let in the feed water? A. Ordinarily, no
Are large mill saws tempered after they are (i3i) S. D. K. says: We lave a large hall, built of brick, $\mathbf{j 0}$ fect square and 20 feet high. The reverberation is so great as to make it very disa-
reeable to speak in, causing confusion of sound. greeable to speak in, causing confision of sound.
What is the best remedy? Will wires do, and how
are they appliel. A. The use of wire to improve
the acoustics of halls, etce, is of comparatively recent date, and is not sulliciently extended in the number of repp:tel experiments to warranta very
great degree of certainty in assigning either the great degree of eertainty in assigning either the
sizes of the wire, their distance apart, or their exact loeation. It it generally thought best to place
then in front of the vertical wall opposite the speaker, about $\overline{3}$ inches from the w.ll and 6 inches apart, extending vertically from the floor to ceil-
inrs. The object being simply to break the wave of souna, as smalla wire will answer as is consist ent with strength.
(3S) J. (i. R. asks: . Would it be practica-
we to have the telegraph wire witlinn $3 / 2$ inch of whe to have the elelegraph wire witlin $3 / 2$ inch of
the wood at every pole? .. Yes. 2 . What is the
. smallest distance that will work well? A.Any dis-
tance if they do not touch. Air is an insulator tance if they do not touch. Air is an insulator,
and galvanic cleetricity will not pass through it and galvanic clectricity will not pass through it
unlezis some other substance is present. It is better to keep the wire at some e distance from the pole on
account of snow or ice forming a connection beaccount of snow or ice
tween the wire and pole.
(3:3) (i. W M. asks: Is cement pipe much nsed for rapueducts or water supply? When laid
entirely below the action of the frost, and bedded in clay, would it be durable and not likely to become leaky from cracking or otherwise? What
thicknessshould threc-inch cement pipe be to conthickness should threc-inch cement pipe be to con-
duct water unller a head of 30 fect? Would such a pressure be likely to produce leakage by filtra-
tion throurh the pores tion throush the pores? Which would be inost
economicial in the beginning, and less liable to furtherexpense for repairs, to make the pipe in
stiort joints beforc layiny it, or to lay the cement in its inal bed in a plastic stite, forming the hole as fast as the work profresess? What is the pro-
ceis of the latter mentionel mole of laying pipe? What arc the ingredients re fured, and their proportions: A. Cement pipe is principally usel for
drainage and very seldun for supply, except when the current runs to a grade without filling the pipe, and so not under preszure. A notable instance of a cement concrete inpe is that of the vanc aque-
duct, thirty-seven miles in length, tor supplying
water to the city of Puris. This aqueduct has two and a half to three miles of arches, some of them fifty fect in hight, and eleven miles of tunncls, which, with the atueduct pipe, are all constructed
of beton Coignet. The ppye is circular, 612 fcet in interior diameter, with a thickness of 9 inches at the top, and 22 inchos at the sides, at the watcrsurface. It hasproved to be inmperm cable to water.
But cement pipe of snilll size, vedled in the earth is much too liable to be broken by unequal pressure, caused by the washing away of its support, to
be safe under orjinary circumst
(40) J. D. M. asks: What is the capacity of a cylinder 6×5 inches, carrying a pressure of 50
to the inch, and making 200 revolutions? A. Area of piston in square inches

Multiply by twice the length of stroke in feet
Multiply by revolutions per minute
Divide by
$33,0 0 0 \longdiv { \frac { 1 3 6 3 , 6 0 } { 1 2 } }$
Horse power
(41) W. W
(41) W. W. F. says: 1. In a church are two furnaces for heating, which can be made to draw
only when the atmosphere is in strong motion. only when the atmosshere is in strong motion.
Two large coal stoves have been substituted, with 8 inch pipes running the whole length of the church. These also operate the same way. What greatlength of horizontal pipe, and most probably greathength of horizonta pipe, and most probabiy
by the small size of the vertical tues likewise. The Vest conditions for draft in such cases are the loca-
tion of the former at the bottom of the vertical thue, with little or no horizontal pipe, and the size
of the tlue being sufficient for the work it has of the tlue being sufficient for the work it has to
do. One of the worst conditions is that of a horizontal pipe running in a direction contrary to that of the strongest and most prevalent winds; and
the same dificulty occurs in acreny whated air in the same difticulty occurs in carrying heated air in pipes from a furnace. The furnace therefore
should be placed at the windward end or side of should be placed at the windward end or side of
the church, and have large tlues ascending directly the church, and have large flues ascending directly
from them. . In In building chimneys, is there any from then. 2. In builing chimness, is thee? A. indicated, but 12 by 16 inches or 12 by 12 inches ought to be sufficient in a case like this.
(42) A. B. A. asks: Is there any process by which frecklescan be removed from the face with-
out injury to the skin? A. A good lotion is made of: Bichloride of mercury 6 grains, , pure hydroof : Bichoride of mercury
chloric acid (specific gravity) 1 tluid drachm, water
(distillecel) 14 pint mix, and add of rectified spirits (distilled) $1 / 4$ pint, mix, and add of rectified spirits
and rose water, each 2 fluid ozs., and glycerin 1 oz .
(43) J. M. says: I have a boiler 1 foot in diameter and 21 inches long, with 14 ques. The
firebox and flues get choked. What is the cause firebox and flues get choked. What is the cause
of it? A. The flues are probably too small for orof inary fuel. Try charcoal. The power of your
dina
stamenenine depens upon the steam pressure and speed, which you do not mention.
(44) O. A. asks: Would a room, partitioned off in a cellar, do to store ice for summer use? If
so, how must I arrange it? A. You can make an so, how must arrange it? A. You can make an
ice room in your cellar that will most likely pre-
serve ice, if the space you can devote to that object be large enough. Ice will keep best when compactedin a solid mass, and a cube of 12 feet
will be found to be best for family storage, will be found to be best for family storage,
even where perhaps not more than one half of this amount will be required for use in one season.
Place $\mathrm{xl}: 2$ inch uprights, 2 feet apart, around the Place ※xl:2 inch uprights, 2 feet apart, around the
room, wish the edge to the wall, and line them with roon, wixh the edge to the wall, and line them with
stout inch boards. Then flll in the spaces between sthe uprights with dry stawdust, and construct a
similar protection on the ceiling of the room. similar protection on the ceiling of the room.
Cover the ground with shavings 8 inches deep, and Cover the ground with sbavings 8 inches deep, and
lay sleepers and a tight floor thereupon, arranged
to drain to one side, and provide a drain to carry
off the water. Also provide ventilation from the top of the ice room. Put in a double door at the entrance, and provide a sawdust mattress to fill
the space between them, makingtheinsidedor sections to take down from the top. A space par-
s. titioned off outside of the ice room can be usedas a cold closet.
(4.5) (i. asks: Are there any ingoceliknt that can be molded into artificial stone for bulldweather? A. Artificial stone, made in the manner you refer to, is manufactured by three or four companies in this city and elsewhere; but their combination of ingredients is in each case protected by a patent. The peculiarity of each conists in its use of some choice and noted cementas basis for its composition, and upon this their uses the hydraulic lime of Teil, and another Port and cement, and great care is taken to wash the sand perfectly clean and to cause the combination of the sand and cement to take place under the best conditions. This is sumetimes done under pressure. The operations of these companies are
now very extensive, but theirprocesses are mainly concealed from the public, especially the points their peculiarities consist.
(46) P. II. J. M. and many otbers.-We do power of a boiler.
(47) O. D. B. says, in reply to G. M. B. (who asks: How can I construct a receptacle in a garret et the water be frozen in winter, or spoiled in summer) : My garret being sufficiently tight, frost of $11 / 2$ inch pine, sawn into strips $21 / 2$ inches wide, il pieces of cqual length strips $2 \not 2 / 2$ inches wide, natched $11 / 4$ stuff for the bottom, and then laid on the strips around next the edge of the bottom,and nailed each layer, breaking joints at the cnds, until the requisite hight was reached, thus making a tank needing no tongues or groorcs. If it is to oe over five fect high, saw the strips 34 or 3 inch-
es wide. Having lined the tank with shect lead the water was taken from the roof, and (through an discharged into the bottom of the tank (the coc ductor being in the tank and reaching to the bottom); thus each successive shower noved all the
vater in the tank, stirring it up and causing the surplus or overtlow to pass on to the main house cistern. The more roof water that can be conveniently turned into the tank the better, for the
supply is thus kept constant and the changes are more frequent. A. We understand our correspondent's plan of building a tank to be something like that of erecting a log house, with the strips he refers to overlapping each other at the corners,and valls rise We nailed down into each other as the plying the number of joints to so great an extent as this plan involves, and think there is less labor tank. When the tank is high, a crading of slight scantlings will be necessary to bind it together and (48) J. B.B. asks : Please explain the construction and mode of working the automatic telegraph York and Philadelphia. A. There are many kinds. nopelled, step by step, by electro-magnetism, and another wheel containing figures is propelled in a similar manner. The printing is done by a third magnet, which attracts an armature attached paper against the type wheel. The paper is moved long by the movement of the lever.
(49) W.\& Co. ask: What are the modus operminh and ingredients used in making electric carput into a close iron mold of the shape required or the carbon, and exposed to the heat of a furnd unfit hick sirup or gas tar, and reheating it, itat length acquires the necessary solidity and conducting
power. The carbon that forms on the roof of gas ower. The carbon that forms on the roof of gas
retorts is harder and better than the carbon thus made, but it
(50) A. 'T. O. says: I am building an engine of 3 inches stroke by $11 /$ inchesbore. What sized $_{\text {biler ought it to have to run a foot lathe? A. }}^{\text {bol }}$. Make the boiler of $\mathcal{1} /$ inch iron or copper, 15 inches in diameter, and 30 to 36 inches high.
(51) A. W. P. asks: Is there any spot in water is such as to prevent a 50 lbs. weight from sinking any farther? A. Possibly.
(io2) A. K asks: What causes a conical end? A. It is on account of the resistance of the air, since the axis of the shot is not permanent, as ithas not been made to r .
being forced from the gun.
(53) J M. W. asks: Is there any means of inding gold and silver that is buried in the ground? A. Digging till
the difficulty.
(54) G. B. asks: What is the best polish for handles, such as chisel handles, etc.? A. Ordinary polishing paper answers very well.
What power have
What power have I on my foot lathe, the driving
wheel being 26 inches in Wheel being 26 inches in diameter and the driven Wheel $33 /$ inches? The belt is $21 / 2$ inches in width.
You must measure with a spring bance A. You must measure with a spring balance, or
otherwise, how much pressure you produce on the reade, multiply it by the distance the pressure is exerted in feet for each revolution, multiand divide by 33,000 .
Why is woin
that seasoned by boiling or steaming? A. Gcner-
ally because as much of the sap has not been exally beasoned as much of the sap has not
pelled in the former case as in the latter.
(5i) R. C. asks: What is Cliatterton's comound, for insulating electric cables, composed of? A. Stockholm $\operatorname{tar} 1$
parts, by weight.
(56) A. L. C. asks: Does the periletion of the earth's orbit to the sun always lead the sun in its course among the stars, or does it occupy a
fixed position? A. It retrogrades slowly, moving fixed position? A. It retrogrades slowly, moving
in a direction contrary to the order of the signs. How do you account for the ocean waters being salt? A. Streams carry down minerals, especially ion and rain.
Will iron weigh the most when hot or cold, and cast iron, then floats, and finally melts.
How much will a ball drop in the firstmile, when shot from a cannon? A. A falling body describes
in 1 second $16 \% / 2$ feet, in 2 seconds $64 \not / 5$ in 3 seconds 14434 , in 4 seconds 25574, in 5 seconds 4021 . The anit,050 yards rone 0 caliber bullet (charge igrains dangerous space of F 5 f feet, and rises 35 feet above the line of sight at 500 yards. Initial velocity 1,300 feet p
inch.
I always notice that men, horses, and other ani mals, when running in a circle, always prefer to run with their left side toward the pole. How do
you account for this? A. Because the left half of the brain and the right side of the body (which it erns) are best developed.
(57) F. E. R. asks: How many cells of silver plate a Daniell battery would be required etc.? A. Two cells of cither will do.
(i58) M. D. H. and others.-It is self-evident common of metaphysics consists of an insensible change in the meaning of words during a course of reasoning. We may thus prove mathematically thatone
equals two, that a straight line is always perpendicular to itself, that a straight line may cut a circle 4 points, etc.
(59) W. J. asks: How can I make a cheap apparatus to goveru electricity, so that it can be
taken in light or heavy shocks? of No. 16 copper wire covered with cotton, an copper wire insulated with copper and make anthe two ends of the frist helix; and by rapidy breaking and making connection with the battery, a current will be developed in the second coil
which can be felt by taking hold of the two ends of the second wire. By inserting a bundle of iron wires in the center of the first helix, the shocks wil can be varied by the distance to which the iron wires are inserted in the helix. 2. What is an electric circuit? A. A circuit is made by connect a battery together
(60) J. T. M. asks: 1. How many men'
work is equal to one horse power?
A. From 6 to 7. 2. Is anengine with its cylinder 3 inches long
by 1 inch diameterlarge enough to run a half medium Gordon printing press? A. It is rather too
(61) G. C. P. Jr. afks: How can I make an
 bottom of each an ounce of blue vitioi.. Place Attach to the copper wire coil an insulated coppe wire extending outof the top of the tumbler (gut-
ta percha covered wireis the best forthis purgose) Get some thick sheet zinc and cut out disks of it which will fit into the top of the tumblers, and to the zinc attach a short piece of copper wire. Fill
the glass with water. Connect the wire leading from the copper coil of one tumbler to the wire strength of one cell will be one volt. Usc as many tunblers as are necessary to get what power i
(62) S. asks: Why does the sun applear arger at the horizon? A. It is an illusion, causeci by compp.
restrial objects.
When an author gives the strength of wood as
100 lbs , in what direction does he mean that the 100 lbs., in what direction does he mean that the
strain shall be applied? A. It is impossible to tell, the informat he information to explain it.
e? A. We are not sure that this is a fact
(63) S. H. B. asks: Is it enough to test kersene oilsto heat in an open vessel to 110°, and the
pply a lighted match? A. Ycs, it is a very good
(64) J. says: I have made a small steam engine (of one inch bore and three inches stroke) en-
tirely of lead, and so far it runs well. will it be comparatively durable, and can there be sufficient it is run light, with low steam, it will probably continue in order for a considerable time. It is probably quite powerful enough to drive a sewing
machine, butitis doubtful whether it would stand machine, butitis doubtful wh
the work for any long period.
(65) S. P. H. asks : In tempering sickles for cuttinggrass, to what color should they be drawn?
A. A light purple, or a temperature of about 530° ah.
Claret wine poured into a tumbler of water will bread is put into the water and the wine poure in, the wine will float on top of the water, part bcing absorbed by the bread. Why is this? A. We
think this experiment can be performed without think this experiment can be per
the bread, if carefully managed.
(66) F. asks: How many barrels of wate per foot in depth will cisterns $\overline{7}$ feet, 8 feet, 9 feet,
and 10 feet in diameter contain respectively? . Multiply the square of the diameter by the decimal $v \cdot 186$. Thus the cistern i fect in diameter contains for each foot in depth 49 times 0.186 or $!\cdot 114$ (67) W. S. P. asks: 1. Is a 400 barrel wate tank, plank properiy braced and bolted, as strong and
useful as a round tank of 16 feet diameter by 1 a feet high, made of staves $23 / 2$ inches thickand propcrly banded? A. Yes. 2. If the square tank were
casedinside with the lightest make of sheet tinc, cased inside with the lightest make of sheet zinc,
or galvanized iron, would it be better: A. Yes. or galvanized iron, would it be better: A. Yes.
3. How long would it last as a watertight vessel 3. How long would it last as a watertight vessel
with more .vr less chalybeate or iron water in it with more wr tess chalibeate or iron watern
and exposed to the air? A. From a few months to several years, according to the condition of the
wood tar) be a protection to the iron or zinc? A. Yes.
(6S) J. H. N. says: A friend states that, if
were possible for a man standing in a car 100 feet high, moving at the rate of 60 miles per minute, to throw an iron ball straight up 100 feet, it would drop exactly in his hands. I contend that,
while the ball would descend in a straight line, yet, while the ball would descend in a straight line, yet, in the time required for the ascent and descent of
the ball, the car would have moved a mile for every second from the place where the ball started so that by the time the ball reached its starting point the man would be too far away for it to drop
into his hands. He also says that, if he was stand ing on I should be standing on the platform of the same car exactly underneath him, the car going at the
same rate of speed as before, and he should drop same rate of speed as before, and he should drop
this iron ball, it would strike me. I contend that this iron ball, it would strike me. I contend that
by the time it reaches my level I would be as many by the time it reaches my level wound be as many
miles from it as it occupied seconds in falling. miles from it as it occupied seconds in fallig
Which is right? Which is right? A. Your friend is rig
sistance of the air can be disregarded.
(69) W. L. D). asks: When it is noon on Fri day, at Creenwich Observatory, London (longi-
tude (1), is it Friday or Thursday nidnight, at oppo site (longitude 180)? A. Looking at the south pole of a globe, the day of the month is one later at all places between meridian 180° and midnight, counting toward the left, than between 180° and midnight, counting toward the right; that is, it is al-
ways later at the first meridian than at any place ways later at the first meridian than at any place
in west longitude, and earlier than at any place in

$\begin{aligned} & \text { (} 70) \text { M. says, in reply } \\ & \text { to } \\ & \text { M. B., who asks for a }\end{aligned}$ to M. B., who asks for a
a rule for cutting a tree so that its top shall fall at a certain distance from its root: Let A B represent
the tree, and C the point on the ground. Draw BC
and calculate its length. and calculate its length.
From D, the center of $\mathbf{B C}$, draw D E perpendicular to
$\mathrm{B} C$, and E will be where the tree should break. ${ }^{\text {B }}$
ACand D D Eare similar triangles, hence $\mathrm{BA}: \mathrm{BC}:$:
$\mathrm{B} \mathrm{D}: \mathrm{BE}$.
(71) C. W. says: You mention, as good for
steps for turbines, rock or swamp maple known the knots of light wood or pitch pine to last for years in this service.
(72) R. E. B. says, in reply to a question
how to remove clinkers from frebrick: Pour vinogar where the clinker collects, and the latter can egar where the clinker colilects, and the
be peeled off after being well saturated.
(is) C. T. S. says, as to corrosion of engine
bolts by using tallow as a lubricant: I think that bolts dy using tallow as a lubricant: It think that
D. K. has given the real reason for the cutting out of screws and other parts of pistons. After a practical experience of narly twentys-five years, i
am convinced that the use of oil of any kind in am convinced that the use of oil of any kind in
the steam chests and cylinders of steam engines is positive damage and an inexcusable waste, cxcept in the case of locomotives, when running
down grades without steam. tain salts and acids which are destructive to iron under the conditionsabove described. Oil thrown into a steam chest (where the temperaturc is high) ween the wearing surfaces, which is anything but a lubricant, causing more friction and wear than the oil ever compensates for. Oil pumps are sometimes resorted to where it is thought neces-
sary to waste a gallon or two of oil wcekly through nengine. Having occasion to make sone slight he cylinder head, and examined a piston which I put in new five years ago. I found the follower
screws, and the screws and nuts under the packing springs, as perfect as when put in; and the cylinder was as bright and smooth as a mirror, also the valves and valve seats. Yet this engine had run :5 saving to the proprietor of not less than \$160 in the item of oil alone. Piston and valve rods can be
oiled from the outside if necessary; but if the packing in the stuflling boxes is renewed before it becomes hard and charred, rery little oil will be you found to leave netidue ercating friction.
(74) J. H. S. says : D. K., in his reply to D. S. T. (No. 1r, issue of Jan. 30), says that he had acid in the tallow he used, and that he now used ard oil. After a great deal of trouble from the top of my arch, keeping it filled with crude tallow obtained at a meat market. It tried out very nicely, and is of course pure. I have used it on an an engine for 18 months, and everything is all right, the trouble was in the cylinder. I have always found that, where lard oil wasused in steam,
thing ran very dry it is not heavy enough.
(75) J. \& J. T. вay, in reply to J. C. \& Co.,
as to the inclination of a bolting reel : At the
Millers' National Convention in St. Louis, Mo.,
June, 1854, we learned that a fall of 1 in 48 always June, 1874 , we learned
gave the best results.
S. A. 'T. asks: How can I make a fugitive ink that will disappear in two days after being written ?-T. C. H. asks: How can I make an easily flowing ink for drawing on zinc plates, so as after-
wards to etch the drawings with muriatic acid ?E. P. M. asks: How can I tan and color beaver skins?-L. M. asks: 1. Can you give me a good rule for getting the length of a carriage axle from shoulder to shoulder before welding, supposing the hub of the wheels to be $61 / 2$ inches long, and the track of the wheels 4 feet 7 inches? 2. Please give me a rule for setting axles.-J. F. E. asks What is p
drying?

COMMUNICATIONS RECEIVED.

 The Editor of the Scientific American acsnowledges, with much pleasure, the receipt of or iginal papers and contributions upon the following ubjects:
On the Generation of the Wicked. By T. w. C. and by A.S.
On the Sagacity of the Partridge. By J. K On Glue as a Healing Re
On Honey. By A. L. F. On Honey. By A. L. F.
On Amalgamating the \mathbf{P}
On Amalgamating the Precious Metals. By J.T On a Mammoth Skeleton. By A. R.
On a Lunar Phenomenon. By H.M. On the New Rule at the Patent Office. By J.McC On the Slide Valve. By J. T.H.
On Squaring Numbers. By E. ${ }^{2}$ On Spiritualism. By F. H. K. On Small Steum Engines. By W. C. D. On a Mathematical Fact. By E. H.
On the Human Will. By W. L. S. Also enquiries and answers from the following: M. G. L.-E. W.-T., F \& ©o.-J. K.-J.G.T.-T. R
-A. E. ©.-J. T. H.--S. T. J.-J. E. B.-F. H. W.-

HINTS TO CORRESPONDENTS. Correspondents whose inquiries fail to appear should repeat them. If not then published, they may conclude that, for good reasons, the Editor de-
clines them. The address of the writer should al-
clines them. The address of the writer should albility of inventions, asqignments, etc., will not be published here. All such questions, when initials oaly are givea, are thrown into the waste basket, as but we generally take pleasure in answering brielly by mail, if the writer's address is given.
Hundreds of enquiries analogous to the following coloring furs, and on bleaching wool? Who sells magnesia and chloride of magnesium: Who makes machines for cutting thin stuff off round steamer for laundry purposes? Who makes stee castings? Who sells the best gage cocks, etc. Are there glass-lined iron pipes in the market? All such personal inquiries are printed, as will be observed, in the column of "Business and Personal," which is specially set apart for that purpose subject to the charge mentioned at the head of that column. Almost any deatred information can in thls way be expeditiously obtaned.

[OFFICIAL.]

INDEX OF INVENTIONS

Leiters Patent of the United States wer

 Granted in the Week ending February 16, 1875,AND EACH BEARING THAT DATE. Advertising apparatus, T. E. Allison Alarm and stamp, conducley Annunclator, electric, Carter and Hewitt Bale tte, A. A. Goldsmith
Ballot box, F. W. Brooks Barrel roller, C. L. Toplif Bed bottom, spring, J. A. Jon Bedstead, folding, P. B. Viele... Bedstead, wardrobe,
Bee hive, J. Bullock..

Bee hive, J. Bullock.... Bill file, w. R. Clough.

Bird house, E. A. La bay
Boller, wash, A. Becker.
Bott work for safe doors, etc., W. H. Butler
Bolts, tool for pointing, Hartin and Boot stiffeners, shaping, J. R. Mofflt. Box, register pepper, T. W. Burger. Brick machine, T. T. Joy
Bricks, machine for dust Broom, G. R. Swingle...
Bullet patching machine, H. Borchardt. Bustle, L. Conigisky.
Butter, packages for prints of, A. Roblnson
Cans, nozzle for, Murph
Canopy frame, R. F. S. Heath
Caraxie box, C. A. Hussey.
Car coupling, B. B. Sherfy.
Car coupling, J. B. Stamour
Car coupling, w. F. Starr.
Car coupling, G. M. Thompoon
Car pusher, Bird and Sullenbe
Car pusher, Bird and Sullenberger
Car spring, A. J. Culbertson.....
Car starter, J. C. Moore
Cirdt., propelling street, Trible \& Davis
Carding machine dofter, J. Barker.
Carriage, child's, F. L. Haghes

Carrlage curtatn fastentng, \mathbf{H}. Foste
Carriage seat, D. Conboy
Carriage shack, Carriage shackles, manu Cartridge case, metallic. T. R. B. A. McKenzi Carts. etc., unloading. Crossley \& Bert
Casting scale lever Chair, W. T. Doremus
Chuck, scroll, J. H. Westcott
Churn, J. L. Wilson.
Cigar packing Implement, s. Jacoby
Clothes dryer, C. Howes..
Clothes wringer, P. N. W
Clothes wringer, P. N. Wol
Cock, gage, I. S. Hamilton.
Cock or valve, Heale and Gowan
Cock, stop. W. H. Beckett............
Compound Implement, E. L. Price.
Copper, etc., refining, s. L. Cro Corn cutter, green. V. Barker Cornice, window curtain, J. Sowle. Corset, D. H. Fanning. Cranberry separator, D. T. Ataniford. Cullnary vessel, steam,
Cultivator, J. H. Rice Curtain Uxture, G. C. Math Dash board, C. C. ©. Schwaner..
Dental reflector, F. M. Osborn Deodorizer for bed vessels, H. M. Small Drag, W. Gardner
Drawing board, P. Bell
Drill, rock, I. P. Bell
Drill, rock, S. Ingersoll
Drill, rock, S. Ingersoll (\mathbf{r})
Drilling machine, rock, s. Ingersoll (r) Drop light, J. C. Love......................
Dryer for rethned sugar, A. F. W. Partz Ejector, fuld, A. A. Atking...
Elevator, hydraulic. W. B. Le Engine, compound, J. W. Bell. Engine ralve gear, steam, G. Westinghouse,
Engines, lubricato for steam, Eyeleting machine, J. C sombe Eruct, A. PPund
Fruncet, T. Trully,
Fence, portable, T. McQuary File cutting machine, S. and S. M. Hagiblin.
Fire escape, J. J. F. and J. Arnao Flower maker's cutting machtne,T.\& J. Millot (r) Fork sharpening attachment, Church \& Gurbert Fountain, parlor. H. Wenzel. Frutt gatherer, C. A. Werden urnace, hot alr,J. G. Weldon Furnace, smoke-consumtng, W. L. Powleso
Furnace, steam bofler, H. E. Champlon....... Game apparatus, v. Klobassa
Garment, knitted, N. H. Bruce
Gas retort, w w .
Generators, joint for steam, B. Whittingham. Governor, steam, M. Muchin. Grate, J. C.Welghtman
Harness, G. W. Hoover
Harnesester, w. A. Wood
Harester, corn, w.
Harvester dropper, c. Wheeler,
Harvester journal bearing, E. F. Herrington
Harvester rake, V. H. Felt.
Harvester rake, J. H. Kirto
Harvester sickle head, M. M. shellaberger
Hat frames, ete., binding, M. F. S. Heath Hat rames, ete., binding,
Hat, reversible, L. Girbardt
ats, machine for pounclig, R. Fickemeyer Heating drum, F. Proudfoot
 Horseshoe calks, sharpening, Gleason\& Hamilto Horseshoe machine. H. J Batchelde Bydrocarbons, burning, o. T. Earle Kron, roll for rolling Knitting machine, E. P. C
Lamp, bracket. C. v. Best
Lamp shade support, S. A. Prescott.
 Leather strap skiving machine,
Lightning rod, M. D. Phelps...
Loom for weaving plied fabrice, S. Sanford.
Loom shuttle, P. Lear.:
Loom stop, J. Bullough..........9993, 159, 134, 159,98, Mechanical movement, D. Willitamson.
Metals, bit for boring, W. McCrosson. rilk coollng apparatus, O. J. stickles Molder's thask, N. M. Chafee.
Mowing machine, E. C. Dewe Nall kegs, manufacture of, S. F. Max well Nall plate feeder, D. W. Kelth.. eek tle, W. H. Hart, Jr.
Needies, grooving, R. Thompson Oll cloth, etc., drying, A. Wider
oll, treating, v. G. Bloede........ Oll, treating, V. G. Bloede....................
Ordnance, construction of, R. R. Moftat Ore, fux for treating. P. N. Mackay.......
Ornamenta, etc., holder for, W. J. Garves Padlock, etc., J. schade
Pall, o. s. Camp..
Palls, etc., metallic lif for, s. C. D. D. Kirtiles Peg or ribbon peg wood,B. F. Sturtevant. Peg or sole fastening, C. \&. . G. Rowland (r)...
Peg or sole fastening, B. F. Surtevant........
Peg strips, machine for, C. \& J. G. Rowland, (r) Peg wood, ribbon, B. F. Sturtevant.... nt........159,775,
.159,856, 159,857
Bramble Jr. 159,856 , Planos, repeating action for, F. P
Pigeon starter, H. A. Rosenthal. Pn, Gardner \& Blossom
Plane, block, J. A. Traut.............
Planter, corn, A. M. Manny
Planter, seed, E. M. Potter
Plow, c. G. Cox
low, A. RIgbs...................
Plows, sulky attachment to, G. Van Winkle Printing press, W. E. Gump
Printing press dellvery, Mayail \& Harnett Puddler, revolving, W. \& G. H. Sellers Quiliting machine, A. Beck Ratlway frog, W. L. Lamborn
Rake, garden, F. B. Hedge.

Reflector, G. Rosenthal
 Roll coupllags, bInder for, J. Gulleesple.
Roller, anti-frictlon, E, Roller, anti-frlction, E. Ge
Roller, land, w. WIllams.
 Sandpapering machine, H. W
Sash fastener, G. B. Adamas.. Sash fastener, G. B. Adamis...
Sash fastener, J. N. WIthers.,
Saw frame, band, N. T. Edson Saw frame, band, N. T. Edson
Saw set, J. B. TItu8............
Sewing machine, J. O Nell..
Sewing machine, J. O Nell..................
Sewing machine, boot, H. Dunham, Jr.,
Sewing machine, button hole, S.J. Baird Sewing machine, sock, H. P. Garland.
Shaft hanger, D. Dierker..................
Shaw1 strap handle, Bruen \& Gridley. Sheep, holder for shearing, J. R VIrgo.. Sheet metal IIds, soldering, G. H. Chinno
Shell, explosive, H. Tyler............... Shingle planing machine, P. D. Burgher.
Ships, mechanism for trimming, J. McNabb Shoe nalls, machine for making, L. Soule
Shoe peg blank, B. F. Sturtevant (r)..... Shoe peg blank, B. F.
Shoe tip, H. White. Show plow, Twit Sow plow, Tritchell\& Parsons...
Soda water draft apparatu, W. Gie
Sole fastening, B. F. Sturterant..
 Spring, door, A. T. Ballantine.. Spring, door, A. I. Balla .
Steering apparatus, P. H. Jackson...
Stereotypes, shaving backs of,Mayal Stereotypes, shaving backs of, Mayall \& Hartnett
Stool and cane, combined camp, F.A. Byram. Stool and cane, comblned camp, F.... Byram
Stool, camp, A. W. Hart...................... Stoove, L. . . Comstock..
Stove, Gram \& Nelon.
Stove, Gram \& Nelson.
Stove, cooking, E. o. Brincke.........
Stove drum, w. Boehmer. Stove drum, W. Boehmer........
Stove, heatIng, J. H. Roblnson.. Street sprinkiler, W. Wegue... Sugar-coating pllis, etc., W. Sugar, dryer for refined, A. F. W. Partz.
Sugar, making grape, E. E. Peare Sugar, making grape, E. E. Pearse........
Table for mnlliners, etc., lap, J. Duncan. Table, froning, G. K. Edwards.. .
Telegraph sounder, J, H. Bunnell. Telegraph sendingand recevving, M. G. Farmer ir
Telegraphtc signal box, w. Telegrapht signal box, W. H. Sawy
Textile material, pillng, A. Warth. Textile material, plilng, A. W
TTcket reet, L. J. Masterson..
Timber, flume for conveyIng, H. G. Parker..
Torpello-niling machinc, Wolfe \& Lillendah Toy, A. E. Hotchkiss
Tyre-leating device, J. Harri
Ventcle umbrella aupport,
Vehtcle whel , $)$.
Vehicle wheel, $\mathbf{~ D . ~ G r i m ~}$
Vehicle wheel, G. Leverici

Veloclpede, W. Quinn
Ventllator, wludow,
Wagon body, C. W. Kinnce...............
Washing machine, I). A. Flummerfeldt.
Washng machine, James \& Strelt....
Washing machine, Shipley \& Wheeler
Washing machine, Shipley \& W
Wabhing machine, T. Stumm
Watch case backs, forming, F. H. Wilbs
Water closet, w. J. Crow.......
Weather strip por windows, s. T. Varian.
Wedge, tron, c. McDermott
Wells, tublng, W. T. Dobbs...
Whiffletree hook, O. J. smith
Windmill governor, w. L. Olliver
WIndow hade ex ixture, C. De Qulli
Window shade fixture, C. De Quill
Window ventlator, s. W. Couch

Windows, quadrant for
Wire way, A. A. Smith.
Wood boring machtne, c. G. Crous...........................
DESIGNS PATENTED.
 8,062.-CARPET.-A. Redfern, Philadelphia, Pa.

8,06i.-HANDLE SockRT.-J.R.Mackay, W. Meriden, Ct

TRADE MARKS REGISTERED.
2 2,2
sCHEDULE OF PATENT FEES.

On each Caveat....... On each Trade mark.

On fillng each application for a Patent (17 years)
On appeal to Examiners-In-Chtef
On appeal to Commissioner of Patents...
On application for Relssue
On filing a Disclatmer
On an application for De...................
On application for Design 7 yeara)...... On application Yor Design (7 yeara)
on application for Design (14 years)

CANADIAN PATENTS.

List of Patents Granted in Canada, Febritary 12 to 24, 1875.
1,389.-A. Willson and E.
couplling. Feb. 12,1875.
couplling. Feb. 12, 1875.
machine. Feb. 15, 1875 .
machine. Feb. 15, 1875.
, $991 .-$ F. C. Porter, Buffaland. Overhead sewing
,

159,763
159,8

4,992.-C. W. Sellinas

4,393.-J. T. . . Be Bennett, Birmmingham, England. Mak
Ing cokeand

Feb. 16, 1875.

I.398.-B. Arnold, East Gr
machline. Feb. 16, 1985.
S.39.- Wm. Adamson et al., Phlladelphla, Ta,., C., S 400.-L. H. Young, st. Jolin, \mathbf{N}. $\mathrm{B} . \quad$ Punching ma chine. Feb. 18, 1875 .
trame hanger. Feb. 18, 1875.

. $4051 .-$ E. R. Whtney, Magog, P. Q. Hay loader. Feh

Feb. 20, 1875.
thin. -7 . Neciod

409.--I. F. Willame, Bristol, R. I
boots. Feb, 20, 1875.
,tas.-S. L. Wiegand, Phladelphila, Pa., U. S. Grate

Feb. 20, 188
412.-L. Hambujer, Detrott, Much., C. S. Rocklng
chalrand cradie. Feb 22, 1875.

ror. Feb. 22, 1875.
itreet lantern. Feb. 22, 18is.
.

, inchine Feb. 22, 1875. Ont., et al. Tyre upsetting
(.417-D. S. Cornell, Warwick, Ont., et cl. Hand straw cutter. Yeb. 23, 1875 .
saw carrlage. Feb. 23, 1875.
Sich., C. s. CIrcular saw carrlage. Feb. 23, 1875.
d19.-T. Penton, Sarnla, ont

Yeb. 23, 1885.
d24.- J. H. Oegood, Boston, Maes., C. s. Inking roll.
ivi. J. H. Ogood, Boston,
er compositlon. Feb. 24, 1875.
Feb. 2i, 1875
4.426.- E. R. Powell, Whooxki, Vt., U. S., etal. Whees
harrow and grain coverer. Feb. 24, 885. .
427.-Wm. .1. Garton, Toronto, Ont. Wax thread
heasting machne. Feb. 24, 1875.
.228.-M. Hutchningon, Norfolk, X. Y., U. s. Heatink drum. Feb. 24, 1875

Aatertisements.

THE
Shapley Rngine,

BLAKE'S PATENT
Sor Stone and Ore Breaker

