
a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

PORCELAIN MANOFACTURE IN NEW YORK. ugustus II., Elector of Saxony, was of a scientific turn of mind. He loved Science, however, not for its own sake but for his own : in other words, for what he could make out of it. Consequently, when the staid citizens of Berlin drove from their city an unfortunate apothecary'sassistant, whose mysterious operations with retort and crucible savored of the black art,he
received the outcast with open arms; and shut him up in a laboratory with instructions to fill up the somewhat depleted electoral coffers with gold produced by the aid of the philosopher's stone, at his earliest possible couvenience. John Frederic Bottcher, for that was the exile's name, had learned by experience the futility of such speculations; but, in obedience to the sovereign command, he undertook it, and began operations by making some new crucibles from the clay nearest at hand. When these vessels were fired, to his astonishment he recognized in them the appearance of oriental porcelain, and lost no time in communicating his discoveries to his patron. That business-like individual, promptly appreciating the fact that there was more gold to be made in selling the ware than in hunting the marvelous stone, at once locked up Herr Bottcher and his secret in the strong fortress of Albrechtsburg, and then and there embarked in the pot-
tery trade. Now, like every other inventor, betery trade. Now, like every other inventor, be

Fig. 3.-THE MAGNETS.
fore or since, Bottcher was dissatisfied. He could produce red and white stoneware of great fineness, resembling porcelain, but true porcelain baffled his efforts, and such porcelain, he argued, he must produce or remain unhappy.
Meanwhile there lived in the neighborhood an ironmaster named Schnorr. Schnorr's horse one day, while his master was on his back, came to a standstill with all four feet stuck in the mud, causing Schnorr to dismount and, doubtless with sundry hearty Teutonic objurgations, to extricate him. Schnorr was not so angry, however, as to prevent his noticing that the mud was pure white, although astonishingly sticky, and it occurred to bim that, if he could make the material into a powder, there was the stuff for the wigs of the gentry and, at the same time, the basis of a fortune for him. This idea he putin practice; the powder sold well, and in the course of time fell into the hands of Bottcher's valet, and thence upon the head of Bottcher himself. Bottcher one day, after an application of the substance, discovered that his wi
exceeding the actual weights of the articles in gold. We exceeding the actual weights of the articles in gold. We
eliminate a century's labor abroad, then, to come at once to the introduction of the manufacture into this country sixtyfive years ago, when we find the first record of a company being chartered to manufacture the material from kaolin found in Vermont. Later still, in 1819, Dr. H. Mead began porcelain manufacture in New York, and in 1827 William Ellis Tucker had established a porcelain factory in Philadelphia; while another of considerable extent, employing one phia; while another of considerable extent, employing one the manufacture has been continued, and at the present time the manufacture has been continued, and at the present time
the porcelain produced in the neighborhood of this city is, in many respects, equal to the best imported ware
We now proceed to describe the processes as carried out in one of the oldest and largest establishments in the United States, premising, however, with a few words as to

Fig.1.-MOLDING THE WARE.

Fig. 2.-PRESSING AND TURNING SMALL WARE.

the material of which porcelain is made.
Porcelain clay or kaolin (the word is derived from the name of a mountain in China where the substance abounds) is a silicate of alumina, and has an average composition of 47 per cen silica, 40 of alumina, and 13 of water. It comes from granite rock which, by natural causes, is decomposed, so that the felspar and quartzare separated. The potash extracted from the fel spar leaves the kaolin in a soft unctuous con dition, white and opaque, and with a character istic odor when breathed upon. In this condi tion, it is exported hither from certain districts of England, and is combined in suitable propor tions with felspar and quartz. It is unfortunate for the industry here that the necessity ex ists of obtaining the ingredient from foreign sources, as there is no reasonable doubt but that ample beds of the material exist within our own borders, which careful search and careful de velopment might soon render available.
the factory
which we recently visited is located in Green point, Long Island, oppo site this city, is known as the Union Porcelain Works, and is owned by Messrs. T. C. Smith \& Sons.
mixing the slip After the kaolin has been combined, as above noted, with felspar and noted, with felspar and
artz, it is thrown into a huge vat, and there mingled with water to the consistence of a thin paste. This operation we found in process in a lofty lower story. Inside the vat a vertical shaft, supporting a number of radia arms, kept the slip, as it is technically termed in a state of constant agitation, as the liquid slowly escaped from an orifice beneath into a sieve held by a workman there stationed. The sieve was constantly shaken, and the slip con tinued its sluggish course down a short chan nel and between two sets of horseshoe mag nets, some horizontal, others perpendicular The object of these, we were told, is to re move every fine particle of iron which the mixture may contain, for, as we afterwards saw, each speck of the metal, bowever minute, appears as a black spot on the snowy surface of the finished china. From the mag nets (Fig 3) the liquid ran into a second sieve held by the same man faucets suitably loca held by the the ted enabling him to check the flow at plea sure, and thence into a second vat located on a lower level. where similar apparatus to that already noted kept it stirred. With the ini-

ich heads this article, there is a small drawing | other factories sprung up, and their numbers extended | tial letter which heads this article, there is a small drawing |
| :--- | :--- |
| the | | throughout German Europe. France looked on with undisguised jealousy, and set herchemists hard at work. It was failed. The wife of a surgeon, living near Limoges, ran short of soap for her week's washing. She was too poor to buy more, and hence attempted to use a white unctuous earth found in a ravine hard by. Her husband showed the strange clay to the village apothecary, and he in turn told the chemists, who recognized in it the kaolin of which they were in search. Thus sprang up the great factory at Limoges, and then that of Sevres, both famous to this day.

To trace the course of the porcelain industry for the last hundred years would cause us far to transcend our present limits. Suffice it to say that it is now one of the first in the world, and that the earlier products have been made the subwects of manias which have run their value up to sums far

Fig. 6.-THE SEGGARS.
from the last of which the slip is led into storage bins or tanks. The next operation is
squeezing the water from the slip
and to this end the paste is pumped from the bins and into a peculiar press which is represented in Fig. 4. This may be compared to a series of heavy wooden trays set up on end and held together by strong iron bands. Between each pair of trays is a cloth bag, and with each bag a supply pipe communicates. A powerful force pump drives the slip into the bags under a heavy pressure, and an ingenious valve, which may be weighted as required, regulates the backward tend ing force, and by lifting at the proper time prevents the bursting of the bags. The result is that a large quantity of water is expelled, and the material emerges a heavy dough. This is worked and kept for some time before using as ageing is said to improve it. The Chinese, by the way, have a tradition that the material for their old porcelain was stored away for a hundred years before use. The French missionaries, translating the words "for a hundred years" into their own language, "pour cent amnées," afterwards corrupted the latter phrase into the word "porcelain."
Passing from the press room to another apartment, we were shown an immense heap of smashed crockery. All this, we were told, is utilized, and in fact made over again. The
fragments are ground to a coarse powder under two huge revolving burr stones, each weighing some two tuns. This powder is again ground in an ordinary mill, and in its fine state, is mixed with water to go through the regular process. The operation of

Making seggars

next claimed our attention. A " seggar" (Fig. 6) is a tray of common baked Jersey red mud. It has no cover, and its depth varies according to the piece of ware it is to contain, during the baking of the same in the kiln. The clay is mixed to a thick plastic massin a pug mill and subsequently pressed in molds to any desired form. Baking follows, and the finished seggar emerges looking like a piece of coarse red earthenware.
Leaving the lower stories, we ascended through large brilliantly lighted rooms and past tier on tier of crockery in all stages of manufacture. Scrupulous cleanliness pervaded every where, and, save the slight whizzing sound of machinery no noise was heard. The workmen-and, very singular to add, girls too-labored silently, obeying the placards com manding stillness, which, appearing on the walls, reminded us of the stern warning in the old German workshop a centuay ago.

molding the ware.

"'The potter's lathe," said our guide, " is obsolete here. We abolished that antique apparatus long since;" and leading us to a long table, he showed us a row of men, each one stationed before a horizontal revolving disk (Fig. 1). This, by a mere pressure of the knee on a lever, which threw friction gearing into operation, could be set spinning around. Beside each man was what appeared to be a number of short tubes (Fig. 5),irregularly shaped and made of the clay dough. The disk or rotating head being at rest, the workman placed thereon a mold, the interior of which was of the exact form of the exterior of a bowl. Into this he inserted one of his dough tubes, and set the disk in motion, pressing the plastic mass with his fingers, at the same time, out against the side of the cavity. Then he brought down into the latter a counterpoised metal blade, as shown in Fig. 1, which was so adjusted and shaped as to remove exactly enough material to leave the bowl of the requisite thickness, and at the same
time to form its interior. The article, we were told, is time to form its interior. The article, we were told, is
subsequently put aside to dry, and, thus completed, is removed from the mold and is ready for baking.
There are very many objects which do not require the use of the revolving head, and are simply pressed into molds, some by machinery, others by hand alone. The machine used for door knobs, for example, is simply a screw press which forces the clay in the condition of moist powder into a properly shaped die. The knob, however, on emerging, is not everywhere round, and is therefore placed on a horizontal revolving spindle and turned. These operations on the knob are shown in Fig. 2. China heads for nails, casters,
speaking tube mouths, and an immense variety of other porcelain goods for the hardware trade are made in similar manner.

(To be concluded in our next.)

A New White Pigment.

A Mr. Orr, of Glasgow, has recently taken out a patent for a white pigment, which he has endeavored to obtain by for ming a compound of zinc and barium. For this purpose he takes crude barium sulphide, and lixiviates it. The superna tant liquid is then drawn off, and divided into two or more equal portions. To one, an equivalent of zinc chloride is added, and to this again zinc sulphate is added, and afterwards another portion of barium sulphide, the result being an intimate mixture of 1 equivalent barium sulphate and 2 of zinc sulphide. The precipitates, composed of zinc and barium, are collected and pressed to expedite drying, after which they are placed in retorts and brought to a red heat. While still hot, they are drawn into water, preferably cold, which, it seems, has the effect of increasing their densityand imparting body to the paint to be made from them. They are subsequently washed and ground in water to a fine powder, or they may be first dried and then ground. The inventor states that, by increasing the number of additions of zinc sulphate, the quality may be varied. The pigment thus prepared is to be used in
the ordinary way; and if it does but possess the covering pow er of white lead, and can be sold as cheaply, it will be undoubtedly a useful product, for zinc whiteretains its color bet
than any other white pigment in_ordinary use.

Sorimutifir Gmerican.

MUNN \& CO., Editors and Proprietors.

PUBLISHED WEEELY :

NO. BY PARK ROW, NEW YORK.
O. D. MUNN. A. E. BEACH.

TERMS

One copy, one year, poswaye included...
One copy, siz months, pdetake included.
Clubrates:
en coples, one year, each 8270 , postage included. \qquad 12700

By the new law, postage is payable in advance
Note. - Persons subscribing will please to give their full names, and Post oflce and State address, plaifly written, and also state at which time they Wish their subscriptions to commence, otherwise they will be entered from January 1 st , 1 ti . In case of changing residence state former address, as
well as givethe new one. No changes can be made unless the former address is given.

VOLUME XXXII., No 12. [New Series. 1 Thirtieth Year.
NEW YORK, SATURDAY, MARCH 20, 1875.

CROSSING THE BOUNDARY OF THE EXPERIMENTAL EVIDENCE.
It is amusing to see ho w zealously the non-scientific world insists on the restriction of Science to verified fact, especially when we remember that the sole basis on which its opposi tion to Science rests is a stupendous hypothesis, not only unverified, but confessedly beyond the reach of human verification, the hypothesis of Divine revelation-something supernatural, superhuman, miraculous.
Professor Tyndall speaks of crossing the boundary of the experimental evidence in pursuit of an explanation of visible phenomena, and straightway a great cry is raised that he is no true friend of Science, or, at best, that he has been be-
trayed into a false and "unscientific" step in the heat of oratory and by the sympathies of his audience. The speaker disclaims any such apology, assuring his volunteer defend ers that he said nothing in heat or haste; that he crossed the boundary deliberately, and said just what he meant to say.
The reply all but breaks the h_{3} ari of these would-be guardians of the integrity of Science. The admission of imprudence and haste would have simply damaged Professor Tyndall's reputation as a scientist. The avowal of deliberate intention, they fear, will utterly destroy the claims of Science in popular estimation! If years of scientific training and investigation, they say, can produce no better result than to make a professor of Science carry his scientific teachings straight to conclusions in the regions of the absolutely unknowable, what becomes of the boasted virtues of the scientific habit and its supposed effects upon the human judgment and intelligence?

A sufficient reply to this objection would be that one of the chief virtues of a scientific training is, not to keep the mind's action wholly within the bounds of experimental evidence, for that would block all progress, but to enable it to cross that boundary when occasion demands, properly restrained by a knowledge of what is known and a conviction that what is unknown is certain-so far as experience goes-to be in harmony with the known. For this reason the hypotheses of a true scientist are to those of the unscientific or anti-scientific as the speculations of a wise man are to those of
theologian. In the one case the hypothesis, unverifiable theologian. In the one case the hypothesis, unverifiable
though it be, has a basis in reason and reality; in the other
it is very apt to fly in the face of fact, and set faith abore reason. He would be a curious disciple of Science who should say: "I cannot understand, therefore I believe!"
Fortunately the anti-scientist cannot be unreasonable in all things. In the common affairs of life his mind works like other men's. It is only when his religious prejudices are involved that be kicks at the scientific method. Thus if he should find on his doorstep some morning an infant, with no discoverable clue to its origin, he would be as ready as Darwin himself to pronounce it a human child, born of human parents in the ordinary way, and placed there by human hands, though, under the circumstances, not one of these as sumptions would be other than an unverifiable hypothesis. In no case could we think of a true scientist as deciding otherwise. It is quite possible, however, to suppose that an ecclesiastic might hold a different opinion. "What has happened may happen." If one child, as he devoutly believes, came into the world without a human father, it is possibl that this might have had a similar origin. Still more, if his church decreedit, he could not deny that the child was, like the progenitors of the human race, according to his theory, a direct product of creative power, with no parent but the Al mighty. Under the supposed circumstances, this would be no less possible of verification than the scientist's hypothesis of human parentage; the two differ simply in the fact that the one has all the verifiable facts we have to support it, while the other has all known facts against it. The great virtue of Science training is to keep men from such unsup ported vagaries, not to chain them down to demonstrable fact.
In his late review of Maeckel's "Anthropoginie," Professor Huxley touches this point in defense of the hypothesis of development as applied to living creatures, man included, and shows how few scientific problems, even those which have been and are being most successfully solved, have been or can be approached in any other way than by speculations passing the bounds of positively verifiable fact. "Our views respecting the nature of the plavets, of the sun, and stars are speculations which are not and cannot be directly verified; that great instrument of research, the atomic hypothesis, is a speculation which cannot be directly verified; the statement that an extinct animal, of which we know only the skeleton, and never can know any more, had a heart and lungs, and gave birth to young which were dcveloped in such and such a fashion, may be one which admits of no reasonable doubt, but it is an unverifiable hypothesis. I may be as sure as I can be of anything that I had a thought yesterday morning which I took care neither to utter nor to write down, but my conviction is an unverifiable hy pothesis. So that unverified and even unverifiable hypothesis may be great aids to the progress of knowledge-may have a right fore, if it is to be admitied that the evalution hypothesis is, in a great nieasure, beyond the reach of verification, it by no means follows that it is not true, still less that it is not of the utmost value and importance.
The like is true of other current hypotheses in Science, They may or may not be ultimately demonstrated ; many of them may be, and in all probability will be, supplanted in time by new hypotheses having a wider basis in verified fact; nevertheless, they are to be accepted provisionally, as giving the best e_{1}, ession and interpretation of phenomena as we know them, and used as "instruments of research " until something better is found. If che world of thought had waited for absolute truth before going ahead, it would hever have got even so far as the crude hypothesis of the books of Genesis. To wait is to go to waste. As Professor
Huxley has well said: "Active error may advance knowledge Huxley has well said: "Active error may advance knowledge
in its efforts to establish itself; and nothing is more remarkable than the number of great things, from the discovery of A merica to that of the antiquity of man, which have been brought a bout by the attempt to establish erroneous views. But sitting still and being afraid to stir, for fear of making mista.
life.

FOREIGN EXHIBITORS AT THE CENTENNIAL

So far from there being a prospective lack of foreign exhib itors at the Centennial, it now appears that so many desire to avail themselves of the adrantages offered that it will be impossible to accommodate all in the spaces allotted. The commissioners of several nations have already made requisition for greater areas than have been set aside for their respec tive countries, and applications, they state, are being constantly eceived. The German Empire, it is said, will make by far he finest display, both in kind and extent; Austria will fol low closely, and her products, comprising the exquisite ar ticles of vertu from Vienna, Moravian cloths, Bohemian glass and Styrian and Carinthian iron, will together constitute an exhibit of great industrial interest. The marked eagerness with which each nation desires to secure prominent repre sentation is noticeable on the part of the small countries some of which have been assigned in couples to certain spaces. Thus, Holland objects to being assigned floor space conjointly with Denmark, and asserts through her commis sioner that she can fill every inch of the space allowed, alone Hungary will probably insist on a separate department, and refuse to be overshadowed by the Austrian display. Norway declines to be joined with Sweden, and both Scandinavian countries assure very interesting exhibits of iron, furs, and matches. Denmark offers a good display of Copenhagen manufactures, besides collections illustrating the manners, customs, and industries of Greenland and Iceland.
France will also crowd her space with silks, velvets, lace, jewelry, and the thousand productions in which her artisans
are unrivalgd. It is said that the French display will be the best organized and regulated in the Exposition. Italy has not yet appointed a commission, but it is understood that she will shortly do so. Her exhibit will be principally mosaics, cameos, corals, statuary, Venetian glass, Genoese silk, and other specimens of industrial art. Fine displays from Greece and Portugal are expected, and Switzerland has promised a complete exhibit of her watches, mathematical instruments, lace, and wood carvings.
Russia is holding off, and as yet her government has made no overtures toward participation. It is rumored that this position will be maintained, and that the country will be represent
viduals.

England and all her colonies are manifesting a largely increased interest in the enterprise, and leading manufacturers are well advanced in extended preparations. The Canadian government has appropriated $\$ 250,000$ to pay expenses of the Dominion commission, and British India, Australia, New Zealand, and the Cape of (tood Hope have promised full displays. All of the South American countries have applied for space, and the commissions of several are already organized. Brazil and Chili will take the lead in point of extent of exhibits, but from all contributions are expected, far larger than those sent by them to previous World's Fairs. Mexico, the Central American States, and Hawaii are likewise pre paring. In the East, from Egypt and Japan magnificent displays have been promised; Turkey, Persia, Siam, and ('hina are as yet unheard from.
Altogether, the prospects are that the Centennial will ou ${ }_{1}$ shine all previous expositions in the completeness of the exhibits which each country will furnish. This is well evidenced by the ready response which all have made to the invitations sent them to participate, and the celerity with which they appointed commissions and set about the necessary preparations. The combined foreign exhibits will occupy 340,432 square feet out of the 485,000 feet available. The United States has 123,160 square feet, and there is $s \mathrm{n}$ area of 21,408 square feet reserved for contingencies.

AMERICAN PORCELAIN.

We commence on the front page of this issue an elaborate illustrated article detailing all the various processes of the manufacture of porcelain as practised in this country. There is no question but that this industry has become a very important American manufacturing interest, and one which, before many years, will enter into sharp rivalry with the work of European producers. It holds the unfortunate position now, however, of being practically unrecognized. That is to say, the popular prejudice is so strong in favor of foreign goods that American wares have to be and are largely sold as French or English products in order to induce people to buy them. This is alike destitute of sense or justice. The fact remains that porcelain from our own factories is bought and liked, and therefore no valid reason exists why it should not be put on the market for what it is. We are gratified to notice that a meeting of the pottery trade, held in Philadelphia a month or two ago, recognized this very plainly, and the convention voted, among other resolutions, to the effect " that we have sufficient talent in this country to originate new designs, more elegant and suitable to the wants of the American people, and that such procedure on our part will the sooner enable us to give our products the stamp of a national product and a distinct character.'
We also wish to direct especial attention to the fact that we import kaolin from England, and that none, as we are informed, has as yet been discovered in this country suitable for the finer porcelain. There are beds, we believe, in Brandon, Vt., but the clay is put to base uses in adulterating paper, paint, and other products. We have no record of its being tested for porcelain. There is a tariff of $\$ 5$ a tun on the imtested for porcelain. There is a tariff of $\$ 5$ a tun on the imported material, from which our citizens reap no benefits, and which offers a further incentive to discover the kaolin.
It seems to us that, unless some effort in this direction shortly appears, it would be good policy to encourage the industry by remitting the tariff altogether, and entering the kaolin free as a raw material.
In our inspection of the machinery, at the establishment described, we were impressed with its simplicity and efficiency everywhere except in one particular. That was in the means used for making the small articles, such as nail heads, castors, and other hardware trimmings, of which the factory produces an enormous quantity. The reader will find the apparatus illustrated in Fig. on page and it will be perceived to consist merely of a screw press, which for ses the damp powder into a die, the latter being removed by hand and filled for each article. There is very clearly work for an inventor here; and it seems to us that a little ingenuity could speedily contrive an apparatus which would fill the die,hold it in place, and run down the screw, automatically. Now it requires one workman to each machine. With suitable apparatus, one man ought to control half a dozen if not more, and produce the articles far more quickly as well as of more uniform shape.
We notice that the Potters' Association offer three prizes of one hundred, fifty, and twenty-five dollars respectively, for the handsomest design of pottery ware to be exhibited at the Centennial. If we may judge from the efforts being made at the factory visited by us, our American potters are thoroughly imbued with a spirit of emulation, not of course to gain the small sums above mentioned, but to produce a display at the Centennial well calculated to arouse the world to a sense of the progress we have made in the ceramic art. We were shown some remarkably beautiful vessels, of unique shape, the exteriors of which were molded with national em-
blems and bas reliefs of events in American history, which when complete will, we think, compare favorably with some European factories.

A VARIABLE SCREW.

A correspondent asks how to lay out an increased twist on wooden cylinder. We do not know that this information is published in a form that is generally accessible to our readers ; and as the construction is also applicable to the guide plates for screw propulsion, we here present it in simple form.
The line forming the intersection of any two faces of a screw thread is called a helix, and can be described, on a cylinder having the same diameter as the thread, by the motion of a point which goes around the cylinder, and, at the same time, advances in the direction parallel to the axis. If all the helices of the intersections of the faces of the screw are determined, we have the boundaries of the thread, and it is the method of making the determination that our correspondeat desires to have explained. The pitch of a helix is the distance that the generating point moves along the cylinder in passing once around it. If this axial motion is the same for all parts of the revolution, the helix has a constant pitch ; but if the motion varies at different parts of the revolution, the helix is said to have a variable pitch-increasing if the axial motion of the point is greater for each successive equal interval of the revolution, and decreasing if the axial motion continually grows smaller. The simplest manner of drawing either of these helices is by the aid of a graphical construction; and the methods employed in the three cases are represented in the accompanying sketches:

1. Helix with constant pitch, Fig. 1: Provide a cylinder of the same diameter as the required helix. Draw a horizontal line, A B, equal to the circumference of the cylinder; and at the point, B, erect a perpendicular, B C, equal to the pitch; connect the points, A and C, by a straight line; cut out the figure so constructed, and wrap it around the cylinder, with B C parallel to the axis. 'Ihen A C' will be the required he-

lix, which can be traced on the cylinder by using the edge, A C, of the paper as a guide. If the helix is to be constructed for only a portion of a revolution, make ΛC equal to that fraction of the circumference, and B (' equal to that fraction of the pitch. Similarly, if the helix is to make several revolutions, A B must be the length of the circumference of the cylinder multiplied by that number of revolutions, and B C, the pitch multiplied by the same number.
2. Helix with increasing pitch, Fig. 2: Provide a cylinder, as before, and make A B equal to the circumference. Erect a perpendicular at B, and make $B C$ equal to the initial pitch of the helix, and BD equal to the sum of the initial and final pitch divided by two. Divide C D into any number of equal parts, and A B into the same number. Draw straight

lines to A, from the points of division of $C D$, and perpendi culars to A B from the points of division of that line; mark the points in which these perpendiculars cut the correspond ing lines drawn from the points of division of C D, and draw a curve, $A 123 \mathrm{D}$, through these points and A and 1 D , cut out the figure, and wrap it around the cylinder as before, when the helix makemore or less than one revolution, A B must be made equal to the length of the same part of the circumference of the cylinder, BC' to the same part of the initial pitch, and $B D$ to the same part of the half sum of the initial and final pitch. In the figure, only a few points of the guide curve are constructed, as it is merely given for the sake of illustration; but in any practical case, it is well to construct as many points as convenient. Some examples are added to still further illustrate the construction
Example 1.-To construct the guide for one revolution of a helix, 4 inches in diameter, and with pitch increasing from 4 to 12 inches : A B is $12 \cdot 566$ inches, B C is 4 inches, and B D, $(4+12) \div 2$, or 8 inches.
Example 2.-Guide for a helix making six resolutions, having a diameter of half an inch, starting with a pitch of 3 and ending with a pitch of 15 inches. In this case, A B is $6 \times 1 \cdot 5708$. or 9.425 inches, BC is 6×3, or 18 inches, and $B C$ is $6 \times(15+3) \div 2$, or 54 inches.
Example 3.-Guide for the circumferential helix of one blade of a screw propeller, the diameter of the screw being 18 feet, one eighth of the pitch being used, and the pitch expanding from 24 feet at the forward edge of the blade to 32 feet at the after edge. A B is $\frac{1}{8}$ of 56.549 , or $7 \cdot 069$ feet B C is $\frac{1}{8}$ of 24 , or 3 feet. B D is $\frac{1}{8}$ of $(24+32) \div 2$, or $3 \frac{1}{3}$ feet. 3. Helix with decreasing pitch, Fig. 3 : The guide is con.
structed in a similar manner to that already described. A B is the circumference of the cylinder on which the helis is to be drawn ; B C', perpendicular to A B, is the initial pitch, and

$B D$ is equal to half the sum of the initial and final pitcl. Divide C D and $A B$, each into the same number of equal parts, and mark the points of intersection of lines drawn
from the divisions of C, D, to A, with the perpendiculars erected at the corresponding points of A B. A curve, D 123 A drawn through these points and D and A, will be the guide, by means of which the required helix can be traced upon the given cylinder.

THE METALLURGY OF IRIDIUM.
When it was decided to make the standard meter, of which a description appeared in our issue of September 10, of an alloy of platinum and iridium, the preparation of the latter metal presented the greatest difficulty. Platinum resiststhe action of oxygen, and is only acted upon by aqua regia; for its fusion it requires the highest heat attainable by the oxyhydrogen blowpipe. The alloy of osmium and iridium, in which form the latter is only found in Nature, is unaffected either by aqua regia or the blowpipe. Small grains of iridosmine are found mixed with the sand in which platinum ore is found. This mixture of platinum, sand, and iridosmine was first treated with aqua regia, which, of course, dissolved the platinum, leaving the iridosmine in small grains and scales, mixed with sixty to seventy-five per cent of sand. By fusing this mixture with litharge, silica and a little char coal, the same unites with the litharge and silica to form a glass; the iridosmine, being heavier, falls into the reduced lead below. It is isolated in metallic granules by dissolving the lead in nitric acid; next the iridium must be separated from lead in osmium.
from
Iridosmine can only be attacked and rendered soluble b treating it with alkalies combined with powerful oxidizing agents. For this purpose, it must be reduced to a fine pow der, which cannot, however, be accomplished by pulveriza tion in a mortar, for the iridosmine is very tough and hard. The object was accomplished by fusion with zinc, with which it forms an alloy. On distilling off the zinc, it is left in the state of a very fine powder. This powder is heated with ni trate of baryta as a flux, whereby it is converted into oxide of iridium and osmate of barium. The resulting mass is soluble in nitric acid; and when the solution is distilled the osmic acid, which is volatile at 212° Fah., is obtained in large white crystals. This eperation requires special caution, a the osmic acid is very poisonous, the most so of any know substance. It, therefore, has to be kept in tubes hermetically sealed.
The red liquid, which remains after distilling off the osmic acid, contains nitrate of baryta and oxide of iridium. The latter is precipitated by adding baryta. The precipitated oxide of iridium is dissolved in aqua regia and precipitated by the addition of sal ammoniac, in the form of a double chloride of iridium and ammonia, $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{Ir}\left(\mathrm{l}_{2}\right.$. When i_{5} r ride of iridium and ammonia, $\mathrm{N}_{4} \mathrm{Cl}+\mathrm{Ir}$
nited, this yields the crude iridium sponge, which also con nited, this yields the crude iridium sponge, which also con
tains some platinum, ruthenium, and a little rhodium. This tains some platinum, ruthenium, and a little rhodium. This
is refined by fusion with saltpeter, which oxidizes the ruthenium and other metals. The resulting mass is treated with watar, which dissolves the ruthenate of potash with a yellow color. The residue is fused with lead, which separates the metals. On cooling, pure iridium crystallizes from the lead The lead is dissolved by nitric acid, and tle platinum by aqua regia, which does not attack the iridium.
The invention of a method of working up iridosmine, al hough somewhat difficult and dangerous, so as to obtain the iridium in a metallic state for the preparation of very refrac tory alloys, will probably render valuable a hitherto waste product in the working of platinum ores.
The dangerous character of its companion, osmium, of which it is said that twenty pounds would kill all the inhab aitants of the world, will prevent its finding a usein the arts.

New Screw Propeller Experiments

We have alluded to the experiments of the veteran screw propeller inventor, Mr. (iriffiths, who has shown that in some cases there is a loss of 60 per cent of engine power in the use of screws. He now proposes, as an improvement, the use of small screws, one at the bow and the other at the tem. The British Admiralty have placed the Bruise teamer at Mr. Griffith's disposal for trial of the new plans and the results, which may sonn be expected, will be studied with interest

At the New Albany (Ind.) Plate Glass Works, the other ay, several men were standing on an elevator, steadying a very heary load of plate glass, worth some $\$ 2,500$, when the cog wheel which propelled the windlass broke suddeniy, just as the elevator reached the topmost floor, and the men and heir charge were precipitated together a distance of thirty feet. The glass was broken in fragments, which almost huried the men. Three of the latter were seriously wounded.

the fireman's respirator.

In a paper read by C'aptain Shaw, of the Metropolitan Fire Brigade, at the Society of Arts, on January 19, an ingen ious apparatus was described for enabling persons to breathe in dense smoke or poisonous vapors. It consists essentially o. a close-fitting hood, with a respirator, holding a filter, the

nvention of Professor 'Tyndall, which consists of a valve chamber and filter tube about 4 inches long screwed on outside, with access to it from the inside by a wooden mouthpiece The charge for the filter consists of the following materials, which are put in with the tube turned upside down, and the lower valve removed : IIalf an inch deep of dry cotton wool, an inch deep of the same wool saturated with glycerin, a thin layer of dry wool, half an inch deep of fragments of charcoal, half an inch deep of dry wool, half an inch deep of fragments of lime, and about an inch of dry wool. The whole can be put on and adjusted in a few seconds by the wearer.-Scinee Record.

A New Light.

We described, not long ago, the new light for photographic purposes, produced by the combustion of bisulphide of carbon and linoxide of nitrogen. The only drawback to the utility of the light was the danger of explosion. Further experiments in the same path have recently been made, and Messrs. Riche and Bardy communicate to the French Academy the details of the apparatus, by which a new light, having an actinic power superior to the oxyhydrogen light, is produced, with economy and safety. The light is made by melting sulphur in an open vessel; and when the sulphur is in flames, a jet of oxygen gas is directed upon it, producing a bluish light of great actinic power.

Another method, which produces a brilliant white light, but of less actinic power than the other, consists in filling the vessel with nitrate of potassium, and heating until the salt begins to decompose, then throwing small pieces of sulphur upon the surface of the salt.
The following is the apparatus for the sulpho-oxygen light:

No. 1, a glass tube connecting the gas bag with burners No. 2, an iron stand to hold the small crucible. No. 3, a crucible. No. 4, a small alcohol lamp to ignite the sulphur. No. 5, a funnel to receive the product of combustion. No. 6, a potroleum lamp employed to establish a current of air in the chimney. No. 7, a shaft connected with the chimney, in which the current of air is formed by means of gas or a lamp.
It is not necessary, says Professor E. Stebbing, in the British Journal of Photography, to employ the oxygen under much pressure, for with too much of that gas the flame is white instead of blue, and therefore less photogenic.

Professor Forster, of Berlin, discovared, on February 25 , a new planet of the twelfth magnitude.

THE NEW REVELATIONS OF A SNOW FLAKE.

It is difficult to believe that the pure white flake, which settles uoiselessly upon the earth, and which seems, even when moderately magnified, but a mass of expuisite white ice crystals, is, after all, but a scavenger of the atmosphere But such, nevertheless, is the fact, and henceforth we must regard the snow drops but as so many sponges which absorb into their porous sulstance the myriads of microscopic bodies which form that peculiar atmospheric dust, found near the surface of the earth, and most largely in the vicinity of cities. This dust is itself a queer mixture of heterogencous substances. M. Gaston Tissandier, who has been making a

Fig. 1.-Corpuscles suspended in a drop of snow water.
number of very interesting investigations on the snow, states that, in a drop of water obtained from a single flake and magnified 500 times, he found pieces of coal, fragments of cloth, grains of starch, sandy matter, and an immense variety of other substances, not a fragment of which exceeded in diameter three ten-thousandths of an inch. Some idea of the numbers in which these infinitesimal particles must ex ist in the snow can be gained from Fig. 1, which represent a drop of snow water gathered at the summit of Notre Dame towers, in Paris, and magnified under the microscope 500 diameters. The fibers of fabrics and bits of coal are easily recognized.

Fig. 2.-Crystals obtained by evaporating a drop of snow water.
By examining large volumes of snow water, M. Tissandier has been able to determine the weights of these corpuscles A quart of water collected in the ity and evaporated gave $3 \cdot 2$ grains of residue, and the same quantity obtained in the country yielded about half that weight. The residue is an impalpable pulverulent gray powder, composed, in round numbers, of 70 per cent mineral and 30 per cent organic sub stances. It is very rich in carbon, burns brilliantly, and con

Fig. 3.-Crystals obtained by evaporating a drop of snow water
tains certain chlorides and sulphates in appreciable quanti ties, besides carbonate of lime, alumina, silex, and sufficient iron to be readily recognized by reagents. Nitrate of ammo-
nia is also detected in the proportion of about 0.015 grains per quart of water.
M. Tissandier states that, by evaporating a drop of snow water, in dry air on a glass slide, and examining subsequenty with the microscope, crystals, some needle-like, some prisatic, and others star-shaped, as represented in Fig. 2, were observed to form. During the course of one experiment, however, he remarked a noticeable difference in the crystallization. The crystals appeared to ramify, throw off other needles, theselast others again, until the slide under the lens presented the beautiful appearance represented in Fig. 3.

Fig. 4.-Microscopic aerolites (largely magnified).

Under the influence of a high temperature, these new crys als evaporated, but it was not difficult to prove them to be the nitrate of ammonia, the presence of which chemical analysis had previously indicated. Further investigation showed also that, among the nitrate of ammonia crystals, were scattered others of different form and totally unlike those of the rhomboidal system. Some were cubical, indica ting them to be probably sea salt, others resembled the sulphate of soda crystals. The last probability was rendered quite certain by throwing a few flakes into a supersaturated solution of sulphate of soda, in which they immediately caused crystallization to take place. All the crystals, it ap pears, formed on the edges of the drop, while the corpuscles formed a devse group in the center.
As regards the particles of iron found, while it is very possible that they came from the surface of the soil, it is not improbable that they may have reached the atmosphere from without the same, and therefore be due to the disaggregation of aerolites, destroyed on entering the acrial ocean. Nordensk jold has collected, on the great snow fields of the arctic egions, a dust which contains iron, carbon, nickel, cobalt and phosphorus, elements especially characteristic of extra errestrial bodies. Ehrenberg, the celebrated German micro scopist, has examined the ferruginous dust, which, to the naked eye, appears to be but an agglomeration of minute grains, as represented in
Fig. 5. When very highly agnified howevery highl rious shape of the particle becomes clearly apparent(Fig 4), showing that, at some), showing that, at some time, they must have been in a state of fusion, and hence very probably due to some Fig. 5.-Micres mass of meteoric iron ren-
 dered incandescent and melted by frictional size). sphere.
The iron and other particles in the snow probably are not without some effect upon vegetation, the exact nature of which future investigation will determine. Certainly, however, it appears that heary snow falls, besides protecting the ground gainst excessive cold, serve to fertilize the same through the nitrate of ammonia, conveyed to the soil by the melting of the snow.

New and Valuable Printing Press.

A new printing press made in Liverpool, Eng., by Duncan and Wilson, for the Christian Lnion newspaper of this city is a remarkable novelty in this class of mechanism. It prints, folds, pastes, and binds the paper inside of a cover, which it also prints; and delivers the numbers, thus completed, at the rate of 5,000 copies per hour, and may be worked up to 6,000 per hour. The paper is drawn from a roll. The whole machine is 27 feet long, 7 feet high, and the cost is $\$ 20,000$ The folding apparatus may be disconnected whenever necessary, and the machine used to print without folding. Va rious attempts have been heretofore made to attach folding machines to printing presses; but this, we believe, is the first successful example of the kind.

Rather Cold.

A correspondent of the Toronto Globe wrote from Bridge Creek, British Columbia, on February 19: "The thermome ter at this place was frozen up, so we could not tell how cold it was. A bottle of good brandy and a bottle containing two pounds of mercury were put out as a test on February 14. In the morning both were frozen solid. This cold snap has lasted for more than two weeks, with no signs of mild weather. The mercury in the thermometer has been frozen every night."

German Locomotives.

The sixth annual report of the artisans of the German railway administration states that locomotive boilers made of sheets of cast steel have not fulfilled the expectations entertained for them, although it is hoped that more favorable results will be obtained when improvements have been made in the manufacture of steel plates. Copper bolts are recommended for the first row; steel ones are only to be employed when the feed water and fuel are both good.

ICPROVED LEWIS.

At the present time it is no uncommon thing to use, in the formation of breakwaters, piers, and other similar structures, blocks weighing from twenty to thirty tuns each, and it is found that, with suitable plant and machinery, masses of this weight can be moved readily and safely.
The ordinary lewises, by which large concrete and artificial blocks have hitherto been lifted and deposited, consist of a pair of round bars with a T end on each, and a ring at the top to receive the hook or shackle of the setting crane or traveler, suitable holes, with boxes and pieces of hard wood at the lower ends, being formed in the blocks for the reception of the bars. When a block has been lowered, say for subaqueous work, divers are required to turn these \mathbf{T} bars around, and to draw them out of the holes preparatory to their beinglifted up with the slack chain of the crane or traveler. For heavy blocks the weights of these bars must of necessity be great, and the process of turning and lifting them by divers consequently expensive. It is the object of the lewis which we herewith illustrate, and which has been invented by William Matthews, of England, to provide for disengaging from above water, so that, when no longer required, the lewises shall free themselves and be drawn out of the holes in the blocks by means of the setting machine, and lifted with the slack chain to the surface.
The holes, instead of being parallel as in the ordinary cases, are made dovetailed; they are formed in the blocks by means of core pieces. The apparatus consists of two lewises, each formed of two wrought iron square bars linked so as to open in a dovetail shape. At the top of one bar of each lewis there is a shackle which is passed over the hook of the beam, the other bar being attached to the underside of the beam by means of a short piece of chain and a spring hook. Fig. 1 shows the lewis in the act of lowering a block when the block has been set and adjusted, the beam is lowered from three to six inches, and the bridle rope, $A A$, drawn up from the top upon which the shackles, B B, are thrown over so as to clear the ends of the beam; the apparatus is then lifted by means of the setting machine,and, as the chains, $C \mathbf{C}$, are tightened, the lewises fold and come clear out of the holes in the block.

Fig. 2 shows the lewises when disengaged and in the act of being lifted. Fig. 3 shows the construction of the bars and links, from which it will be seen that the bars of the ends of the latter have a solid bearing against rounded recesses in the former, so as to avoid strain on the pins. If considered desirable, the disengaging levers might be omitted, in which case the shaalles, B B', would be thrown back by the divers employed in setting the work, and the lewises would then disengage and free themselves as before. It will be seen from the illustration that provision has been made for dealing with blocks of different sizes.
The apparatus has been in successful operation for some months on the new harbor of St. Heliers, Jersey, and is about to be introduced on many other important works. It is claimed for the invention that it effects a saving of an expensive description of labor, namely, divers' work.

A NEW STEAK LAUNCH.

Mr. George Baird, an engineer residing at St. Petersburgh, Russia, has recently constructed a high speed boat, which has proved a remarkable success. Her outer shell is entirely constructed of Muntz metal, an alloy of great durability, much used in Eu: rope for sheathing wooden vessels and for axle bearings, etc. At a recent trial, against one of Messrs. Thornycroft's fast boats, the Mab was victorious, accomplishing 19 miles per hour. The Mab is 48 feet long at the load line, and has 6 feet 6 inches beam and 3 feet 6 inches depth of hold, while her mean draft is 1 foot 9 inches. She is fitted with a beautifully made pair of compound engines, driving a screw 2 feet 9 inches in diameter and 3 feet 4 inches in pitch. During the trials the engines made an average speed of 593 revolutions per minute, working with steam at 100 lbs. per square inch in the boiler. The general arrangement of this very successful boat, says Engineering, will be bet-

ter explained by reference to our engravings than by any verbal description.

st. Gothard Tunnel Air Compressors.

In the case of the St. Gothard Tunnel, dry compressors are employed for furnishing the necessary supply of compressed air, these compressors being constructed on the system of M. Colladon, of Geneva. The sets of compressors em ployed at the two ends of the tunnel are alike in general con
struction, but differ somewhat in dimensions and in some thoroughly inflated in a few minutes by any one who has points of detail, as well as in the arrangement of the driving had a little previous practice. Being made in so many differmachinery. The compressors at Airolohave been constructed in three groups, each consisting of three compressors. The three compressors in each group have each a cylinde $18 \cdot 11$ inches in diameter and $17 \cdot 72$ inches stroke, and they are driven so as to have a mean piston speed of about 265 feet per minute. The pistons are coupled by connecting rods to a three-throw crankshaft, this shaft having its three cranks set at an angle of 120° with each other. The arrangement of bedplate, main bearings, crosshead guides, etc., is neat and substantial.
The leading feature in the Colladon system of air comnt air chambers, there is no danger should one or more parts getinjured, as the chamber at the back of the head lone is sufficient to float the heaviest man. The total weight f the dress is about 15 lbs
On the 10th of October, 1874, in accordance with his preious public announcements in our city papers, Captain Boyon left New York in the National steamship Queen, intend ing to go overboard when about 250 miles distant from america and return to the coast at the nearest point he could each. Howtver, when he came on deck in his curious dress nd told Captain Bragg that he was going back to America asking him at the same time to "slow" the ship so as to let him get into the ocean comfortably, he was very properly ordered to go below, and was told that if he attempted to leave the steamer he would be put in irons. Greatly disappointed, he was compelled to remove his dress and remain on board content. But on the night of the 20th of October, at half past nine o'clock, when about two and a half miles distant from Cape Clear, the southern extremity of Ireland, he left the steamer, having obtained the reluctant consent of Cap tain Bragg. His departure is thus described in the London Examiner by a passenger: "A loud cheer greeted him as he plunged into the waves, which were then heavy, as the breeze at the time amounted to half a gale. 'All right, captain,' he shouted, 'go on!' as the ship left him behind. The captain gave orders to go ahead, full speed, and in a moment the daring adventurer was lost to sight."

He had taken with him,in his waterproof and airtight sack or traveling bag, food and water sufficient for three days, besides other articles such as a compass, lantern, signal rockets, bowie knife, axe, American flag, and his indispensable paddle. His intention was to make for Baltimore, distant about seven miles, but owing to the roughness of the weather he was driven as far as Frefaska Bight, some miles east and south of Baltimore, after having been seven hours on the water and having traveled about thirty miles. His trials on that night-a night which will be long remembered on account of the numerous shipwrecks which took place during it, and the heavy

MATTHEWS' DISENGAGING LEWIS.

pressors consists in the arranzements made for the efficient cooling not only of the barrel of the cylinder, but also of the piston and piston rod. The cylinder is enveloped in a jacket through which water: made to circulate. . The piston and piston rods are made hollow and water is cansed to circulate through them.
In addition to the cooling action of the currents of water arready mentioned, the air, during compression,-is further cooled by the injection into the cylinder of a small quantity of "pulverized" water admitted through suitable injection nozzles in the cylinder covers. The compressors are driven by turbines.

New Life-Preserving Dress.

For some time past Captain Boyton has used this dres with wonderful success at Atlantic City, N. J., where he held the post of Captain of the Camden and Atlantic Life Guards, a corps of gallant men whose business it is to save e at dangerous sea-bathing places.
It is simply a dress composed of the best india rubber,

THE STEAM LAUNCH MAB.

made in five distinct airtight compartments, namely, one for each leg, one at the back, another in front, and the fifth for the head. Each of these is inflated by means of a tube long enough to reach to the wearer's mouth when the dress is on. The dress is made in two pieces, the lower part being like a loose pair of trowsers ending in a pair of waterproof socks. At the waist is a broad steel hoop or band, which has a groove cut in it into which the other part of the dress exactly fits, rendering the whole suit perfectly watertight. Strong suspenders fixed to this hoop pass over the shoulders and retain the lower portion of the dress in its proper place.
The upper part of the dress is made similar to a jacket with a head piece attached. In order to allow of the face being uncovered and yet to be quite watertight, an elastic padding of india rubber fits round the face, which presses (closely enough to keep out the water, but not unpleasantly) round the face and head, when the chamber at the back is inflated. When this part of the dress is put on, it is fitted round the waist hoop, and, being strained tightly, the whole dress is quite impervious to water or even damp, not by any means the least important of its advantages, as many, perhaps more people are drowned owing to the benumbing effects of cold as from the actual incapacity of swimming. So simple is the adjustment that the entire dress can be put on and
gale blowing-must have been most severe, and no other form of life buoy could possibly have saved his life. So tremendous was the sea and violent the storm that, notwithstanding his confidence in his dress, Boyton's heart nearly failed him when the steamer disappeared from his sight and he was left a solitary waif on the ocean.
For hours through that wild dark night, so stormy that no mail steamers crossed the Irish Channel, Boyton lay on his back tossed about, unable to use his paddle, and quite at the mercy of the sea and wind, but, thanks to his dress, dry and warm. About one o'clock the wind changed, blowing on to the land, and about three he saw land "under his lee." With such a sea his danger was greater than before and narrowly escaped death. More by luck than anything else, however, he got ashore safely and made his way to the coast guard station. Since then he has exhibited his apparatus in many places in England, proving how thoroughly adapted it is to its purpose.-Hunt's Yachting Magazine.

A THREE-WHEELED OMNIBUS.

The upper figure in our illustration shows the elevation, and the lower figure the plan, of a three-wheeled omnibus, which is claimed to secure economy in cost and draft, as well as comfort for riders, by reason of the four side en trances, and one step in from the road, and a staircase behind on to the roof seats. On some routes such vehicles might supplement the present rolling traffic of our publicstreets. Dispensing with an under carriage and one wheel must prove a material economy; the tri lic preang of the whem, the tri adic bearing of the wheels on the ground would favor the draft. The bulk of the weight, be ing on the large wheels and partly suspended beneath the axle, would also tend to diminish draft as well as enable a

wider ard lighter body to be used than in an ordinary omnibus, the total weight of which ranges from 20 to 24 cwt . for 26 passengers; for the same number of passengers, a threewheeled omnibus might be made to weigh from 14 to 16 cwt . The obvious simplicity of construction makes any technical detailed statement unnecessary, beyond saying that the hind wheel turns round freely in an upright axle box, fitted with a coil spring round the spindle.-Carriage Builders' Gazette.

Useful 1 ectpes for the Shop, the Household,

 and the Farm.An old gun loaded with a heavy charge of powder and hung near the rafters, in a barn or in any dangerous locality about the house, makes an excellent fire alarm The esplosion is caused by the heat.
The following alloy of copper will attach itself firmly to surfaces of metal, glass, or porcelain : 20 to 30 parts finely surfaces of metal, glass, or porcelain: 20 to 30 parts finely
blended copper (made by reduction of oxide of copper with hydrogen or precipitation from solution of its sulphate with ,ainc) are made into a paste with oil of vitriol. To this add 70 parts mercury and triturate well; then wash out the acid with boiling water and allow the compound to cool. In ten or twelve hours, it becomes sufficiently hard to receive a brilliant polish and to scratch the surface of tin or gold. When heated it becomes plastic, but does not contract on cooling.
'To preserve anatomical specimens, immerse in a saturated solution of 100 parts almm with 2 parts saltpeter. The article at first loses color, but regains it again in a few days, ticle at first loses color, but regains it again in a few days,
when it is removed from the liquid and kept in a saturated solution of alum and water only.
An excellent, well recommended pickle for curing hams, is made of $1 \frac{1}{2} 11 \mathrm{~s}$. of salt, $\frac{1}{2} \mathrm{ll}$. of sugar, $\frac{1}{2}$ oz. of saltpeter, and $\frac{1}{2} \mathrm{oz}$ of potash. Boil all together till the dirt from the sugar las risen to the top and is skimmed. Pour it over the meat and leave the latter in the solution for four or five weeks.

Save the soot that falls from the chimners, when the latter are cleaned. 'Twelve quarts of soot to a hogshead of ter are cleaned. 'Iwelve quarts of soot to a hogshead of
water makes a good liquid manure, to be applied to the ronts of plants.
A folded newspaper placed orer the chest inside the vest, on going out during the present raw spring weather, constitutes ari excellent protector for the lungs.
There is no rule of health more important than "keep the feet dry and warm and the head cool."
Do not allow a grindstone to stand in water when not in use. Clean off all grease from tools before sharpening, as srease or oil destroys the grit. When you get a stone that srease or oil destroys the grit. When you get a stone that
suits your purpose, send a sample to the dealer to select by; suits your purpose, send a sample to the dealer io select
a half ounce sample is enough, and can be sent by mail. a hatf ounce sample is enough, and can be sent by mail.
To clean a watch, even if it be of the lowest grade, the barrel or mainspring box should always be taken apart and cleaned, fresh oil being applied before the cover is replaced Naphitha is the best stuff to clean with.
The simplest, and perhaps lest, paint to prevent buried wood from decaying is made of boiled linseed oil, into which charcoal is stirred until the whole is of proper consistence. Apply with an ordinary paint brush.
To silver the inside of hollow glass vessels, globes, convex mirrors, cte., the following amalgam, which becomes fluid at a low heat and adheres to glass, may be used: Lead and tin, of each 2 ozs.; bismuth 2 ozs.; mercury 4 ozs. Add the mercury to the rest in a melted state, and remove from the fire; mix with an iron rod.
'The elevation of temperature produced ly the friction of a journal is sometimes used as an experimental test of the yuality of unguents. When the velocity of rubling is about with good fatty and soapy unguents is 40° to 50° Fah., with with good fatty and soapy
good mineral unguents 30°.
A tablespoonful of niter (per gallon of milk) dissolved in as much water as it will take and putin the pail before milking will lessen the taste of turnips or other vegetables in the milk.
Carbolic acid, combined with glycerin or linseed oil in the
proportion of 1 to 20 , is a good application to wounds of proportio

The germination of seeds can be watched at every stage of its progress by laying the seeds between moist towels and placing the latter between plates. The towels can be lifted without damage to the tender sprouts.
To remove clinkers from stoves and ranges, mix a few oyster shells with the coal or put them upon the coals while the
fire is burning freely. An occasional application of this kind fire is burning freely. An occasional application of this kind will kecp the grate free and the cook good-natured.
'I'wo thicknesses of paper are better than a pair of blankets, and much lighter for those who dislike heavy bedclothes. A spread made of double laycrs of paper tacked to gether, between a covering of chintz or calico, is really a de-
sirable household article. Soft paper is the best, but newssirable household article. Soft paper is the best, but newspapers will answer.
Owing to irregularities of surface, it often happens that considerable difficulty is encountered in putting a good pol-
ish on articles of brass or copper. If, however, ish on articles of brass or copper. If, however, they be immersed in a bath composed of aquafortis 1 part, spirits of
salt 6 parts, and water 2 parts, for a few minutes if small, salt 6 parts, and water 2 parts, for a few minutes if small,
or 20 or 30 if large, they will become covered with a kind of black mud, which, on removal by rinsing, displays a beautiful lustrous undersurface. Should the luster be deemed insufficient, the immersion may be repeated, care always being taken to rinse thoroughly. All articles cleaned in this manner should be dried in hot dry sawdust.

The Transit of Venus.

At the Stevens Institute, Hoboken, N. J., Profes:or C. A. ing lecture on the transit of Yenus, as witnessed hy him at Peking, China.
"In obtaining photographs, instead of a telescope opening upon the sun, we had," said the lecturer, "the object glass of the telescope fixed with a focal distance of forty feet. By means of mechanism we were enabled to throw the sun's rays
through the lens. The manipulation of the instrument was through the lens. The manipulation of the instrument was
very simple; it only required that a person standing near the post of the instrument should throw the light up the post
spring to one side, he caused a slit to open, making an expo sure of about one quarter of a second.
We obtained one hundred pictures, of which a dozen or fifteen are good for nothing, a few are tolerable, and the rest are very good, so that we are very well satisfied. I imagine that the results will not be worked up as fully as they ought to be until eight years from now, when the next transit of Venus takes place. That is a very important transit, as it is to be visible all along the Atlantic coast."

High Speed Torpedo Launches.

A trial was lately made of a new steam launch, built by Messrs. Yarrow \& Hedley, Isle of Dogs, Eng., for the Argentine Republic. The little vessel is 5in feet long, and 7 feet beam; the plating is throughout of Lowmoor iron, the frame being of steel. She is propelled by a beautifully finished pair of engines indicating 60 horse power, with which a very high rate of speed is obtained. The torpedo resembles in form an ordinary clongated projectile, and will hold about 100 lbs. of gun cotton, estimated to give an effect equal to three times that weight of gunpowder. It is carried at the end of a pole about 25 feet long, and the launch is provided with steel shields to protect the crew from rifle shot. The little craft is a most successful specimen of boat building.
The most remarkable feature is the system of igniting the torpedo, designed by Captain McEvoy, of Messrs. Vavasseur torpedo, designed by Captain McEvoy, of Messrs. Vavasseur
and Company, London Ordnance Works. Hitherto these torpedoes have usually been ignited by a concussion fuze on striking the ship's side. It is evident that, used in this way, the crew have little chance of escape, as the loat must be driven at speed against the ship, and her own momentum will carry her on, breaking the hole, and involving her in the results of the explosion; while if she does not go right, head on, the concussion fuse may not explode at all. Captain McEvoy gets over this objection by carrying three wires down the pole and into the torpedo, within which is placed a very simple detonating fuze. A brass cap is fitted to the torpedo, and a suitable battery is placed in the launch. A very slight blow will drive home the brass cap and "make contact," when the charge explodes. Besides this, the third wire is so arranged that contact can be made in the boat and the charge exploded at any time. Thus a launch might steal alongside a ship, and, by just touching her, explode the torpedo at the instant that her engines are turned full speed astern to back the launch off; and if she does not come square on and so make contact, the torpedo can be exploded by the auxiliary gear without trouble. We may add that Messrs. Yarrow and Medley propose to build torpedo launches 100 fret long with a speed of twenty-five miles an hour. No ironclad afloat could run away from such craft, and two
three of them would constitute a most dangerous force.

The Electric Telegraph.

Mr. Latimer Clark, in a recent address before the Society of Telegraph Engineers, states that, on the 1st of February, 1758, a Scotchman, Charles Marshall, of Paisley, published in the "Scots Magazine" a full and clear description of a practicable electric telegraph, and suggested the coating of his wires with an insulating material. Mr. Clark thinks that
Marshall may therefore be considered, in a sense, the inventor Marshall may ther
of the telegraph.
"In 1816 our late lamented member Sir Francis Ronalds produced his electric telegraph, and at great expense and trouble erected a considerable length in his garden at Hammersmith. He employed frictional electricity and only one wire, and exhibited his signals by the divergence of pith balls, combined with rotating dials working synchronously, ing telegraph of Professor Hughes. Sir Francis Ronalds will always take a high position in the history of the telegraph, not so much on account of the excellence or originality of his invention, as on account of the confidence and ardor with
which he pursued his experiments and endeavored to bring them to the notice of his countrymen. With wonderful pre vision he fully perceived its value and foretold its destiny. His "Description of an Electrical Telegraph," which was published in 1823, the first book ever published on the subject of electric telegraphy, might almost serve for a description of a telegraphic system at the present day. He pro posed the establishment of telegraph offices throughout the
kinglom, and pointed out the benefits which the government would derive from their existence. He described methods of insulating the wires, either on poles or underground, with all the details of tubes, joints, and testing boxes, testing stations, line men, and inspectors, as at the present day. But clearness with which he fingular point, the phenome non of retardation of the electric current by induction in un derground wires, a phenomenon which has so grea
The influence of this is so the present day
cables we do not transmit messages at a on our Atlantic cables we do not transmit messages at a greater rate than
fifteen or twenty words per minute, whereas, if the effects of fifteen or twenty words per minute, whereas, if the effects of induction could be removed, we mighttransmit three or four hundred words per minute.
There can be no doubt that if Ronalds had worked in the days of railways and joint stock enterprise, his energy and skill would have triumphed over every difficulty, and graph. But he was thirty years before his age, and the world was not ready for him
Having completed his arrangements, he modestly invited Lord Melville on July 11, 1816, to witness his experiments, in order that he might demonstrate the nature and merits of is invention.
The reply
The reply he eventually received was eminently charac-
teristic of the neglect and even contempt with which Science and scientific men were, and to some extent still are,regarded by statesmen.
' Mr. Barrow presents his compliments to Mr. Ronalds, and acquaints him, with reference to his note of the 3 d instant, that telegraphs of any kind are now wholly unnecessary, and that no otherth the one now in use will be adopted.Colonial Office, August i5, 1816.'

Phosphor Bronze.

The latest and most succinct information on this new and valuable compound we find in a letter of Mr. Stanislas Delalot, chemist, of Sheffield, England, to the Moniteur Industriel Belge. M. Delalot embodies a great many useful facts in very terse phrases, which we translate literally.
True phosphor bronze is not an alloy. It is a combination, without intermediaries, of copper with phosphorus. It is simply a phosphide of copper in definite proportions. The metal unites with the metalloid by either a cold or hot process. For certain applications of phosphor bronze the cold suffices. M. Delalot prefers it to combinations produced by heat. Phosphor bronze by the hot process excludes all introduction of simple bodies other than the metal and the metalloid. Copper exempt from arsenic, antimony, iron of zinc, is required; it must be commercially pure. The manufacturer can take his choice from three kinds of phosohorus, ordinary, amorphous, and all the earthy bisulphates. Amorphous phosphorus is the most expensive, but the best. The secret of good phosphor bronze lies in the furnace and in oractice. The following are the best combinations in defi nite proportions. The minimum and maximum percentages of phosphorus in phosphor bronze are 2 and 4 . Between hese there is an infinity of degrees. Five sorts of phos application:
0. Ordinary phosphor bronze. 2 per cent of phosphorus.
0. Ordinary phosphor bronze. $\quad \underset{\text { a per cent of phosphorus. }}{\text { a }}$.

1. Good
These two numbers are superior to ordinary bronze and

These two numbers are superior to ordinary bronze and
teel in all cases.
teel in all case
$\begin{array}{llll}\text { 2. Superior phosphor bronze, } & 3 \text { per cent of phosphorus. } \\ \text { 3. Extra " } & \text { " } & 34 & \text { " }\end{array}$

4. Maximum

These three, according to M. Delalot, are superior to any other metal or alloy. Above No. 4, phosphor bronze is useless; below 0 , it is inferior to common bronze and steel. The price of phosphor bronze unworked, for all numbers, should not exceed that of copper plus ten per cent. Nos. 3 and 4 are to a certain degree unoxidizable.

An Ingenious Device.

1 capillary correspondence was recently attempted between a notorious Parisian thief in durance vile and his comrades outside. The prisoner was sent a letter from his fiancée, containing merely a lock of hair wrapped in the leaf of a book. The jailor did not consider the souvenir important ure, and yet another. This aroused suspicion, and the gov. ernor took the matter in hand. He examined the leaf of the book; it was that of a common novel, twenty-six lines on a page. Then he studied the hair, and noticed the small quantity of the gift. Counting the hairs he found them of unequal length, and twenty-six in number, the same as the lines of the page. Struck with the coincidence, he laid the hairs along the line of the page which they respectively reached, beginning at the top with the smallest hair. After some trouble he found that the end of each hair pointed to a different letter, and that these letters combined formed a slang sentence, which informed the prisoner that his friends were on the watch, and the next time he left the prison, to be examin ed, an attempt would be made to rescue him. The governor laid his plans accordingly ; the attempt was made, but the res. cuers fell into their own trap.

Fumigating Greenhouses.

Some years ago, while in charge of the Botanical Gardens here, I experienced considerable difficulty with the oldfashioned iron pot in producing smoke of sufficient volume to destroy the common aphis or green fly. The houses being roomy and very high, the smoking of them was a slow and tedious process,and something more effectual was needed; so I ordered another pot to be made, similar to a cylinder stove, of sheet iron, about two and a half feet high and ten inches I diameter, with a small sliding door at the base for a draft. To use it, put a handful of shavings at the bottom, then fill it nearly full of tobacco (we use stems), rather loose at first, and set fire to the shavings through the door. Should the tobacco burn too rapidly, the door may be partially closed, and the tobacco pressed down with a stick of wood. A few minutes will suffice to fill up the largest greenhouse with a dense smoke, when the furnace may be taken out to smoke other houses if needed. That little apparatus is now generally used by gardeners around Boston; all agree in calling it superior to any other in use, being so very prompt, simple, and effectual.—Denys Zirngiebel, Cambridge, Mass.

Food by Rallway.

The degree to which large cities are dependent upon rail roads for the supply of food is exhibited by some startling statistics; and Mr. Smiles observes that London may be said to be fed by the railways from day to day, having never more than a few days' food in stock. He adds that in these days of strikes the stoppage of supplies is quite within the limits of possibility; and that, were it possible to land an enemy of overpowering force on the Essex coast, it would be sufficient for them to occupy or cut the railways leading from the north to starve London into submission in less than a fortnight
sCIENTIFIC AND PRACTICAL INFORMATION.

facts aboct fire arma.

An expert will load and fire a muzzle-loading arm once every six seconds, and a good breech-loader once every four seconds. Henry C. Bull, of New Orleans, who is one of the best marksmen in the world, has invented a new breechloader, which is charged and fired with three motions, and which he claims can be discharged once every two seconds. During the late rebellion, a large proportion of the wounds, on both sides, were in the right arms of the combatants. This was due to the fact that, in the act of loading the gun, the right arm is lifted to work the ramrod. Those carrying breech-loaders were saved from such wounds, as the loading was done without lifting the right arm. In action, the value of a breech-loader or any kind of gun depends upon the rapidity with which the second shot can be fired after the first volley is delivered.

duliterated silk

Ladies who admire the rich, heavy, stiff black silks which are sold at some shops, at apparently low prices, may be interested to know that a large portion of this richness is composed of salts of iron and astringents, with salts of tin and cyanides. The silk is merely a thin skeleton which supports the adulteration until the grods are sold.
fallure of copper sclipfate.
Railway sleepers injected with sulphate of copper will be preserved indefinitely, provided the copper remains in its original combination with the ligneous tissue. But M. Max Paulet shows that,on rail ways where carbonate of lime exists
in the stone ballasting of the track or in the soil, the carbonate in the stone ballasting of the track or in the soil, the carbonate
gradually penetrates the wood and substitutes the copper. Decay then follows, for carbonate of lime is not a septic agent.

cotton mampling by hand.

During the late civil war, when the supply of American cotton was cut off, a great stimulus was given to the cultivation of the fiber in India, and the price of Indian cotton, although rated of porr quality, rose to a high figure. But as soon as the war terminated, the American staple at once assumed its wonted preference, and the Indian article shrank to zero. The British authorities have always desired to encourage the Indian product, and it has been claimed that, if proper gins could be produced, the staple might be cleaned and separated from the seeds without the injury heretofore experienced. Dr. Forbes Watson, of Manchester, has for some time past been engaged in this work, and a trial of a number of different gins upon various samples of Indian cotton has recently been made. The cleaned specimens were then sampled by the fingers of experienced brokers, with the queer result that different samplers placed different values upon similar specimens, while, in some cases, a broker in sampling different packages of the same cotton would assign different values to each package. So unreliable were the general resultsthus obtained that it became necessary to cause the various specimens, in lots of 20 lbs . each, to be made up into yarn. The yarn is to be suljected to definite trials of quality and strength. This will effectively settle the question of commercial value, which the brokers are unable to do.

the eclipses of 1875.

There are but two eclipses to appear during the present year, both of the sun. That of the 15 th of April, however, will be quite remarkable, in point of length, as it is predicted that the duration of totality will be greater than during any of the succeeding ectipses due in $1878,1886,1892,1893$, etc. Mr. Hind, by new calculations, finds that on Bentinck Island the period of total obscurity will last over 257 seconds. The central line will pass to the north of Kaikal on Camorta Island. in the Nicobar Archipelago, at which point the duration of totality will be ten seconds longer.

The phenomenon will be visible at Bangkok, and hither the King of Siam has already invited observers. M. Janssen will, it is stated, proceed to that city, and the Royal Society has already organized an expedition, to be superintended by Mr. Lockyer.
the debts of the world.
The Pall Mall Gazette carefully summarizes the debts of the nations of the world, and calculates the aggregate sum to he $\$ 23,750,000,090$. France owes the most, then Great
Britain, and then the United States. Canada is the least in Britain, and then the United States. Canada is the least in
debt of any civilized country. Egypt pays the highest rate of interest, or ten per cent, and Holland the least, two and three quarters per cent. England can borrow at the least rate, three and one quarter per cent, and Mexico is clarged the most, or eighteen per cent.

Geographical Progress in 1874.

Chief Justice Daly, President of the American Geographical Society, recently delivered his annual address before that association, and in so doing gave a most interesting account
of the world's progress in geographical knowledge during the year lately closed. He began by remarking upon the physical occurrences, in the shape of great rainfalls, floods, earthquakes, extreme cold, etc., all of which he stated were remarkable for their violence and destructive effect; and after a brief reference to the transit of Venus, and Howarth's theory that the earth is gradually shrinking at the equator, he reviewed the general theories of oceanic circulation. Dr. Carpenter still advocates the view that there is a constant
flow of cold water from the polar regions to the equator, flow of cold water from the polar regions to the equator,
which, reducing the ocean level at the poles, causes an indraft of the warm surface water of the Atlantic to flow toward the of the warm surface water of the Atlantic to flow toward the
poles from the equator, thus producing a horizontal circula-
tion which completes itself, and accounts for the Gulf Stream and other phenomena connected with the currents and the course of the trate winds. Mr. Croll, on the other hand maintains that all the movements of the water of the ocean the deep as well as the surface waters, are produced by the action of the winds upon the surface, in connection with the
motion of the earth.
Commander G. E. Belknap, charged with ascertaining a practicable route for a telegraph cable between Japan and Puget Sound, carried on a series of deep sea soundings in that part of the Pacific Ocean, which are of the highest in terest, as they confirm the great depth of the Pacific and the powerful action of submarine currents. 'The soundings of the Tuscarora have been continued by Commander Erben, to ascertain the suitability of the ocean bottom for a telegraph cable from San Francisco to Honolulu, in the Hawaiian Islands, and the result is that it is suitable over the whole distance, from its almost unvarying soft oozy bottom.
In Europe the governmental surveys heretofore commenced have been continued. That the remains of the an cient city ueearthed by Dr. Schliemann are those of Troy is still contested. Those who dispute it, however, are scholars

who have never examined the locality.

The recent excavations in Pompeii show that what has been revealed after the course of so many years is, after all, only a small part of the city, and every extension adds new objects, and some are of the deepest interest.
The excavations that are now going on in Rome are bring ing to light numerous quantities of objects, especially on the Esquiline, relating to nearly everything connected with both the public and private life of thie Romans.
An ancient Egyptian medical treatise has been discovered by Professor Ebers, of Leipsic, which was written 1,600 years before Christ. It is a handbook of Fgyptian medical science at that time. and the description of the drugs men tioned in it shows that, at that period, Egypt had exten sive commercial refations witin Western Asia, and that the
existed then an interchange of thought and knowledge.
Lieutenant Cameron has made a most important geogra phical discovery, whict fixes the furthest source of the Nile within known limits, and which there is every reason to think will connect the net work of lakes and rivers, of the
water system that livingstone was investigating, with the water system that livingstone was investigating, with the great rivers that flow to the western coast of Africa and pro bably with the Congo. Lieutenant Cameron surveyed Lake Tanganyika, and ascertained the elevation of the lake to be 2,710 feet.
The expedition of Rolfe for the exploration of the Lybian desert has returned. It was found to be the most sterile part of the Sahara. It is the dried-up basin of a shallow sca, below the level of the Mediterranean.
Colonel P.F. Warburton has made a remarkable journey across Australia, from Adelaide to the west coast, which was achieved under the most extraordinary difficulties. After the first 200 miles, the whoic region traversed was a dreary and scarcely habitable waste, the country, with but few excep tional places, consisting of ridges of sand, with intervening flat; which are without water and uninhalitable. The naives found are on the very lowest scale of humanity. They had no huts nor places of shelter, except the shady side of bush.

The English and American Transit Campaigns

"It seems to me," says Professor Richard A. Proctor, "that which the two reat Enalish-speaking nations dealt with the late transit of Venus. We English, unless stirred by emulation, are slow to move; and though we do things in a horough way, we seldom select the most effective methods for achieving our ends. Our American cousin is lessponder-
ous in his movements, and, though to the orthodox British mind his methods may sometimes seem " rough and ready,' yet he generally manages to accomplish his object, which after all is the important point. Not unfrequently the in-
genuity and fertility of resource of Americans enables them to go easily ahead of us--not indeed that Englishmen are wanting in these qualities, but that either we are slow to exercise them or else find their exercise not appreciated. was repeatedly struck by this during my stay in America,not only or even chiefly in scientific matters, but in contrivance relating to the conveniences and luxuries of life. 'To take a
few out of many examples : With an few out of many examples: With an enormous country, re-
latively thinly peopled, their system of railway traveling is altogether superior to ours: railways on our system would not pay their expenses in America; and yet notwithstanding a far higher cost per mile, our railway traveling would be
simply unendurable there. With winter weather so bitter in the greater part of the States, that by comparison the cold we thought so much of last December seems trifling, they have warm rooms and warm houses at a tenth part of the expenditure of fuel by which we manage to roast half the
body while the other is chilled by cold drafts. They have only recently (by comparison) established meteorological observatories, yet already they have morning and afternoon weather announcements, nine times out of ten correct, for the whole area of the States west of the Mississippi; while we announcemsty, and at great expense, publishing each day could be of any real use. In scientific matters they have a quiet way of taking up and settling matters which we in Europe have most ingeniously and elaborately failed to solve I incline to think that this circumstance appeals rather
strongly to their sense of humor ; for we publish our failures rather too ostentatiously. We got the start of them, indeed i^{n} the matter of the solar prominences, though only by de-
parting from old usage and giving our younger men a chance But they showed us how to settle the question of the corona, which we had been pottering over ineffectually; and it must never be forgotten that our celipse successes in 1870 and 1871 were due to their example. Professor Young in America has one far ahead of us in the analysis of solar surroundings. Professor Langley's investigation of the details of the sun's surface is far better than any yet made by European astronomers. They first photographed the moon, though some of our writers conveniently forget the Drapers, as well as later successes of Rutherfurd. Every European attempt to meas ure the duration of the lightning flash, or of the electric spark, failed; but Professor Rood (of Columbia College, New rork) has not only measured the duration of the electric spark, but has actually succeeded in determining the rela ive duration of different portions of the flash. And this is only one instance, out of several, in which Professor Rood has accomplished a feat of this sort-I mean the mastery of an experimental problem of exceeding delicacy. Prof essor Mayer (of the Stevens Institute, Hoboken) has successfully dealt with acoustical problems, which had been practically abandoned as too difficult by European experimenters. But these are only typical instances, selected almost at random. In passing from them let me remark that I am far frou thinking that our American cousins really surpass us in scientific acumen or ingenuity, though I think they are much more fortunate in their methods and in their opportunities for exercising these qualities
Their action in the matter of the recent transit affords an excellent illustration of their method of dealing with scientific subjects-a method characterized by the combination of scientific exactness with readiness of resource and practical ommon sense
Having selected eight stations, three in the northern and five in the southern hemisphere, where the whole tran would be visible, the Americans started with a chance of success far greater than we possessed. For we had but one tation in the northern hemisphere (in North India) where he whole transit could be observed
In the more important question of the method for applying photography, the American and English astronomers took different courses. I set on one side, as peculiar to our plans the use of the Janssen turning arrangement for securing in ternal contacts, and speak only of the methods for photo graphing the progress of the transit. The English and European astronomers set themselves the task of securing neat and well defined sun pictures, trusting to these pictures o indicate the true position of Venus on the sun. The Americans (and the astronomers of Lord Lindsay's party, be it noticed) set themselves the task of securing pictures which would indicate the true distance between the centers of the sun and Venus, independently of any special exactness in the definition of the limbs of the two orbs. It seems to me,view ing the matter in its mathematical aspect, that the American astronomers prove to demonstration (using the estimates of photographic work given by De la Rue and other advocates of the European arrangement) that the result of the best possible photographic successes by the European method annot give the parallax with even as small a probable erro as that affecting the determinations already obtained.
Whether we consider their general plan, or their arrange ments as to details, Americans showed themselves well ad vised and skillful. Instead of trusting (in the main) to a single method, they had at every one of their stations four methods available. Having ascertained the untrustworthy nature of contact observations, they took measures for de termining the chord of transit by photography; and having decided on this course, they adopted a mode of photographing he sun which insured measurable pictures."-English Mechanic.

The works of the St. Gothard Tunnel continued to progress satisfactorily during the past year. The length of this immense work will be 14,920 meters, or nearly nine and a-half miles.
The altitude of the northern entrance at Goeschenen will be The altitude of the northern entrance at Goeschenen will be
3,608 feet above the level of the sea, and that of the south3,608 feet above the level of the sea, and that of the south
ern entrance 3,756 feet. The highest point in the interio of the tunnel will be 3,780 feet above the sea level, and it will be reached from the Goeschenen end by a rising gradient of 7 per 1,000 . From the summit there will be a falling gradient of 1 per 1,000 to Airolo. The rock to le traversed is for the most part mica gneiss and mica schist. 'The most recent reports received in England respecting the progress of this im portant undertaking state that at the date of the report-Oc ober 21,1874-the work done,and that remaining to be done was as follows: Total length of tunnel, 48,651 feet; total length driven up to October 31, 8,661 feet; of tunnel re maining to be driven, 39,090 feet.

Boracic Acid.

At a recent meeting of the Chemical Society, Mr. Howard said boracic acid destroyed vegetable growth-grass, for in sance-with a vigor and permanence which, if it were a fer ilizer, would render it invaluable.
Mr. A. Smee, Jr., had found that, if 1 part of a 10 per cent solution of boracic acid were added to 8 of milk, it would kee it sweet for a week.
Dr. J. Edmunds,in a complicated case of amputation of the thigh, had employed dressing of lint, steeped in a hot satura ted solution of boracic acid, with most satisfacory results in preventing putrefactive discharge. The bandage could remain for tl. ty-six or forty-eight hours without the slightest putrefactive our.
Pipe clay rubbed on the hands will remove the unpleasant odor of chloride of lime.

IMPROVED CENTER DRAFT TONGUE FOR REAPERS AND

 MOWERS.The invention represented in the annexed engraving is a device for equalizing the side draft of side-draft reaping or mowing machines. It consists in a tongue, constructedin sections and so arranged that the point of draft is transferred from the whiffletree to the pivot of the sections, enabling the horses to be kept clear of the standing grain, and, at the same time, preserving the proper position of the apparatus. The construction is also such as to allow of turning the machine with much greater facility. Fig. 1 shows the tongue with its draft section in position, to equalize the draft. Fig. 2 shows the same in position for turning the machine. A is the fixed tongue, to prevent which from exercising a side draft on the carrying wheels, the section, B, is pivoted thereto at C. The inner end of the draft pole, B, is confined in an open cross strap, D, and the former carries the whiffletree, which has a swiveling movement thereon. A spring, E, is secured to the side of the draft pole, B, and extends into and bears against the guide strap, D , thus serving to hold the end of the draft pole outward, and out of line with the fixed tongue.

It will be seen that, as the horses pull in an oblique direction away from the standing grain, and by reason of the pivot heretofore described, the side draft is necessarily equalized because the direct draft is not at the whiffletree but at the pivot, C. This counteracts the side-dragging effect of the cutting apparatus, the off horse is relieved from the strain on his shoulder, and the machine moves his shoulder, and the m
forward in a straight line.
The action of the spring, E, is to keep the rear end of the pivoted pole about four or five inches out of a right line with the tongue and toward the machine. The strap, D, also acts as a purchase and lock to the inner end of the draft pole, in turning corners, thus avoiding the necessity of stopping the apparatus in so doing.
Patented October 15, 1872, and now owned by Mr. Jacob Kready, of New Pittsburgh, Wayne county, Ohio, who may be addressed for further particulars regarding sale of sho rights, etc.

IMPROVED MINING DIAL.

We publish an illustration of an instrument which is claimed to possess many advantages over the ordinary dial. In this latter the vernier cannot be used in conjunction with the needle, without first clamping the body of the dial, which involves a loss of time, while the repeated operations of clamping and unclamping induce wear, and throw the instrument out of adjustment.

The improvement in this dial consists in the addition of a plate under the body of the instrument, which projects beyond the body, and the circumference of which is divided

into 360°. This plate is clamped to the ball and socket joint, and remains rigid. 'The swing sights move on axes fixed to the body, on the outside ring of which is attached a vernier, which reads upon the plate, A, to three minutes. By this arrangement, on taking a sight the angle can either be read from the vernier or the needle. The figuring of the needle ring is reversed, that is, the east and west points change places, so that the angles are read off correctly, and the figures on the vernier ring are so arranged that the reading of the needle and the vernier ring coincide. An effective mutual check is thus established, and any error arising from incorrect reading, or from any local attraction, is readily detected. Accurate surveying with this instrument can thus be relied upon, so far as the magnetic bearings are concerned. The arc shown at C works as in the ordinary dial, being fixed at the side of the instrument, so that it can be easily read at any time, and is not in the way. One great advantage possessed by this arrangement is that, if the instrument be out of adjustment, the error is at once detected by comparing the needle and the vernier readings. Messrs. Davis \& Son, of Derby, England, are the inventors of the improvement.

Influence of Temperature on Magnetization. M. Gaugain states that, in investigating the above subject, he first magnetized several small bars of steel varying from $0 \cdot 12 t, 0 \cdot 24 \mathrm{inch}$ in diameter by placing one of the extremities of each for a few moments in contact with one of the poles of a permanent magnet. He then noted their magnetic condition by determining some points of their curves of demag. netization.
Placing the bars a second time in contact with the mag net, he heated them with an alcohol lamp, and when the had cooled detached them, and once more determined their
ing the bottom of the car strikes the ends of the levers, and thus, as indicated in the engraving, opens the liatch below Patented July 22, 1873. For further particulars address William Reid, 126 Eleventh street, Brooklyn. N. Y.

New Process of Manufacture of Fatty Acids.
M. Bock has demonstrated that the greater part of the neutral fatty bodies are composed of small fat globules con tained in albuminous envelopes of from 1 to 50 per cent of the weight of the bodies. The excesses of alkali, of pressure, or of heat necessary to decompose these bodies are in reality applied in order to destroy o eliminate the albuminous envelopes.
The coloring matter of the fatty bodies, or that which forms during their decomposition, is attributed to the envelopes, and for this reason M. Bock proposes to break or partially destroy the latter by the action of a small quantity of sulphuric acid at a determinate temperature and during a limited time. The fatty matter is then boiled with water, for several hours, in open vessels. The water charged with glycerin is then decanted, and the glycerin separated and pumped.
It remains then to remove the albuminous envelopes and the coloring matter, which is done by submitting the material in the vessels to the action of weak solutions of oxidizing agents. When the reaction has continued for a sufficient period, the substance is left quiet, and subsequently decanted, washed, and pressed.
One of the advantages of this process, according to the inventor, is that all the operations are performed in open vessels, the contents of which condition. In the second case the magnetization was found are raised to ebullition by steam, not exceeding in pressure to be greatly the stronger, and in certain experiments the 37 lbs . per square inch. heat doubled the value of the currents of demagnetization. This increase, however, it was found, was produced only when the bars were permitted to cool while attached to the permanent magnet. If separated before that time, instead of decreased.

REID'S AUTOMATIC HATCHWAY

We illustrate herewith a new and simple arrangement for hatchways, which is so constructed that the ascending or descending carriage automatically opens the hatch covers and
subsequently gently closes the tome. The device is one which might be readily applied to any building, as it requires the addition of but a few inexpensive pieces and a slight al teration of the top of the ordinary carriage

The hatch covers are separated diagonally and are lifted as the car ascends by the curved upper portion, A, of the latter. As the car continues its upward course, the covers are kept raised by means of the bell crank levers, B, connected thereto by rods, C , which levers press against the sides of the car and ease the fall of the doors. In descend-

Models by Mail.

By provisions of the new postal law, now in vogue, models and merchandize of various descriptions, in packages not exceeding four pounds in weight, can be sent by mail at the rate of 8 cents per pound, or half a cent an ounce. This is a wonderful convenience for the public, especially for resi dents in distant places inaccessible by rail. But in sending models by mail, our correspondents should remember that the box or package must have openings in it, so that the contents may be observed by the postmaster; otherwise, or f the package is sealed, letter postage, or six cents an ounce, is chargeable on delivery. A little care will, therefore, save the sender considerable money.

IMPROVED PIPE JOINT.

Mr. W. P. Valentine, of New York city, whose invention we herewith illustrate, informs us that, by the use of this device, water, steam, and other pipes may be joined at any

angle by simple mechanical means, without the use of fire and soldsr. He employs sorkets made of two half shells, B, fitted by means of a projecting shoulder to the recessed ends of the adjoining pipes, A. The sockets are cut with an outer screw thread, and firmly connected, when placed on the pipes, by a sleeve, C, with right and left hand thread, which is arranged to be screwed over it without altering the position of the pipes. A leather or rubber washer, d, in the sleeve, C, secures the tightness of the communication.
Patented through the Scientific American Patent Agency, January 20, 1875. For further particulars address the inventor, at 4 Amity street, New York city.

Comfortable Fishing.

A Western paper thus speaks of an improved method of fishing at the lakes in its district: It consists of a small house, built on runners like those of a sled, in which is placed a small stove, while in the floor a small aperture is left through which to drop the lines. Holes are cut in the ice, the houses are moved over them, and the fishermen sit by a warm stove while drawing in the fish.

THE CRAIE.

The crane, of which our engraving represents a fine sam ple, is a large wading bird of the order grallatores, and dif ferent genera of the species are found in Europe and America. The American crane (grus Americanus) furnishes a good typical example of the whole class. Its long bill is dusky, turning yellow towards its base; the top and sides of the head are of a brilliant red; the feet are black, and the plumage is white, except the primary and adjacent feathers, which are brownish black. The length of the full grown bird, from the bill to the tip of the tail, is often thirty-four inches, and to the end of the claws sisty-five inches; the wings extend to ninety-two inches. The young birds are of a bluish gray color, with the feathers tipped with yellowish brown.

Cranes are common in our Southern and Western States, from October till April when they retire to the north. Their hear ing and vision are very acute, hence they are difficult to approach. They roost eith er on the ground or on high trees. Thei nests are usually built of coarse materials, and are placed in high grass; the eggs are two in number, and are hatched by the alternate attentions of both birds. They are easily tamed when captured, and may be kept on vegetable food.

A New Enameling Process.

Mr. J. H. Robinson, of Liverpool, En gland, has recently invented a process which, he claims, is not only cheaper, but in which the resulting product is free from those specks of dirt which seem insepara ble from the present methods of manufacture. The new process yields enamels of sufficient purity for dials and similar work and is not so expensive as to virtually pro hibit its use for ordinary purposes, such as name plates, notice boards, and wall ad vertisements. Thin sheet iron is first cut and stamped to the desired shape, the edges of the plate being turned up slightly in the usual way, so as to form a shallow tray, the edge serving to hold tine enamel in position during the preliminary stages of the process. The plate is then to be made chemically clean by any of the ordi made chemically clean by any of the ordi-
nary processes of pickling and scouring. nary processes of pickling and scouring.
The ingredients of the enamel should be The ingredients of the enamel should be
taken in the following proportions, but, in some cases or for certain purposes, they might be slightly varied: White lead 12 ozs., arsenic $2 \frac{1}{2}$ ozs., flint glass 8 ozs., salt peter 3 ozs., borax $0 \frac{9}{4}$ ozs., and ground flin 2 ozs . These are to be powdered and mixed thoroughly, placed in the crucible and fused; but before they are cooled they must be plunged into cold water, which must be plunged into cold water, which
has the effect of rendering the mass very brittle. The cakes of fused enamel are then pounded to about the fineness of coarse sand, washed, and dried. The powder is then ready for use. The plates of sheet iron, having been well cleansed and tho roughly dried, are sprinkled over with sufficient enamel powder to make the coating of the desired thickness, and are then placed in a muffle, the turned-up edges retaining the swelling enamel in position. Lettering or designs can be produced on the surface by the ordinary means; but if it is desired to put them on when the enameled plate is cold, they are first received on paper, an impression being taken in soft black enamel from the engraved plate, and subsequently transferred, the article being again placed in the muffle to fuse the enamel of the design or letters. The inventor claims that the iron back is more durable than copper, and it certainly is cheaper. Variations in the color of the enamel can of course be obtained by the addition of various salts and earths, such as those of cobalt. peroxide of manganese, protoxide of iron; etc., and similar diversity of color can be introduced into the design or the letters.

Cotton Gunpowder

This explosive is of the gun cotton class, although it dif, fers greatly from gun cotton proper, both in appearance and character, inasmuch as it is a fine powder of pale yellow color, and, it is stated, can be exploded with a cap direct after having been saturated with 20 per cent of water. This powder is now manufactured on a commercial scale at Oare, near Faversham, Eng.,where a large number of military and naval officers, and scientific and mining gentlemen lately assembled to inspect the process of manufacture, and to witness some experiments to test its power and safety.

The initial process, as shown to the visitors, consisted in mising together nitric and sulphuric acid, in which the cotton is steeped, 1 lb . at a time, after having been hand picked and further cleaned by being passed through a scutching machine, and afterwards washed and dried. After remaining in the acid for about four minutes, the cotton is withdrawn, and the surplus acid squeezed from it under hydranlic pressure. It is said to bring with it 20 lbs. of acid from the tank, 12 lbs . of which are pressed out, the remaining 8 lbs. being abstracted from it in a centrifogal machine, in which 6 lbs. form a charge. From the centrifugal machine the 6 lbs. form a charge. From the centrifugal machine the
cotton is sent alternately to two steeping tanks and centrifugal machines, and after the second washing and deying it
is passed through a pair of coarsely set rolls, and subsequently through a pair set more finely. The fibers have now become finely divided into particles of gun cotton, and in this condition are subjected to a lengthened washing in a tank of cerated water, the air being forced through the mass of liquid pulp by a fan blast. From the aerating washer the gun cotton-for such it now is-is run into settling tanks
and afterwards partially dried, when it is taken to an inand afterwards partially dried, when it is taken to an incorporating mill, consisting of a pan and pair of edge runners, in which it is triturated in company with one or two other chemical substances, which complete the combination termed cotton gunpowder. It now only has to be dried, and this is effected in wire-gauze-bottomed trays placed over a channel through which a current of warm air is driven From the drying house the powder is taken to the cartridge-

THE AMREICAN CRANE

filling sheds, and is made into cartridges, which are packed in cases and conveyed to the magazine. The magazine is situated some distance from the works,and is zinc-roofed and surrounded by a broad moat ; zinc was preferred for the roo under the belief that, if an explosion were to occur, the zinc would volatilizeinstead of being blown about in fragments. The first series of experiments were intended to illustrate the safety in transport and storage of the cotton gunpowder, and included the lighting of cartridges by ordinary means, when they simply burned quietly away, and the ignition of others by a capped fuse, when they exploded violently. In order to show that explosion would not follow upon conflagration, two barrels of the new powder were placedeach in a roaring bonfire, and after a time the barrels were burned through and the contents blazed harmlessly away. An iron pile driver weighing half a tun was then allowed to fall 15 feet on to a box containing 10 lbs . of the powder, in order to illustrate immunity from danger in such cases as railway collisions, which, so far, it did, as the box was smashed and the powder scattered around.

- The second series of experiments illustrated the strength of the powder, and consisted first in placing a charge of ounces of the substance in a horehole made in a block of Kentish rag stone measuring 5 feet by 3 feet by 18 inches, the ex plosion of the charge cracking the stone in all directions. Four steel ingots weighing 8 cwt . each were next laid in a pile, with 2 lbs . of the powder placed centrally between them. The explosion of the charge broke the ingots up and hurled the pieces to long distances. Other four ingots weighing 11 cwt . each were similarly treated with $2 \frac{1}{4}$ lbs. of the powder with similar results. A cylinder of cast iron, 2 feet in diameter and 18 inches deep, was charged in a central bore hole with 6 ounces of cotton gonpowder and fired, but the explosion only blew the hole through, driving a conical shaped piece out of the bottom. A 6 feet length of 70 lbs . steel rail was then laid on its side on bearings 4 feet 6 inches apart, and in its groove $\frac{1}{2} \mathrm{lb}$. of the powder was placed and tamped with clay. The explosion broke the rail into four pieces, throwing the two ends far apart. In military work, the first illustration given was the cutting off a
post of 12 inches by 12 inch post of 12 inches by 12 inches timber-assumed to be a
stockade post-with 12 lbs . of the powder placed against its side. The application of the compound to land mines was shown by placing two boxes each containing 30 lbs. of the powder in holes in the foreshore of the Swale-which flows by the company's works-covering them with 6 inches of ods, and exploding them. The result in each case was the formation of a crater 22 feet in diameter and 8 feet deep, besides the demolition of some of the factory windows, a result we need hardly say, which was more unexpected than the other. To illustrate the statement that the powder could be exploded even when saturated with 20 per cent of moisture, box of the powder stated to be so saturated was placed on the beach and successfully exploded. The concluding experiment was the explosion of 50 lbs . of cotton ganpowder suspended in the Swale in a case 10 feet below water level. The explosion threw up a fine column of water some 200 feet into the air, much to the satisfaction of the visitors, a satisfac tion, however, not inferior to that afforded by the previous experiments, which demon strated that a safe, handy and powerful explosive was ready to be placed on the mar ket-Engineering.

The Momentum or Heat.

Heat is one of the modes of motion. The sunis its source. Vegetation springs up,matures, and decays as the continued round of change goes on. Old forms are buried beneath the new which rise upon their ruins Thus have immense beds of fuel been hid den for centuries beneath the earth's sur face. Born of motion from the sun acting upon matter,these deposits represent storedup inertia, to be changed into momentum. All matter is ponderable, or has weight whether it be gaseous, or fluid, or solid, and of course possesses momentum when under motion.
In speaking of the motion of particles, their weights are to be considered: those which have the highest motion have the least weight.

The carbonaceous deposits, called coal, are simply combined elementary particles of different natures, and, when set free, give out their force to whatever they may come in contact with. Phosphoras and sulphur have their particles easily dis turbed; for this reason they are put upon matches. The motion of the hand easily sets their momentum free; the wood of the match is next acted upon, then light kind ling matter, then the coal. On and on this process goes, increasing in force as fresh fuel is added.
It is momentum from first to last, originally stored in the cosl, and set free to be used for the benefit of man. To apply it in a manner that will utilize it best is his province. When water receives this transferred momentum, or heat force, among its own particles, it becomes steam. Steam is simply water in molecular motion. When the water has received its molecalar mo tion, or when the steam is formed, by its momentum applied to the piston of the engine, the wheels are turned, the train is set in motion, and continues until the momentum is restrained by outside resistance or the supply of fuel is stopped. Thus did momentum begin and end its work, merely set free by human power, man acting only as the agent.-J. M. Hicke.
sound.
Professor Tyndall lectured recently on this subject at the Royal Institution. He began by saying that in the philoso phy of Locke an idea was defined as a mental picture; and in all his (Professor Tyndall's) teaching of Science, he always attempted to give clear ideas-resting upon a physical basisof the phenomena presented, avoiding all vagueness of phraseology, and in pursuance of this plan he would show a few experimental facts as a basis from which to start. He then took a large glass vessel filled with perfectly invisible carbonic acid gas, and held it between the electric lamp and the brilliantly illuminated screen, so that the large shadow of the glass vessel was seen upon the screen. Upon tilting the vessel the heavy carbonic acid gas began to pour out of it; and as it refracted light more than air, it became visible upon the screen as a falling stream full of waves. His as sistant next began to blow through some invisible vapor of sulphuric ether placed between the screen and the lamp; and as the invisible mixed breath and vapor issued from the tube, the stream was rendered visible by its unequal refraction of the rays of light. The same effect was produced by means of the hot gases from a burning candle placed between the electric lamp and the screen. These acts, he said, would serve to give a physical basis for their ideas, by showing that, in a perfectly transparent atmosphere, there might be nvisible layers, having an influence of their own.
If a wave of sound entered an invisible cloud of carbonic acid gas then the velocity of the wave would be reduced from 1,120 feet to $\mathbf{9 0 0}$ feet per second; but on leaving the gas and re-entering the common air, it would move with its original speed. At every change of velocity a certain pertion f the sound would be sent back as an echo; thus on first eaching a layer,of carbonic acid, a.part of the sound would be reflected, and, after passing through the layer and reach-
ing the other side, a further portion would be sent back as another echo; if there were many alternate layers of air and carbonic acid gas, this action might take place so often as to quench an entire wave of sound and todissipate it in echoes. Professor Tyndall here called attention to a small square wooden tube, into the air of which, he said, he could introduce at will seven vertical sheets of carbonic gas through pipes. One of the sensitive flames, which contracted at a shrill sound, was placed at one end of the tube, and a whistle continuously blown by a bellows was placed at the other. When the tube contained air only, the sound passed freely and contracted the flame; when he let seven sheets of carbonic acid gas enter the tube, they broke up the sound into echoes so that its action upon the flame was cut off, being intercepted by layers of invisible gas. He then showed that heated air would have the same effect,ly doing away with the carbonic acid, and placing four gas flames below the tube, so as to heat it in four places, and produce four layers of heated air inside. Layers of unequally heated air prevented the sound from passing through the tube, and broke it up into echoes. The lecturer here remarked: "How could it be proved these layers produced echoes?" If they did so, of course he ought to be able to prove it experimentally, so some time since he asked his assistant to solve the problem practically, and Mr. C'otterill had done so. His plan was to take a large hot flame from a batswing burner, which had the power of reflecting sound, for the hotter the flame the greater was the reflection; and he placed this flame in a position to throw back the sound, which it actually did, as proved by the contraction of the sensitive flame
Strange to say, the flame could reflect sound much better than calico, muslin, and other woven fabrics. Professor Tyudall here borrowed a little boy's handkerchief, and showed that it would not cut off the sound even when folded four times; neither would green laize, nor felt $\frac{1}{2}$ inch thick -so thick that it would entirely cut off the light of the noonday sun. Two hundred layers of muslin in a square pad had but a feeble power in cutting off sound. The lecturer remarked that this was because the air was continuous in side the fabrics. On wetting the handkerchief with water so as to prevent continuity of the air, a single layer of the wet handkerchief cut off the sound. He remarked that, after seeing these facts, the listeners would be quite prepared to understand that a heavy snow storm would have little power in intercepting sound, whereas loud noises might be quickly quenched on a clear day, supposing the air to be heated unequally in different places.
Professor Tyndall narrated how in one of his laboratory experiments he had placed fifteen layers of calico, each an inch or two behind the other and in front of one of his sensitive flames. He discovered that the sound from the whistle would pass through the whole of the fifteen layers, and tlat each layer would reflect a portion of it so as to act upon the sensitive flame; thus in passing and returning through the fifteen layers, the sound passed through thirty layers in all.
Professor 'Tyndall here took a large glass cabinet, about the size of a watchman's box, and he caused the sound from the whistle to enter it on one side, and to depress the sensitive flames when it escaped on the other. In the lower part of the cabinet inside he lit two large gas flames, and the hot air from these, rising in the cabinet, intercepted the sound, so that the flame ceased to be shortened. He thus proved that invisible columns of heated air would cut off sound. He then put out the burners and lit a piece of phosphorus placed in a saucer at the bottom of the cabinet; the latter of course was soon filled with a thick smoke of ? phosphoric acid-so thick was it, that it cut off from view a lighted candle which
was placed at the back of the cabinet; yet this cloud, which was placed at the back of the cabinet; yet this cloud, which
was so powerful in cutting off the rays of light, did not in terrupt the waves of sound at all. Having thus proved that invisible warm air may act as an acoustic cloud, he said that, when such clouds are close to the source of sound, the echoes are immediate, and mix with the original sound; but if the acoustic clouds are further off, then there are prolonged echoes. Further, the length of an echo is a measure almost of the depth of the acoustic cloud whence it comes In the experiments at the South Foreland, he discovered that, when a sound penetrated to a great distance, then the echoes were longest
At the close of his lecture he argued that the phenomenon which Arago could not explain was due to warm air from the chimneys of Paris, forming acoustic clouds which surrounded the station at Villejuif, while the other station at Monthlery was free from this heterogeneous atmosphere.

The Micro-Lantern.

Discarding the usual microscopic low powers, we have now adopted, with increased advantages, an objective constructed on the same principle as the well known portrait combination, very short in focus, and with a large aperture in comparison with its focal power. The tube in which the lenses are mounted is very short, so as to permit of the passage of a ray at a great degree of obliquity to the axis. This enables the objective power to cover a large field, or, speak ing inversely, to project an image of large dimensions com pared with its focal power. But no one who has bestowed attention upon the transmission of large oblique pencils will
fail to see that, if the object to be enlarged were mounted upon a flat glass, the astigmation would be so great that, while there would be plenty of light, there would be no marginal defisition worthy of the term in the enlarged image. This is quite true; hence we will afford some explanation of the manner by which we so managed that, whereas by one of the usual microscopic objectives only one extended wing of a grasshopper was shown on the screen, we showed
not only the one wing, but also the body and the second wing, and not only the whole of one insect or fly, but the whole of three of them which were mounted on one slide and this with such good marginal definition as to permit the spectators to advance to the screen and examine the details through hand magnif ying glasses.
There is sold, in the watch glass makers' shops in Clerkenwell, a foreign made watch glass of a peculiar kind, and known in the trade as "concave crystal." The price we paid was at the rate of five shillings a dozen, or more than six times that at which ordinary lunette glasses can be obtained when purchased in quantities. They are stout and strong, the edges finely polished, and they are curved,spher ically, to a very slight degree. The diameter of those we obtained were an inch and a half, and, instead of mounting the objects which were intended to be subsequently magni fied between two circular but flat glasses as usual, we mounted them letween two of these "concave crystals. Here was the whole secret. The two glasses must be placed " spoon fashion," and the object,being between them, is bent in a gentle curve. With objects mounted in this way, and employing an objective of the kind we have just describedwhat is known by photographers as a " locket portrait com bination" will answer well if of short focus-the lime light need no longer be regarded as an indispensable requisite in the showing of microscopic objects; for with a good lamp. burning paraffin oil, a disk of six feet may very easily be obtained.
Hitherto we have spoken of natural objects. But in practice we have also used this arrangement in connection with photography, both in obtaining pictures, with large aperture, which should be microscopically sharp all over the area of delineation, and, conversely, of producing enlargements from pictures thus obtained. As respects the exposure re quired to produce an absolutely sharp picture, it is, com pared with that which is necessary on a flat plate, less than half, because in the latter case a stop must be used to se cure intense definition at the margin; hence if proper me chanical contrivances be adopted for effecting a rapid ex posure, there will be no difficulty in taking a fully exposed negative of any scene in which instantaneity is a pre-requi site, the picture afterwards bearing a great degree of en argement. After several trials we can assert with confi dence that the manipulation of a circular and slightly con cave surface is quite as easy as that of a flat glass.-British Journal of Plotography.

THE VOLUME AND WEIGHT OF DISTILLED WATER AT DIFFERENT TEMPERATURES

by richard H . buel

In general, water expands when heated, and contracts on being cooled-with the exception that the greatest contraction occurs when the water has a temperature of about 39° Fah., so that expansion takesplace whether the temperature is decreas ed or raised above this point. The precise temperature at which and termined. The differences between the results obtained by in dependent investigations are, however, very slight, and the point of maximum density is commonly taken at $39 \cdot 2^{\circ}$ Fah., or 4° on the centigrade scale. At this temperature, the weight of a cubic foot of distilled water, as determined by the best authorities, is 62.425 lbs . ; the weight of a United States gal lon is 8.379927 lbs ., of an imperial gallon, 10.05312 lbs ., and of a cubic inch, 252.8787 grains. In French measures, it is usually assumed that a cubic decimeter of distilled water weighs 1 kilogramme. This is not strictly accurate, owing to a slight error, in regard to the weight of water of maximum density, which was made at the time of fixing the measure and the absolute standard is the liter, which is a volume of a kilogramme of pure water at the temperature of maximum density. In F , ractice, however, the volume of a liter is com monly assumed to be one cubic decimeter, and the errorarising from this assumption is unimportant, being less than $0 \cdot 00002$ of a kilogramme. The expansion of water by heat is not regular for equal increments of temperature, but the law of the expansion has been determined by numerous ex-
perimenters, the most prominent of whom are Iopp, Matperimenters, the most prominent of whom are kopp, Mat
thiessen, Sorby, and Rusetti. The formulas constructed from their experiments are given below, being taken from Watt's " Dictionary of Chemistry."
Let $V=$ ratio of a given volume of distilled water, at the temperature, ' Γ, on Fahrenheit's scale, to the volume of an equal weight, at the temperature of maximum density
$\mathrm{W}^{\mathrm{V}}=$ weight of a cubic foot of distilled water, in pounds, t any temperature, Fahrenheit.
For temperatures from 32° to 70° Fah.: V $=1 \cdot 00012$ $-0.000033914 \times(\mathrm{T}-32)+0.000023822 \times(\mathrm{T}-32)^{2}-0.0000000$ 06403 (T-32) ${ }^{3}$.
For temperatures above 70° Fah. : V $=0.99781+0.000061$ $17 \times(\mathrm{T}-32)+0.000001059 \times(\mathrm{T}-32)^{2}$.
$\mathrm{W}=\frac{62 \cdot 425}{\mathrm{~V}}$
The table given below has been computed by the aid of hese formulas. The experiments on the expansion of wate have not been carried beyond a temperature of 412 Fah., so that the results given in the table for higher tem-
peratures have not been verified. It is not probable, peratures have not been verified. It is not probable,
however, that they are greatly in error. The highest temperature in the table corresponds to a pressure of saturat ed steam of more than $1,000 \mathrm{lbs}$. per square inch. The suc cessive increments of 10° Fah. give such slight changes in the successive differences in relative weights and vol accurate for most purposes. The weights given in then
tables are for pure water, so that, when water contains foreign matter, it will be necessary to multiply the tabular weight by the specific gravity of the water. For ordinary rain, spring. or river water, the correction is generally so slight that it may be neglected. Below are given the specific gravities of waters from different localities, the most of which have been taken from Professor ('handler's lecture on "Water," published in the thirty-first annual report of he American Institute:

Atlantic Ocean.

Dead Sea
Great Salt Lake
Mississippi River
Croton (New York Water Supply).
Ridgewood (Brooklyn Water Supply).
Cochituate (Boston Water Supply).
Schuylkill (Philadelphia Water Supply).
Delaware River.
Lake Erie..
Lake Michigan.
Genesee River.

Passaic River.

$1 \cdot 0275$
$1 \cdot 17205$ $1 \cdot 17205$
$1 \cdot 17$ $1 \cdot 17$
1.00068 1.00068
1.00008 $1 \cdot 00008$ $1 \cdot 000067$
$1 \cdot 000053$ 1.000053 $1 \cdot 00006$ $1 \cdot 000059$ $1 \cdot 000107$ $1 \cdot 000113$ $1 \cdot 000226$

hames, at London

 $1 \cdot 000127$Seine, above Paris $1 \cdot 000279$ It will be seen from these figures that for will be sufficiently accurate to use the weights given in the able. If the weight of a gallon of water at any tempera ture is desired, it may be obtained by dividing the weight of a gallon of water at the temperature of maximum density, previously given, by the relative volume at the required temperature. It may also be obtained by multiplying the weight of a cubic foot of water, at the given temperature, by $0 \cdot 13368$ to find the weight of a United States gallon, and by $0 \cdot 160372$ to find the weight of an imperial gallon. When water contains foreign matter in solution, its rate of expansion by heat s not exactly the same as in the case of distilled water There has not been a sufficiency of experiments, however, to determine the law of the variation, and no great error will arise from the assumption that the expansion is in accordance with the formulas given above.
With these explanations, the use of the following table will be rendered plain to the reader
volume and weight of distilled water at different temperatures on the fahireniei' scale.

	Ratio of volume to volune of equal weight at the tempensity of maxnum density	Difference.	Weight of a cubic foot in pounds.	Differ-
32°	$1 \cdot 000129$		$62 \cdot 417$	
39.20	$1 \cdot 000000$	-000129	$62 \cdot 425$	-008
40°	$1 \cdot 000004$	-000004	$62 \cdot 42: 3$	-002
50°	$1 \cdot 000253$	-000249	$62 \cdot 409$	-014
60°	$1 \cdot 000929$	-000676	$62 \cdot 367$	-042
70°	$1 \cdot 001981$	-001052	$62 \cdot 302$	-065
80°	$1 \cdot 00332$	-001339	$62 \cdot 218$	-084
90°	$1 \cdot 00492$	-00160	$62 \cdot 119$	-099
100°	$1 \cdot 00686$	-00194	$62 \cdot 000$	-119
110°	$1 \cdot 00902$	-00216	$61 \cdot 867$	-13:3
120°	$1 \cdot 01143$	-00241	$61 \cdot 720$	- 147
$130{ }^{\circ}$	$1 \cdot 01411$	-00268	$61 \cdot 556$	-164
140°	$1 \cdot 01690$	-00279	$61 \cdot 388$. 168
$150{ }^{\circ}$	$1 \cdot 01995$	-00305	$61 \cdot 204$	-184
$160{ }^{\circ}$	$1 \cdot 02324$	-00329	$61 \cdot 007$	-197
170°	$1 \cdot 02671$	-00347	$60 \cdot 801$	-206
180°	$1 \cdot 03033$	-00362	$60 \cdot 587$	-214
$190{ }^{\circ}$	$1 \cdot 03411$	-00378	$60 \cdot 366$	-221
200°	$1 \cdot 03807$	-00396	$60 \cdot 136$	$\cdot 230$
210°	$1 \cdot 04226$	-00419	59•894	-242
212°	$1 \cdot 04312$	-00086	$59 \cdot 707$	-187
2200°	1.04668	-00356	$59 \cdot 641$	-066
$230{ }^{\circ}$	$1 \cdot 0.5142$	-00474	$59 \cdot 372$	-269
240°	$1 \cdot 05633$	-00491	$59 \cdot 096$	$\cdot 26$
2; $)^{\circ}$	$1 \cdot 06144$	-00511	$58 \cdot 812$	-284
$260{ }^{\circ}$	$1 \cdot 06679$	-00535	$58 \cdot 517$	-295
$270{ }^{\circ}$	$1 \cdot 07233$	-00554	58.214	-303
$280{ }^{\circ}$	$1 \cdot 07809$	-00576	$57 \cdot 903$	-311
$290{ }^{\circ}$	$1 \cdot 08405$	-00596	$57 \cdot 58.5$	-318
300°	$1 \cdot 09023$	-00618	$57 \cdot 259$	-326
310°	$1 \cdot 09661$	-00638	$56 \cdot 925$	-334
320°	$1 \cdot 10323$	-00662	$56 \cdot 584$	-341
3310°	1-11005	-00682	$56 \cdot 236$	-348
340°	$1 \cdot 11706$	-00701	$5.5 \cdot 883$	-3:3
3;50	$1 \cdot 12431$	-00725	5.j.523	-360
8360°	$1 \cdot 13175$	-00744	5.5-1.58	-365
370 0°	$1 \cdot 13942$	-00767	54.787	-371
380°	1-14229	-00787	$54 \cdot 411$	-376
$390{ }^{\circ}$	$1 \cdot 15538$	-00809	54-0:30	-381
400°	$1 \cdot 16366$	-00828	$53 \cdot 645$	-385
$410{ }^{\circ}$	$1 \cdot 17218$	-00852	$53 \cdot 250$	-390
$420{ }^{\circ}$	$1 \cdot 18090$	-00872	$52 \cdot 862$	-393
$430{ }^{\circ}$	$1 \cdot 18982$	-00892	$52 \cdot 466$	$\cdot 396$
440°	$1 \cdot 19898$	-00916	$52 \cdot 065$	- 401
$450{ }^{\circ}$	$1 \cdot 20833$	-00935	$51 \cdot 662$	-403
460°	1.21790	-00957	$51 \cdot 256$	-400
470°	1-22767	-00977	$50 \cdot 848$	- 408
480°	1-23766	-00999	$50 \cdot 438$	- 410
490°	$1 \cdot 2478.5$	-01019	$50 \cdot 026$	-412
500°	1-25828	-01043	$49 \cdot 611$	$\cdot 415$
510°	$1 \cdot 26892$	-01064	$49 \cdot 195$	-416
520°	$1 \cdot 27975$	-01083	$48 \cdot 778$	-417
530°	1-29080	-01105	$48 \cdot 360$	-418
$540{ }^{\circ}$	1-30204	-01124	$47 \cdot 941$	-419
$550{ }^{\circ}$	1-31354	$\cdot 01150$	47-521	-420

Preparation of Wool before Carding.
Messrs. Whittaker and Ashworth state that this operation effects an economy in oil in the usual process of oiling the wool. The first treatment is in an alkaline bath. The wool is then worked for one or two minutes in an acid bath, at a emperature of about $99^{\circ} \mathrm{Fah}$. This bath is composed of 200 gallons water and 3 pounds of commercial sulphuric acid; it serves for the treatment of about 200 pounds of wool. The wool is now carefully washed and dried. Thus prepared, the mount of oil requisite for the oiling process is reduced 50 pe cent. The above is the subject of an English patent.

March 20, 1875.1
Šientific American.
decisions of the courts
United States Circuit Court.--District of Massa-

United States Circuit Court---Distriet of Connecticut.

Zecent Aurcrican aud forcign Patents.

Improved Corn Planter.
Red wing, Minn.- By suitable con
Jens klverud, Ked Wing, Minn.-By suitable construction, as each hole of a wheel comes beneath a hole in the reservoir and receives u cut-off to prevent any more seed passing out than the amount contained in said hole. The wheels are revolved by tubes, which
strike the ground and serve as fulcrum poiats around which the strike the ground and serve as fulcrum points around which the
wheels move, the axle moving up and down in loops. The sleeve of wheels move, the axle moving up and down in loops. The sleeve of each tube is pushed up to discharge the seed into the
weight of the wheels and axle are thrown uponsaid tube.

Improved Invalid Bedstead.

Oscar G. Cosby and George W. McGovern, Richmond, Va.-'IThe
object is to enhance the ease and quiet of the patient when changing nis position. The device consists in the combination of an endless
cord, with mechanism for raising the hinged head section, consisting of a lever bracket, a slide, and a band and pulley, for the purpose of giving
ection.

Improved Double Reversible Hinge.
Edward Halsey, San Jose, Cal.-The invention is an improvement in the class of reversible hinges which are formed of two plates, one having eyes or sockets, and the other pintles, on each side, and
the eyes being slotted to receive the pintles, so that the door may the eyes being slotted to receive the pintles, so that the door may
swing in eitherdirection without becoming detached. The improve ment relates to a construction and arrangement whereby the hinge ment relates to a construction and arrangement whereby the hinge
is strengthened and its operation made as nearly noiseless as practicable.

Improved Tank for Preserving.

John Peter Schmitz, San Francisco, Cal.-This invention relates to certain improvements in preserving apparatus, and it consists in an
airtight tank in which the substance to be treated is placed, the airtight tank in which the substance to be treated is placed, the
said tank having a fire protector and a burner inside, which latter onnects through a Hexible tube with a lamp upon the outside The flame of the lamp abstracts oxygen from the air in the tank,
and substitutes therefor the preservative products of combustion and substite tube being tied, severed, and its tied end enclosed by a
the flexible screw cap when the process of preserving is complete, and the tank screw cap when the process of preservy
and its contents are to be stored away

Improved Stair Builder's Rule.

John J. Hobinson, Orange C. H., Va.-The object of this invention is to provide an improved rule for stair-building, and it consists in a square rule, inside of which is contained a graduated extensible
portion, and at the opposite end an adjustable prick, the said rule portion, and at the opposite end an adjustable prick, the said rue bled, by means of this improved rule, to rapidly construct be enabled, by means of this improved rule, to rapidly construct and fit
the balusters to the hand rails, unifornnly and in proper position.

Improved Sewing Machine.
Daniel Williamson, Sunbury, Pa.-This invention consists of an arrangement of cams on the driving shaft and a spring for working presser, whereby the same shaft shall operate the needle bar, presse bar, and feed bar.

Improved Gymnastic Apparatus.

Horace S. Carley, New York city.-This consists of a grooved wheel with a handle pivoted to each side, mounted on a rope
stretched horizontally. The handles hang down each side for the performer to suspend himself by to perform his feats, and at the ame time propel himself along the rope. The performer ma ing the handles upward and the stirrups downward, and thus rid ing the wheel.

Improved Runner Attachment for Vehtcles. John A. Hyde, Englewood, N. J.-.This invention consists of run-
ners which are secured to the lower portions of the wheels by hinged ners which are secured to the lower portions of the when temporariy into a sleigh.

Peter Suydam Improved Miter Box.

or the sawn and Wiliam G. Suydam, New Brunswick, N. J.ide by guides, for the sides of the saw, which are adjustable for saws of any thickness, and for taking up the slack caused by wear. One o ing position when required for adjusting the saw on the work. One of the posts has an adjustable stop collar to regulate the descent of the saw. The adjustable holders for spring miters conslst of horizontal bars with a vertical piece at one end arranged to slide for-
ward and backward, across the bottom of the box, and toward and ward and backward, across the bottom of the box, and toward and
from the back of the box, to hold one edge of the work while the from the back of the box, to hold one edge of the work while the other rests on the top of
screws for holding them.

Improved Scaffold Bracket.
Samuel Nelson Fisher, Milford, Mass.-This apparatus for supporting scaurolds in the erection of builangs con it to the building

Improved Thill Coupling.

A rel Olsson, Williamsburgh, N. Y., assignor to himself, J. W. Cox, and D. Merritt, of same place.-This thill coupling locks itself whe
forced into place upon the coupling bolt, and at the same time ma be easily unlocked when removed.

Improved Rolling shutter.

Hector J. Defrenne, Green Bay, Wis.-'This is a blind made of slats hooked together, to be raised and lowered by rollers suspended by cords. The latter pass over an upper roller in a chamber above the window, and down to another roller at the bottom of the chamber on which they wind. The rollers are worked by an endless cord,
which is so arranged on pulleys that one part of its course is alongwhich is so arranged on pulleys that one part of its course is along-
side of one of the sides of the window frame, where it can be side of one of the sides of the window frame, where it can be
worked inside of the house for raising or lowering the blind whe worked inside of the house for raising or lowering the blind whe-
ther the window is open or not. The invention also consists of a解
Improved Stays for the Bottoms of Pantaloons Stephen D. Mills, Kingston, N. Y.-This is an india rubber sta
designed to take the place of the canvas stay now used in the manu facture of pantaloons to keep the bottoms of the legs in shape.

Improved Bridge.

Peter M. Fulton, Rhinebeck, N. Y.-Towers are erected at suitable required distance from each other, and bear arch-supporting cables. The hight of the towers may be reduced to a considerable extent, bridges, lessened. The towers serve also as abutments for the arch sections, which are stretched and supported across the span betwee the towers, their symmetrical semi-sections being firmly joined by entral key pleces. The arch sections are constructed from bot use of a derrick above and a traveling truck underneath, which forms the platform for the workmen. One arch section after the other is joined to the other and hung to the cables, until the grooved and pointed approaching ends of the arch sections may be connected by the correspondingly perforated key pieces. The road
is then hung by vertical suspension rods to the lowermost arc.

mproved Plow.

Thomas S. Macomber, Hamilton, N. Y.-The invention consists iu devices whereby the mold boards and their attached shares are connected to the beam of the plow, so that, by turning the right hand mold board down against the landsa, the other mold board will be raised into a horizontal position, forming a right hand plow, and right hand mold board will be raised into a horizontal position forming a left hand plow.

Improved Oselllating Engine.
George W. Heala, Baldwinsville, N. Y., assignor to himself an William F. Morris, of same place.-This improvement in oscillating engines consists of a novel contrivance of tightening bearings and
adjusting screws therefor with the crosshead of the piston rod which is arranged in guldes projecting from the cylinder head, t the strain of oscillating the cylinder from the rod.

Improved Steam Engine Governor.
Frederick M. Brown, Warren, R. I.-This governor is contrived
similarly to some governors now in use, the peculiar feature of it similarly to some governors now in use, the peculiar feature of it being the upward movement of the balls on the arms when the
speed diminishes, and the downward movement when the speed speed diminishes, and the downward movement when the speed
increases, and in the levers and rods by means of which these movenereases, and in the

lmproved Map Exhibitor

John Lichtenberger, Fort Wayne, Ind.-A hanging bracket sup et, one in front of another; or they may be arranged in a hollow cylinder mounted on pivots, so as to revolve upon its axis to bring the maps into position for pulling them down. A slot is formed fo each map to drop through, and an endless cord with an idle pulley Improved Plow

Albert Hampe, Staunton, Ill.-The greater or lesser depth of the share is regulated by swinging the standard backward or forward on its pivot bolt, and setting a fastening bolt to the position of the same. The lateral position of the plowshare sldeways from the beam is adjusted by means of an end clevis and screw bolt, so that
the plow can be set as required, increasing thereby the strength of the plow can be set as required, increasing thereby t
the parts and the efficacy and usefulness of the plow.

Improved Harvester Rules.

David S. Fulton, Paris, Pa.-This invention is a machine for harvendently of each other. Cam devices throw the arms into the pro per position for sweeping the apron.

Improved Wrought Iron Column.
John B. Cornell, New York city.-The invention relates to the employment of a T-shaped bar for forming the joint between the vertical ribbed plates composing the chord, the edges of said plates
being riveted to the lateral wings or flanges of the bar. The joint is therefore an element of strength, and a strut or cord of minimum

Improved Machine for Colling Metal Rods.
Philander H. Standish, Jefferson City, Mo.-The mandrel consists of a flat bar of steel, wide and thiok as the largest coil to be bent, with an oval tapered point, graduated from the size of the largest
to that of the smallest coil. The bar is fitted in the hollow shaft of the driving wheel, so as to be shifted along it, to cause the tapered point to project under the bending wheel more or less, and is provided with a collar. There is a set screw at each end of the hollow shaft, for holding it wherever it may be set, to utilize the same maThe said wheel for that purpose is fitted detachably in a slotted lever, and the guide is fitted adjustably in the slot of the lever, to lever, and the guide is fitted adjustab
adjust to the wheels of different sizes.

John B. Arrants, Society Hill, S. C.-This tie consists of a block, which one end of the hoop is riveted at the middle of the side Which is outward when applied to the bale, and across the outside of the upper end. The inside of the lower end is a transverse wich the other end of the hoop is bent. The loop is so adjusted on he aforesaid block that the strain of the hoop keeps it in place and the loop so binds the part of the hoop bent around it in one of the said grooves in the block as to hold it securely.

Improved Water Closet.
Edwin O. Brinckerhoff, New York city.-By suitable construction when water is admitted into a ring pipe, it will be discharged on all ides of the basin, so that the entire inner surface of said basin will be thoroughly washed, cleaning it much better and with less water
than when the water is admitted at one side of the basin in the han when
usual way.

Improved Rein Holder

Benjamin R. Hamilton, South Deerfield, Mass.-This invention elates to the construction of rein holders, and consists in a wedgehaped tube and a

Improved Machine for Tapering Leather.

John Settleand George W. Settle, Lebanon, Oregon.-In using the arrine, a semicylindrical block is adjusted as required, a knifeated upon is inserted between the block and the knife and roller of he frame, and the frame is swung forward, paring off the leathe oxactly the desired tape

Improved Station Indicator.

John W. Bryan, Watertown, Tenn.-This consists of a casing with n upper and lower chamber, provided with sliding frames and ion with a sliding hey or frome having shoulders for carrying the tation plates to the upper front opening and retaining them, by prings at the sides of the opening, exposed to view. A false sprin bottom carries the lower spring follower upward for receiving the station plates in regular order after each trip.

Improved Waterproor Liquid Blacking.
Edward Clark, New York city.-This waterproof blacking is made of gum shellac, methylic alcohol, gum camphor, lampblack, swee
oil mutton tallow, turpentine, and oil of mirbane. It is applied with a soft camel hair brush, and requires no rubbing beyond what

Improved Paper Bag Machine

Charles H. Kellogg, Leverett, Mass.-The paper is moved along ver a table, cut of, and then folded over a former; then the hor zontal bottom folders move forward and fold in the sides of a por part of the bottom; then the upper vertical bottom folder come down, and the lower vertical folder moves up to fold the remainin portions and stick them to the other portions, paste having been suitably applied for the purpose beforehand.
Improved Water and Steam Indicator for Bollers. William \mathbf{L}. Carman, Belvidere, Neb.-To the upper end of a cylintions. Through one projection is formed a steam port, which passe out through the top in such a direction that the steam may strike a whistle. The inner end of the port is covered with a valve attached to a float, which floats upon water in the cylinder, and is kept in
place by two guide pins. The cylinder is connected with the boile place by two guide pins. The cylinder is connected with the boile by a water pipe and by a steam pipe, so that the pressure of steam as the tater in the boiler ber and cylinder. By this construction, art the water in the boller becomes either too high or too low, the tle. By other construction, if the steam pressure reaches a point above that which a lever is weighted to resist, another valve will be raised, allowing the steam to escape and sound the whistle. There are also arrangements whereby the escaping steam from the port may give a different sound, and thus show by the sound whethe he alarm has referce to the water or the

Improved Brush.

Charles A. Hussey, New York city.-Thls invention consists in a discharing lexible hande for contaling the mucllage, with discharging tube through the neck of the handle, and a metall

Improved Washing Machine.
John F. Bassett, Limestone, N. Y.-In this machine the rollers between which the clothes are passed, are reciprocated longitudinally, so that the clothes are subjected to both a rubbing and rolling
pressure. The improvement relates particularly to the means for adjusting the spring pressure on the lower roller.

Improved Pump.

George W. Hooper, Greene, Me.-This invention consists of packthe the piston rod, composed of a metal thimble fitted snugly ther rod, and held so as to accommodate it to the piston by a leaThe invention further consists in the construction of the end pieces of the cylinder which forms the cylinder heads, ways, or con durts for the water, and seats for the valves, and in the means for castening the valves to the saldic face of the valve through a slot in the top of the said end pieces. The pump handle is arrarged in a pirot block to shift for ward and backward, to regulate the stroke to the depth of the well.

Improved Boot Leg Turning Machine.
David Bissell, Detroit, Mich.-In this machine a pulling bar is operated inside of a tube on which the leg is drawn, and a pushing baris. The said bane outside, to turn the leg over the end of the The invention consists in devices whereby the mechanism may b worked in the way most natural to the operator, also to avoid the shock and strain on the machine caused by the sudden stopping o the crank. The machine may be worked by hand or power, and be legs can be turned on the machine than it has been possible to turn legs can be turned on the mach
as it has been heretofore made.

Improved Sheep Shears.
James L. Smith, Tuscola, Il.-This invention consists in a guard to shield the skin and guide the shears in the operation of shearin sheep or other animals.

Improved Watch Key.

John S. Birch, New York city.-This is a watch key adjustable to square pivots of different sizes, to enable the key to wind any watch. The key is made in two pieces, the upper ends of them being fassquare pivot: and the distower aparts the lower to to any size of pivot by a screw which passes through them and enters a nut on the other side. The head of the screw is concave This appears to be an excellent invention in its line, being made of the finest hardened steel to ensure durability, and is the result of eight years' experiments on adjustable watch keys, of which Mr
Birch is the original inventor.

Chiet Engineer's Omfice, U.S. Navy Yard,

 tacatured at Troy, N .
following report:
his is a very
excellent and convenient forge. It works easy and wit sut little notse, and the power beeng applited with a lever tion of the dre.
I can recommend it as a very useful tool for work on
. ship board or shop use.

Very respectfully, your obedilent servant,
EDWIN FITHIN,
Chief Engineer,

Busimess aud tersuad.

 The Charge for Insertion under this head is $\$ 1$ a Line. Dry steam dries green lumber in 2 days, and is theonly Cheap House Furnace. H. G. Bulkey, Cleeveland, 0 . Agricultural Implements, Farm Machinery, Seeds
T. rtilizers. R. H. Allen \& Co.. 189 \& 191 Water St...N. Y . Magic Lanterns, Stereopticons of all sizes and
pices, or Parror Entertainment and Public Exhbibtions. P ices, for Parlor Entertainment and Pablic Exhibitions
Payswell on small nivestment. Catalogues free. Mcall Man' g . Optecian, 49 Nassau st.,N.
Flectwood Scroll Saw, with Boring Attachment,
for all descriptions of light Scroll Sawing. See adr't., page 189. Trump Bro's, Manufacturers, Wilmington, Del.
 Heavy Planer and Matcher (second hand) wanted
state orvest calsh price, maker, and condition. P. P.
Tout Housekeeners, House Furnishers in Tin, Tinmen
send Postal Cird to to. R. Abbe, Providence, R. I. We have had continuous business relations with
Gieo. P. Rowell \& co. for between three and four years, and have found then honest and prompt in every y in-
and
stance. Persons contemplating a wide-spread venture in
 ¿CO., 4 Park Row,
cilltes of the trans
Fayyetterille, TTnn.
Thomas's Furid Tannate of Sold never fails to
remore csale form any steam boller; int remorest the

 Price 10 cents per lib., less than $1 /$ price of other prepara-
tions, and superion to all others.
No speness orders to
Tin Manufacturers, who have waste strips, pieces,
or round blanks to sell, address - glving sizes -Norton or round banks to sell, address-g1
Bros., 44 \& 4 River St., Chicago, III.
$\$ 3,000$ in Premiums; Stamp for Circular. Thomas
schoicld, Grass Vallery, Cal.
For Sale-The entire Patent or State Rights for
 See N.F. Burnham's Turbine Water Wheel ad
vertisement next weck, on page 189, Wanted-Traveling Agents, to appoint Sub
Asents, or Canvassers, everywhere. Address E. F. Lan dis \& Co., Lancaster, Pa.
Zeroref .Refrigerato w with Water Cooler. Best in
the World. Send for Catalogue. A. M. Lesley, 221 W 23d street, New York.
For Sale-Engine
A. R. C. C., Dentist, Lincoln, ill.
Very cheap! The Lester Oil Co., 183 Water St., N.Y., Exclusive
Manuffacturers of the reno wned Synovial Lubricating oil. The most perfect a
Stean and Water Gauge and Gauge Cocks Com-
bined, requiring only two holes in the Boiler, used by ail bonter makers whin
St., New York.
Millstone Dressing Diamond Machines-Simple
enfective, economical and duralle, giving nulversal sats

Position Wanted in a Machine or other Mechani-
ca Works-prcferably steam Engines-as Foreman or A Atstant, by a practical Machinst and experienced Mcchan-
Ical Engnineer and Draughtsman. Address Frank 1 H Pond, Ical Engineer and draught
M. E., Woonsocket, R. I. nd Hand Engines and Boilers for Sale at Low
prices. Address Junlus Harris, Titustillc, Pa. An old established responsible House wishes, in
connection with their different European Offices, to take
 ware, need address D. \& W., Box 2620 , New York. For small size Screw Cutting Engine Lathes and
Drill Lathes, address Star Tool Co., Providence, I. I. W. Campbell's Self-Acting. Shade Rollers. The
Trade supplied, 87 Center Street, New York. Send for Illustrated Circular-New principles of
propelling vessels-speed Increased, and power saved.

For Sale, or Partner Wanted for Patent on Canal
Boat Propeller. Address G. Heydrich, New Ulm, MInn

 ther particulars, call on or address Clark, smith $\&$ Co,$~$
Fort Plainn, N. Y
 for sending mesages, making magnets, the electric lilint
gIving alarms, and various other purposes giving alarme, and various other purposes. Can be put tin
operatlon by any lar Includes battery, key, and wres.
Neatly packed and sent to all parts of the world on recelpt of price. F. C. Beach $\&$ C.., 263 Broad way, New Fork. Piano and Organ Wire Work of all kinds, Valve
and Key Pins, Iron and Brass Finghning Nanis, \&c. \&c.
The Hendey Machne Co., wolcotville, Conn The Hendey Machne Co., Wolcottville, Conn,
Send to Atlas Works, Indianapolis, I
Photograph of thelr 20 ninch Engine Lathe. Wash Stands, New Styles, Marble Tops, can be
used in any situation. Prices very low. Send for a catalogue. Bailey, Farrell \& Co., Pittsburgh, Pa.
Grindstones $-4,000$ tuns. Berea Stone Co .,Berea, O Send for Circular of a very Superior Boiler Fee
Rump. D. Frisbie $\&$ Co., New Haven, Conn,

The "Scientific American" Ofice, New York, is
itted with the Miniature Electric Telegraph. By touching tited with the Miniature Electric Telegraph. By touching
inttle button on the desks of the managers signals are sent ment. Cheap and effective. Splendid for shops, offlces,
ment

* Wrillams, cors, of Plymouth and Jay, Brooklyn, N. . . . Buy Boult's Paneling, Moulding, and Dove-tailing
 Small Tools and Gear Wheels for Models. List
free. Goodnow \& Wightman, 23 Cornhlll, Boston, Mass. For Sale-One "Cotrell $\&$ Babcock" Water Wheel Regulator, in
For Surface Planers, small size, and for Box
Corner Grooving Machines, send to A. Davis, Lowell, Corner
Mass.
Hote
Hotchkiss Air Spring Forge Hammer, best in the
market. Prices low. D . Frisbie \& Co... New Haven, Ct.
 tthograph, \&c.
"Bool-Keeping Simplified." The whole system
a few pages. Cloth, 81. Boards, 75 cents. Sent, post-
 Faught's Patent Round Braided Belting-The
Beet thing out-Manufactured only by C. Wr. Arny, 301 E
 Temples and Oilcans. Draper, Hopedale, Mass. For Solid Emery Whels and Machinery, send to
be Union Stone Co., Boston, Mass., for circular. Mechanical Expert in Patent Cases. T.D. Stetson, All Fruit-can Tools,
Peck's Patent Drop Pacute, Bridgeton, N. J. Peck's Patent Drop Press. Still the best in use
Address Milo Peek, New Haven. Conn. Genuine Concord Axles-Brown,Fisherville,N.H Spinning Rings of a Superior Qualuty-Whiting-
vile Spinning Ring Co., Whitnevville, Mass. Send for mple and price list.
Power Hammers and Bolt Forging Machines-
Nine sizes of the former and two of the latter, guarantced the most economic tools of their kind known. For price
and cuts, address S. C. Forsaith \& Co., Manchester, $\mathrm{N} . \mathrm{H}$. Hydraulic Presses and Jaccos, new and second
pand. Lathes and Machinery for Pollshing and Bufling

Males (4)

J.P.S. can utilize old rubber as described on p.349, vol. 26. Galvanizing castings is described on p. 36 , vol. 31.-A. L. and others will find a recipe for
blackboard composition on p. 91, vol. 3 C.-S. Λ. H. will tind a formula for proportioning cone pulleys on p. 100, vol. 25.-F. P. can keep moths out o clothing by the process given on p. 225 , vol. 27.
Inkstains can be removed by the method given on Inkstains can be removed by the method given on
p. 139, vol. 29.-T. \mathbb{S}. will find directions for purifying rancid butter on p. 119, vol. 30.-J. D. V. Jr. will find a recipe for bronzing brass and copper on p. 331, vol. 29.-S. M. can bleach cane juice for sugar nd directions for making rubber stamps on p. 156, vol. 31.-S. $\boldsymbol{\Lambda}$. T. can fasten paper to brass by paint-
ing the brass with oil paint,letting it dry, and using ing the brass with oil paint,letting it dry, and using
common glue. (This answers H. II. R.) Lead is readily run into plaster molds. A recipe for a soldircctions for galvanizing iron on p. 12, vol. 346 Rubber can be fastened to wood with glue.-T. R B. will find a recipe for transparent varnish on p. 11, vol. 31, which will do for making cloth airproof.

- S. M. E. will find a formula for the dimensions of safety valve on p. 107, vol. 31.-A. E. A. can p. 155, vol. 31.-P. B. will find directions for bend and others are informed that no preventive for boilerscale can be recommended unless the nature
of the mineral deposit is known.-W.M. ought not of the mineral deposit is known.-W.M. ought not to try and remove canceling ink from postage
stamps, as it may lead to fraud.-J. F. H. will find recipe for Babbitt metal on p. 364, vol. 29.-E.T D. will find a description of artificial pearls on p. the meaning of words in common use- will find a rule for calculating gears on p. 187, vol 29.-L. K. Y. will find full descriptions of solder of all kinds in our last three issues.-P. S. can join his
water spouts with waterproof glue; see p. 91 , water s
vol. 31 .
(1) S. A. T. asks: How can I cement a porcelain mortar? A. Use a mixture of black
japan varnish and white lead. (2) W. B. B. asks: Having a good violin, to improve it I removed all polish and paint with alcohol, which spoilt the tone. How can I restore
it? A. Take coarsely powdered copal and glass, each 4 ozs., alcohol (64 over proof) 1 pint, camphor $1 / 202$; heat in a water bath, stirring frequently
until the solutionis complete. When cold, decant the clear portion. This is an excellent varnish for any musical instrument of the violin species.
(3) J. J. D. asks: What is meant by slack coal? A. Coal dust. The term is commonly ap-
plied to the dust formed in cutting out coal in the mine, which is frequently piled in heaps at the pit's mouth.
(4) F. O. asks: What metal is best for making candy molds? I want to find one that cools
quickly. A. Tin molds are commonly used. Dust hem with powdered sugar to prevent the adhernce of the candy.
(5) C. F. F. asks: Which is the front side of
(6) D. G. K. asks: How can I prepare coach varnish? Λ. Fuse 8 lbs. fine African gum copal, quite stringy. Mix with $31 / 2$ gallons turpentine, and strain $_{\text {p }}$
(7) P. H. K. asks: Can you give me a rule
measure corn in a crib? A. Multiply the depth to measure corn in a crib? A. Multiply the depth
of the corn in inches by the length and width of the crib in inches, and divide by $2150 \cdot 42$. The quo-
(8) M. A. B. says: The best thing for ta
king dirt and grease off the hands without injury is bicarbonate of soda, used in place of soaip.
(9) I. R. M. asks: How can I calculate the speed of a train of pulleys? A. Proceed as in vulgar fractions, placing the number of the revolu-
tions of the prime mover as the numerator of a tions of the prime mover as the numerator of a thedriving wheels in inches also as numerators, as denominators, and proceed by cancelation.
(10) A. E. S. asks: How can I paste newspaper clippings ints a scrap book without the
leaves curling up and warping? A. Use a gum arabic musilage with some refined sugar dissolved in it.
(11) A. B. L. asks: How can I make a wash-
ing crystal? A. The soda ash and soda crystals of ing crystal? A. The soda ash and soda crystals of not make them on a small scale to advantage.
(12) C. asks: Is there an animal general ly known as the sea otter? A. Yes. It is found in the Northern Pacific.
(13) S. says : I read an article on the beneficial effects of glycerin in boilers. I tried the ex-
periment, and the result was the reverse of bencficial. We got rid of most of the earthy matter by using a surface blower, but the glycerin har crust, and the surface blower showed clear water in the boiler. A. The use of glycerin, as a solvent for the salts in impure matters, has been recommended for cleaning woolen fabrics, but your experiment of its use in steam boilers is the first of which we
have heard. It is possible that, by blowing off have heard. It is possible that, by blowing off
from the bottom, you might get rid of the deposit. from the bottom, you might get rid of the deposit.
We shall be glad to hear further on this matter We shall be glad to hear further on this matter
from any of our readers who can communicate nation.
(14) J. K. asks: What constitutes a yard (15) J. B. S. asks: What is the best way of polishi
nish.
(16) J. H. asks: Is the Pacific Ocean higher to connect them by a canal? $\boldsymbol{\Lambda}$. No.
(17) W. R. B. says: In Dick's "Practical Astronomer" isa description of Rogers' achroma-
tic telescope on a new plan. It consists of placing a small compound lens of flint and crown glass in a small part of the cone of rays of a large crown
glass objective, and thus correcting the rays, cuglass objective, and thus correcting the rays, ell-
abling a person to use a large crown glass objective and making it achromatic by the small compound one. 1. I have a goosmeter and about 100 nches focus. What should be the size, shape, and focus of each of the lenses forming the compound one,to produce the proper correction for the above mentioned lens? A. Plano concave of double
dense flint, of $21 / 4$ inches diameter, $31 / 2$ inches radius, and plano-convex of plate glass same dimenpound lens be placed from the object glass? About 60 inches. 3 . With the compound lens adusted, what would be the entire focus of the instrument? $\boldsymbol{\Lambda}$. Twelve feet six inches. 4. Are you acquainted with any telescope on the above plan,
and is it satisfactory? A. An inch dialyte, by Possl, of Vienna, divided γ Cironce, distance $0.6^{\prime \prime}$
(18) S. G. S. asks: If the daily motion of the earth were to cease, would all the loose bodics on the surface fall into space? A. No.
(19) J. C. C. asks: Where is the best place to hang a ther nometer to ascertain the heat of the
atmosphere? A. If it is desired to know the tem perature of the surrounding atmosphere, the in strument should be placed in some shady spot, protected alike from the direct rays of the sun and
cooling drafts of air. If exposed to the direct radiation of the sun, the instrument itself will become overheated (the materials of which it is comair), and the consequence will be that the thermometer will indicate the temperature of the materi-
als composing it and not that of the air. The indials composing it and not that of the air. The indi-
cations of cheap thermometers are never absolutely co
(20) P. E. R. asks: How can I cement glass together, to withstand the action of electro-plating solutions? A. Try a solution of shellac in alcohol
evaporated to the consistence of a thick paste.
(21) G. A. N. says : I want a small engine, oo run a sewing machine or s nall lathe. Would a $34 \times 11 / 2$ inches cylinder, 20 or 33 lbs . pressure, and
300 or 400 revolutions per minute, be large enourd for the purpose? A. Yes.
(22) H. S. P. asks: 1. What would be the inches power of an engine, with a cylinder of 6 inches stroke, running at 300 strokes per minute, with 70 lbs. of steam? A. It would develope from 4 or 5 horse power. 2. Would
it do to run a circular saw 15 inches in diameter through two inch oak plank? A. Yes. 3. How large a boiler would this engine require? A. Make a boiler with 60 or 70 square fect of heating surface
Will an upright boiler last as long as a horizon4. Will an upright boiler last as long as a horizon-
tal one? A. Upright boilers, when well made, are uite serviceable.
(23) P. B. asks: 1. What is the average great variety, an average example being somewhat as follows: Weight, $60,000 \mathrm{lbs}$. 2. What is the diameter of the drive wheels? A. Five feet. 3. What is the length of the stroke? A. Two feet. 4. What is the diameter of the cylinder? A.Sixteen inches. 5. What is the weight of an average freight car
A. Eight tuns.
(24) W. P. asks: 1. What size of engine of 8 miles per hour? A . Make the cylinder $21 / 2 \mathrm{x} 4$. - I have a boiler 36 inches high $x 15$ inches diameter, carrying from 40 lbs. to 50 lbs. pressure per
square inch. Would it be large enough? A. The boiler is too small for the speed.
(25) H. J. asks : 1. Will an engine having a cylinder 3×5 inches, steam pressure of 60 lbs., run-
ning at $3\{10$ revolutions per minute, with a cut-off at 3 stroke, do to run a circular saw 6 inches in diameter with? The tly wheel of the engine is $2 t$ inches, and the mandrel pulley 6 inches, in diameter. A. The engine is quite large enough. 2. My boiler is 13 inches in diameter by 5 feet in length, plain cylinder in form. Is it big enough? A. No.
What will take the stains of varnish or paint off arble? A Try a pucte composed of sola pum marble? A. Try a
icestone, and chalk.
Where is the best place to put exhaust steam in (96) S.E. P. asks: How can I remove rust from joiner's tools? A. Use cmery and oil,
piece of wood. This also answers S.A.T.
(27) W. W. says: I have a small upright
engine, cylinder 4 inches diameter by 6 inches engine, cylinder 4 inches diameter by 6 inches
stroke. Would it do to run an ordinary row boat How fast would she go, and what would be the best kind of propeller wheel to use? What kind of boiler would be best? Would it be necessary to
have a counterbalance on the crank? A. Your engine is large enough for a boat $\%$ feet long, with 30 to 35 inches in diameter balance may be put on, but it is not a matter of any great importance.
(28) (t. asks: What amount of sulphuric acid will it require to entirely dissolve 1 lb . zinc? A. For its complete conversion into sulphate of zinc, 1 lb . of pure zinc requires $11 / 2 \mathrm{lbs}$. of sulphuric acid of specific gravity $1 \cdot 84=666^{\circ}$ Baumé at 66°
Fah. 2. What volume of hydrogen gas will the mixture give off? A. One pound of pure zinc, by erate about 40 gallons of hydrogen.
(29) C. S. R. asks: What is the
(29) C. S. R. asks: What is the cause of the curred lately. A. There was probably ice in the curred lately. A. There was probably ice in the
circulating pipes, so that the steam which was circulating pipes, so that the stcam which wa
formed could not escape. Under such circum formed could not escape. (30) K. K. asks: What would be the difference between the pressure necessary to explode a steam boiler from the inside, and that necessary to
crush or flatten it from the outside? A. In the crush or flatten it from the outside? A. In the
case of a wrought iron boiler, perfectly cylindricase of a wrought iron boiler, perfectly cylinder internal pressure that would rupture it is
cal thickness in inches \times tensile strength in lbs. pe
square inch \div the diameter in incles. The external crushing force is: $111,000 \times\left(\right.$ thickness in inches) ${ }^{2}$ diameter in inches \times length in fect.
(31) B. R. asks: Can ice be torn off a dam water 12 or 13 feet deep. 18 inches thick and the to attempt this kind of blasting, unless you have
(32) J. H. asks: 1. İow are red mortar and black mortar made, for laying face bricks in ? A. Mortar is made red by mixing therewith a certain proportion of Spanish brown, and black by lamp
black, but neither is sufficiently permanent to be satisfactory. 2. Is fresh water better than salt for making mortar in winter? A. Pure water is bet than salt water in any weuther
(33) H. says: The atmosphere in a certain building is raised from 0° to $\pi 5^{\circ}$ by water at $\$ 12^{\circ}$,
passing through coils of iron pipe. Suppose this operation should be reversed, and an attempt made to cool the atmosphere at 90° by cold water at a temperature of 3.5°, provided the circulation were kept up, to what degree of temperature could the
atmosphere be reduced? A. This question canatmosphere be reduced? A. This ques
not be answered except by experiment.
(34) J. S. asks: How much water can bo boiled away in 10 hours in a vat, 5 by 13 feet, with $11 / 4$ inch pipes laid close together over the bottom
of the vat, with steam at 60 or $\tilde{\pi} 0 \mathrm{lbs}$. per inch? A. It will depend upon the arrangement whether A boil away 25 or $\%$ per cent as much water as you have steam. With a good apparatus, you may calculate to evaporate $\frac{3}{5}$ of a gallon of water in the
vat for every gallon of water evaporated in the vat for
boiler.
(3ij) S. G. says: Suppose a water tank, 8×10 $\times 5$ feet deep, is placed on top of a house, 1,000 feet from an engine house, what kind of an indicato
would be best to show how much water there is in would be best to show how much water there is in
the tank? A. Put up a stand pipe, say one inch in diameter, in the engine house, and connect it at bottom with the pipe running from the pump to the tank. Enlarge the upper part, which must be n a level with the tank, so as to introduce a float connect this float by a cord over a pulley, with an indicator in the engine room below. As the water in the tank, it will be necessary to stop the pump to find the true hight.
(36) F. S. says : 1. Please give me a rule for anding the strength of a boiler when diameter of
shell and thickness of iron are given. A. For ingle riveted iron boiler, the safe working strain in pounds per square inch, may be found by multi plying the thickness in inches by 7,600 , and divid ing the product by the diameter of the boiler in vorking of an engine which end of the boiler took the steam from, or at which end I let in the feed water? A. Ordinarily, no.
Are large mill saws tempered after they are
made? A. Yes.
(3i) S. D. K. says: We have a large hall, built of brick, 50 feet square and 20 feet high. The veverberation is so great as to make it very disa-
reeable to speak in, causing confusion of sound greeable to speak in, causing confusion of sound.
What is the best remedy? Will wires do, and how
are they applied ? A. The use of wire to improve
the acoustics of halls, etce., is of comparatively recent date, and is not sulficiently extended in the number of repoptectexperiments to warrant a very
great degrec of certainty in assigning either the act loeation. It is generally thought best to place them in front of the certical wall opposite the apart, extendiny vertically from the floor to ceilap.ur, extenjng bertically from the hoor to cen-
ing. The object being simply to brak the wave
of sounal, as smalla wire will answer as is consistof sound, as small
ent with strength.
(3S) J. (i. R. asks: 1. Would it be practica-
wle to have the telerainh the to have the telegraph wire within $1 / 2$ inch of
the wood at very pole? . Yes. 2. What is the
smallest distace that smallest distance that will work well? A.Any dis-
tance if they do not touch. Air is an insulator and galvanic clectricity will not pass through it unless some other substance is present. It is better to keep the wire at some distincee from the pole on
aceount of snow or ice forming a connection beaceount of snow or ice f.
tween tlie wire and pole.
(39) (i. W M. askis: Is cement pipe much used for apueducts for water supply? When laia
entirely below the action of the frost, and bedded in clay, would it be durable and not likely to be-
come eaky from cracking or otherwise? What thickness shoullit threc--inch cement pipe be to conduct water unler a head of 30 fect? Would such
a pressure be likely to produce leakage by filtration throurh the pures? Which would be most further expense for repairs, to make the pipe in short joints before laying it, or to hay the cement
in its final bed in a plastic state, forming the hole as tast as the work prorresses? What is the pro ceas of the latter mentione:1 mole of laying pipe? What are the ingredients re, uiured, and their pro-
portions? A. Cement pipe is principally used for portions? A. Cement pipe is principaly, tsed
drainage and very seld 0 for supply, except when the current runs to a grade without filling the pipe a cement concrecte pipe is that of the Vanne aque--
duct, thirty-seven miles in length, for sumplying water to the city of Paris. This aqueduct has two and a half to three miles of arches, some of them
fifty feet in hight, and eleven miles of tunnels, fifty feet in hight, and eleven miles of tunncls,
which, with the aqueduct pipe, are all comstructed of beton Coignet. The pppe is circular, 61% feet in
interior diameter, with a thickness or 9 incles a the top, and 12 inches at the sides, at the water surface. It has proved to be innererneable to water.
But cement pipe of smill size, bedded in the carth is much too liable to be broken by unequal pressure, caused by the washing away of its
be safe under ordinary circumstances.
(40) J. D. M. asks: What is the capacity of a cylinder 6×5 inches, carrying a pressure of 5
to the inch, and making 200 revolutions? A. Area of piston in square inches

Multiply by steam pressure
Multiply by twice the length of stroke in feet
Multiply by revolutions per minute
$\underset{\substack{1+13: \\ 1: 38 \\ 1,38}}{ }$

Divide by
$33,000 \mid \overline{\boxed{363,600}}$
Horse power
(41) W. W. F. says: 1. In a church are two furnaces for heating, which can be made to draw
only when the atmosphere is in strong motion only when the atmosphere is in strong motion.
Two large coal stoves have been substituted, with 8 inch pipes running the whole length of the church. These also operate the same way. What is theatlength of horizontal pipe, and most probably by the small size of the vertical flues likewise. The best conditions for draft in such cases are the loca-
tion of the former at the bottom of the vertical flue, with little or no horizontal pipe, and the size
of the tlue teing sufficient for the work it has do. One of the worst conditions is that of a horizontal pipe running in a direction contrary to that of the strongest and most prevalent winds; and of the strongest and most prevalent wins; and
the same dificulty occurs in carrying heated air in
pipes from a furnace. The furnace therefore pipes from a yurnace. The furnace therefore
should be placed at the windward end or side of the church, and have large flues ascending directly from them. .2. In building chimneys, is there any prescribed rule for the size or shape of fue? A.
No graduated scale for the size of flues has been indicated, but 122 by 16 inches or 1% by 12 inches ought to be sufficient in a case like this.
(42) A. B. A. asks: Is there any process by out injury to the skin? . A. food lotion is made
of chloric acid (specific gravity) 1 fluid drachm, water (distilled) 11 pinth, mix, and add of rectified spirits
and rose water, each 2 fluid ozs., and glycerin and rose water, each 2 fluid ozs., and glycerin (43) J. M. says: I have a boiler 1 foot in
diameter and 21 inches long, with 14 flues. The firebox and flues get choked. What is the cause
of it? A The fues are probably to dinary fuel. Try charcoal. The power of your speed, which you do not mention.
(44) O. A. asks: Would a room, partitioned oft in a cellar, do to store ice for summer use? If so, how must I arrange it? A. You can make an
ice room in your cellarthat will most likely pre-
serve ice if the space you can devote to that ject be large enough. Ice will teep best when compactedin a solid mass, and a cube of 12 feet
will be found to be best for family storage, will be found to be best for family storage,
even where perhaps not more than one half of this amount will be required for use in one season. room, wish the edge to the wall, and line them with room, wi:a the edge to the wall, and line them with
stout inch boards. Then flll in the spaces between the uprights with dry sawdust, and construct a
similar protection on the ceiling of the room. similar protection on the ceilling of the room.
Cover the ground with shavings 8 inches deep, and lay sleepers and a tight floor thereupon, arranged
to drain to one side, and provide a drain to carry
off the water. Also provide ventilation from the top of the ice room. Put in a double door at the the space betwent a m, making the inside to sections spatween them, making the inside door in titioned off outside of the ice room can be used as a cold closet.
(4.)) (t. asks: Are there any ingrediente that can be molded into artificiul stone for bulding purposes, that will stand the action of the you refer to, is manufactured by three or four companies in this city and elsewhere; but their combination of ingredients is in each case pro-
tected by a patent. The peculiarity of each contected by a patent. The peculiarity of each con-
sists in its use of some choice and noted cementas asts in its use of some choice and noted cementas basis for its composition, and upon this their
success inainly depends. One of these companies uses the hydraulic lime of Teil, and another Portlan 1 cement, and great care is taken to wash the sand perfectly clean and to cause the combination of the sand and cement to take place under the best conditions. This is sumetimes done under pressure. The operations of these companies are
now very extensive, but their processes are mainly oncealed from the public, especially the points
(46) P. M. J. M. and many otbers.-We do
ot know of any rule for determinng the horse not know of any rule for determining the horse
(47) O. D. B. says, in reply to G. M. B. (who sks: How can I construct a receptacle in a garret
for waterfrom the roof of a house? It must not or waterfrom the roof of a house? It must not
let the water be frozen in winter, or spoiled in summer) : My garret being sufficiently tight, frost of $11 / 2$ inch pine, sawn into strips $21 / 2$ inches wide ill pieces of equal length 1 took one thickness of natched $11 / 4$ stuff for the bottom, and then laid on the strips around next the edge of the bottom,and nailed each layer, breaking joints at the ends, until the requisite hight was reached, thus making a tank needing no tongues or grooves. If it is to
be over five feet high, saw the strips 234 or 3 inch os wide. Having lined the tank with sheet lead, he water was taken from the roof, and (through an discharged into the bottom of the tank (the corductor being in the tank and reaching to the bottom); thus each successive shower moved all the surplus or overtlow to pass on to the main house cistern. The more roof water that can be convesupply is thus kept constant and the changes are upply is thus kept constant and the changes are
more frequent. A. We understand our correspondent's plan of building a tank to be something like that of erecting a log house, with the strips he
refers to overlapping each other at the corners refers to overlapping each other at the corners,and
the whole wall nailed down into each other as the valls rise. We do not see the necessity of multiplying the number of joints to so great an extent as this plan involves, and think there is less labor
required to be expended on the ordinary style of tank. When the tank is high, a cradling of slight scantlings will be necessary to bind it together and (48) J. B. B. asks : Please explain the construcion and mode of working the automatic telegraph York and Philadelphia. A. There are many kinds.
In one of them a tye whel containing leters is propelled, step by step, by electro-magnetism, and another wheel containing figures is propelled a a similar manner. The printing is done by a third magnet, which atracts an armature attached paper against the type wheel. The paper is moved paper against the type wheel. We pa
along by the movement of the lever.
(49) W.St Co. ask: What are the modus operbons: A. The fine dust of coke and colectric carput into a close iron mold of the shape coal is or the carbon, and exposed to the heat of a furnace. When taken out, the burned mass is porous nd unfit for use; but by repeatedly soaking it in ncquires the necessary solidity and conducting power. The carbon that forms on the roof of gas made, but it is difficult to work, and the supply of islimited.
(50) A. T. O. says: I am building an engine of 3 inches stroke by $11 /$ inches bore. What sized
boiler ought it to have to run a foot lathe? A. Make the boiler of $1 /$ inch iron or copper, 15 inches in diameter, and 30 to 36 inches high.
(51) A. W. P. asks: Is there any spot in
he depth of the ocean where the density of the water is such as to prevent a 50 lbs. weight from sinking any farther? A. Possibly.
(i2) A. K asks: What causes a conica end? A. It is on account of the resistance of the air, since the axis of the shot is not permanent, as being forced from the gun.
(53) $\mathrm{J} \mathrm{M} . \mathrm{W}$. asks: Is there any means of A. Digging till it is found is the only solution of A. Digging till
the difficulty.
(54) G. B. asks : What is the best polish
for handles, such as chisel handles etc.? A. Ordifor anadies, such as chisel handiles, etc.
nary polishing paper answers very well.
what
What power have I on my foot lathe, the driving Wheel being 26 inches in diameter and the driven
wheel $31 / \mathrm{inches}$? The belt is $21 /$ inches in widt Wheel $3 y / 2$ inches? The belt is $21 / 2$ inches in widt
A. You must measure with a spring balance, our 4. You must measure with a spring balance, or
otherwise, how much pressure you produce on the treadle, multiply it by the distance the pressdy also by the number of revolutions per minute and divide by 33,000 .
Why is wood season
hat seasoned by boiling or steaming? A. Gener-
nly because as much of the sap has not been exally because as much of the sap has not
pelled in the former case as in the latter.
(5j) R. C. asks: What is Chatterton's com-
pound, for insulating electric cables, composed of? pound, for insulating electric cables, composed of?
A. Stockholm tar 1 part, resin 1 part, gutta percha A. Stockholm $\operatorname{tar} 1 \mathrm{p}$
3 parts, by weight.
(56) A. L. C. asks: Does the perihelion of the earth's orbit to the sun always lead the sun in its course among the stars, or does it occupy a
fixed position? A. It retrogrades slowly, moving fixed position? A. It retrogrades slowly, moving
in a direction contrary to the order of the signs. n a direction contrary to the order of the signs.
How do you account for the ocean waters being How do you account for the ocean wasters beinly
salt? A. Streams carry down minerals, especially soluble chlorides, the water returning by evaporaion and rain.
why? iron weigh the most when hot or cold, and ast in cast iron ball at first sinks.
chen floats, and finally melts.
How much will a ball drop in the first mile,when shot from a cannon? A. A falling body describes
in 1 second $161 / 2$ feet, in 2 seconds 6415 in 3 seconds 14434 , in 4 seconds, 25143 , in 5 seconds 4021.21 United States 0.45 caliber bullet (charge "grains) at 1,050 yards range, elevation $3^{\circ} 3415$, has the line of sight at 500 yards. Initial velocity 1,300 inch.
I always notice that men, horses, and other ani run with their left side to cricle, always prefer to run with their left side toward the pole. How do the brain and the right side of the body (which it re best developed
(57) F. E. R. asks: How many cells of o silver plate mall articles, such as buttons, coins etc.? A. Two cells of either will do.
(58) M. D. H. and others.-It is self-evident and of gravity. The pseudo science of metaphysics consists of an insensible change in the meaning of words during a course of reasoning. We may thus prove mathematically that one
equals two, that a straight line is always perpendiequals two, that a straight ine is always perpendi-
cular to itself, that a straight line may cut a circle cular toitself,
in 4 points, etc.
(59) W. J. asks: How can I make a cheap aparatus to govern electricity, so that it can be taken in light or heavy shocks? A. Take 50 feet
of No. 16 copper wire covered with cotton, and make a heix, and then take 1,00 feet of No. 30
copper wire insulated with copper and make another helix around the first. Connect a battery t_{n} the two ends of the frrst helix; and by rapidly a current making connection with the battery, which can be felt by taking hold of the two ends of the second wire. By insert ing a bundle of iron
wires in the center of the first helix, the shocks will be greatly increased, and the amount of the shocks wires are inserted the distance to whelix. 2 . What is an electric circuit? A. A circuit is made by connect ing the two poles of a battery together
$\begin{aligned} & \text { (60) J. T. M. asks: } \\ & \text { work is equal to one horse power? many men' }\end{aligned}$ A. From 6 t 7. 2. Is an engine with its cylinder 3 inches long
by 1 inch diameter large enough to run a half medium Gordon printing press? A. It is rather to $\underset{\text { (61) }}{\text { small }}$
(61) G. C. P. Jr. asks: How can I make an Gectric battery for a telegraph apparatus? A
Get some cheap glass tumblers and place in the bottom of each an ounce of blue vitriol. Place over the blue vitrio a a small coil of copper wire
Attach to the copper wire coil an insulated copper wire extending outof the top of the tumbler (gutta percha covered wireis the best for this purpose).
Get some thick sheet zinc and cut out disks of it which will fit into the top of the tumblers, and to the zinc attach a short piece of copper wre. Fill he glass with water. Connect the wire leading
from the copper coil of one tumbler to the wire leading to the zinc in the next tumbler. The strength of one cell will be one volt. Use as many
tumblers as are necessary to get what power is equired.
(62) S. asks: Why does the sun appear ryer at the horizon? A. It is an illusion, restrial objects.
When an author gives the strength of wood as
100 lbs., in what direction does he mean that tha 100 bs., in what direction does he mean that the
strain shall be applied? A. It is impossible to tell, strain shall be applied? A. It is impossible to tell,
unless there is something immediately preceding the information to explain it.
Why does a heated razor cut better than
a. We are not sure that this is a fact.
(63) S. H. B. asks: Is it enough to test ker sene oils to heat in an open vessel to 110°, and then
pply a lighted match? A. Yes, it is a very
(64) J. says: I have made a small steam en gine (of one inch bore and three inches stroke) entirely of lead, and so far it runs well. Will it be
comparatively durable, and can there be sufficien power got from it to run a sewing machine? A.II it is run light, with low steam, it will probably
continue in order for a considerable time. It is probably quite powerful enough to drive a sewing the work for any long period.
(65) S. P. H. asks : In tempering sickles for atting grass, to what color should they be drawn Clar
Claret wine poured into a tumbler of water will bread is put into the water and the wine poure in, the wine will float on top of the water, part bc-
ing absorbed by the bread. Why is this? A. We think this experiment can be performed without think this experiment can be perf
the bread, if carefully managed.
(66) F. asks: How many barrels of wate per foot in depth will cisterns 7 feet, 8 feet, 9 feet,
and 10 feet in diameter contain ressiectively? A. Multiply the square of the diameter by the decimal $0 \cdot 156$. Thus the cistern T fect in diamer tains for each foot in depth 49 times 0.186 or 9.114 barrels.
(67) W. S. P. asks : 1. Is a 400 barrel water tank, plank properiy bracea and bolted, as strong and feet high, made of stares 21% inches thick and prop-
erly banded? A. Yes. 2. If the square tank were erly banded? A. Yes. 2. If the square tank were cased inside with the lightest make of sheet zinc, or gavanized iron, would it be better: A. Yes 3. How long would it last as a watertight vessel
with more or less chalybeate or iron water in it with more , whes chire A. From a few month
and exposed to the air? to several years, according to the condition of the wood. 4. Would an iron varnish (distilled coal
tar) be a protection to the iron orzinc? A. Yes.
(68) J. H. M. says: A friend states that, if fect high, moving at the rate of 60 miles per minute to throw an iron ball straight up 100 feet, it would drow exactly in his hands. I contend that,
while the bell would descend in straight line yet, while the ball would descend in a straight line,yet, in the time required for the ascent and descent of
the ball, the car would have moved a mile for every second from the place where the ball started so that by the time the ball reached its starting into his hands would be too far away for it to dro ing on the roof at the rear end of the rear car, and I should be standing on the platform of the same car exactly underneath him, the car going at the
same rate of speed as before, and he should drop same rate of speed as before, and he shoula d rop
this iron ball, it would strike me. I contend that by the time it reachesmy level I would be as many miles
Which is right? sistance of the air can be disregarded.
(69) W. L. I). asks: When it is noon on Fri day, at Greenwich Observatory, London (longi-
tude 0), is is Friday or Thurssay midnight, at opposite (longitude 180)" A. Looking at the sputh pole of a globe, the day of the month is one later at all places between meridian 180° and midnight, countng toward the left, than between 180° and midways later at the frst meridian than at any place in west longitude, and earlier than at any place in

((i0) M. says, in reply
to M. B., who asks for a to M. B., who asks for a
a rule for cutting a tree so a rule for cutting a tree so
that its top shall fall at a
certain distance from its root: Let A B represent
the tree, and C the point on the ground. Draw B C and calculate its length.
From D, the center of $B C$ From D, the e enter of BC,
draw D E perpendicular to draw D E perpendicular to
$\mathrm{B} C$, and E will be where
the tree should the tree shoula break. B
A C and B D Eare similar triangles,
BD:
be.
(71) C. W. says: You mention, as good for
teps for turbines, rock or swamp maple known the knots, of light wood or pitch pine to ast for years in this service.
(72) R. E. B. says, in reply to a question gar where the clinker collects, and the latter can be peeled off after being well saturated.
(93) C. T. S. says, as to corrosion of engine
bolts by using tallow as a lubricant: I think that D. K. has given the real reason for the cutting out D. screws and other partson of pistons. After a
of
practical experience of norarly twenty-five years. I m convinced that the use of oil of any kind in he steam chests and cylinders of steam engines is positive damage and an inexcusable waste, ex-
cept in the case of locomotives, when running cept in the case of locomotives, when running
down grades without steam. Nearly all oils contain salts and acids which are destructive to iron under the conditions above described. Oil thrown into a steam chest (where the temperature is high) almost instantly vanishes, leaving a residuum beut a lubricant, causing more friction and wear than the oil ever compensates for. Oil pumps are sometimes resorted to where it is thought neces-
sary to waste a gallon or two of oil weelly through an engine. Having occasion to make some slight repairs upon an engine a few days ago, I took off the cylinder head, and examined a piston which I put in new five years ago. I found the follower
screws, and the screws and nuts under the packing prings, as perfect as when put in; and the cylinder was as bright and smooth as a mirror, also the valves and valve seats. Yet this engine had run : years without oil inside the cylinder, and made a
saving to the proprietor of not less than $\$ 100$ in the item of oil alone. Piston and valve rods can be oiled from the outside if necessary; but if the packing in the stuffing boxes is renewed before it becomes hard and charred, very little oil will be
needed. A. You do not state what kind of oil needed. A. You do not state what kind of oil
(74) J. H. S. says : D. K., in his reply to D.
S. T. (No. 17, issue of Jan. 30), says that he had S. T. (No. 17, issue of Jan. 30), says that he had
rouble with bolts, etc., being eaten away by the acid in the tallow he used, and that he now used ard oil. After a great deal of trouble from the ame source, I got a large earthen crock and set on obtained at a meat market. It tried out very nicely, and is of course pure. I have used it on an angine for 18 months, and everything is all right, he trouble was in the cylinder. I have always found that, where lard oil wasused in steam, everything ran very dry it is not heavy enough.
(75) J. \& J. T. say, in reply to J. C. \& Co.
as to the inclination of a bolting reel: At the as to the inclination of a bolting reel: At the
Millers' National Convention in St. Louis, Mo. June, 1874 , we learned that a fall of 1 in 48 alway gave the best results.
S. A. T. asks: How can I make a fugitive ink that will disappear in two days after being written?-T. C. H. asks: How can I make an easily
flowing ink for drawing on zinc plates, so as flowing ink for drawing on zinc plates, so as after-
wards to etch the drawings with muriatic acid ?E. P. M. asks: How can I tan and color beaver skins?-L. M. asks: 1. Can you give me a good rule for getting the length of a carriage axle from shoulder to shoulder before welding, supposing the hub of the wheels to be $61 / 2$ inches long, and the track of the wheels 4 feet 7 inches? 2. Please give me a rule for setting axles.-J. F. E. asks What is put in soap to keep it from shrinking in
drying? drying

COMMONICATIONS RECEIVED

The Editor of the Scientific American ac iginal papers and contributions upon the following
neration of the wicked. By T. w. C and by A.S.
On the Sagacity of the Partridge. By J. K. On Glue as a Healing Re On Honey. By A. L. F.
On Amalgamating the P
On Amalgamating the Precious Metals. By J.T On a Mammoth Skeleton. By A. R.
On a Lunar Phenomenon. By H. M. On the New Rule at the Patent Office. By J.McC On the Slide Valve. By J. T. H.
On Squaring Numbers. By E. On Spiritualism. By F. H. R. On Small Steam Engines. By w. C. I. On a Mathematical Fact. By E. H.
On the Human Will. By w. L. S. Also enquiries and answers from the following:

HINTS TO CORRESPONDENTS. Correspondents whose inquiries fail to appear
should repeat them. If not then published, thes should repeat them. If not then published, they clines them. The address of the writer should al ways bo given.
Enquiries relating to patents, or to the patentability of inventions, assignments, etc., will not be published here. All such questions, when initials only are given, are thrown into the waste basket, as
it would fill half of our paper to print them all; it would till half of our paper to print them all but we generally take pleasure in answe
by mail, if the writer's address is given.
Hundreds of enquiries analogous to the following coloring furs, and on bleaching wool? Who sells magnesia and chloride of magnesium: Who makes machines for cutting thin stuff off round steamer for laundry purposes? Who makes steel castings? Who sells the best gage cocks, etc. Are there glass-lined iron pipes in the market? All such personal inquiries are printed, as will be observed, in the column of "Business and Person al." which is specially set apart for that purpose subject to the charge mentioned at the head of that column. Almost any desired information can In this way be expeditiously obtaned.
[OFFICIAL.]
INDEX OF INVENTIONS
Letters Patent of the United States were Granted in the Week ending February 16, 1875,
and EaCH BEARING THAT DATE. Advertiging apparatus, T. E. Allison Amalgamator, L Hinckley
Annunclator, electric, Carter and Hewitt
Bale tie, A. A. Goldsmith
Ballot box, F. W. Brooks
Bank check. C. V. Mead
Barrel roller, C. L. Topliff
Bed bottom, spring, J. A. Jo Bedstead, folding, P. B. Viele....
Bedstead, wardrobe, H. W. Curti Bedstead, wardrobe
Bee hive, J. Bullock

Bee hive, J. Bullock..... Bill fle, w. R. Clough.

Bird house, E. A. La bay
Boller, wash, A. Becker.
Bolt work for safe doors, etc., W. H. Butler.
Boits, manufacture of, w. J. Clark Boot stiffener s, shaping, J. R. Mofttt
Box Boox, register pepper, T. W. Burger. Brick machine, T. T. Joy
Brick s, machine for dustin Broom, G. R. Swingle..
Bullet patching machine, H . Borchardt. Bustle, L. Coniglsky
Can opener, J. H. Murphy
Cans, nozzle ${ }^{\text {Cor }}$.
Canopy frame, R. F. S. Heat
Caraxle box, C. A. Hussey
Car coupling, B. B. Sherfy.
Car coupling, J. B. Stamon
Car coupling, J. B. Stamour
Car coupling, w. F.
Car coupling, G. M. Thompson
Car pusher, Bird and Sullenberge
Car starter, J. Mbert
Cars, etc., propelling street, Trible \& Davis
Carding machine dofter, J. Barker.
Carriage, child's, F. L. Hughes

Carriage curtain rabtening, H. Foste
Carriage shackles, manufacturing. A. McK enzie Carts, etc ., unloading. Crossley \& Bert
Casting scale levers, T. Ol
Chair, W. T. Doremus
hair, child's walking, G. P. Stelnbach
Chuck, scroll, J. . H. Westcott
Churn. J. L. Wilson........
Ggar box , Wis Jacoby
Clgar packing implement, S. Jacoby
othes wringer, Pow. N. W
Cock, gage, I. S. Hamilton.
Cock or valve, Heale and Gowan
Cock self-closing hopper, H. Carruthers.
Cock, stop. W. H. Beckett...........
Compound implement, E. L. Price.
opper, etc., refining, s. L. Cr
Corn cutter, green. V. Barker
Cornice, window curtain, J. Sowle.
Corset, D. H. Fanning.
ullinary separator, D. т. Staniford.. ulinary vessel, steam,
Cultivator, J. H. Rice. urtaln fixture, G. C. Mathers Dash board, C. C. Schwaner.
Dental reflector, F. M. Osborn Deodorizer for bed vessels, H. M. Small Drag, W. Gardner
Drawing board, J.
Drill, rock, H. P. Bell
Drill, rock, S. Ingersoll (r)
Drilling machine, rock, S .
Drop light, J. C. Love................ Dryer for refined sugar, Λ. .
Ejector, fuld, Λ. A. Atkins.....
Elevator, hydraultc, W. B. Le Engine, compound, J. w. Le Va Engine ralve gear, steam, G. We...............
Engines, lubricator for steam Engines, lubricator for steam, J. Powel
Eyeleting machine . J. Faucet, , . Pfund
Faucet, T. 'rully.
Fence, portable, T. McQuary. File cutting machine, S. and s. M. Hamiblin. Flower maker's cutting machine, T.\& J. Millot (r) Fork sharpening attachment, Church \& Gurbert. Fountain, parlor. H. Wenzel...
Frult gatherer, C. A. Werden. Furnace, hot air,J. G. Weldon
Furnace, smoke-consuming, w. L. Powleson
Furnace, steam botler, H. E. Champlon............. Game apparatus, V. Klobassa
Garment, knitted, N. H. Bruce Gas retort, w. w. Goodwin. Gas retort, , Woint for steam, H. Whittingham. Governor, steam, M. Muchin. rate, J. C.Wetghtman
Harness shaft tug, T. E.
Harvester, corn, w. N. West....
Harvester dropper, C. Wheeler,
Harvester journal bearing, E. F. Herrington
arvester rake, V. H. Felt
Harvester sickle head, M. M. Shellaberger
Hat frames, ete., binding,
Hat, reversible, L. Girbardt.
Hats, machine for pouncing, k . Elckemeyer
Heating drum, F Proudfoo
Hog-ringing nippers. W. E. Binghan
Hoof trimmer, Shirran \& Givens...... Horseshoe calks, sharpening, Gleason it Hamill Hors eshoe machine. H. J Batchelder. Hydrocarbons, burning, O. T. Earle. Iron, roll for rolling angle, swift \& Yor Kettle, tea, H. Gray.
nitting machine, E. P. Curt
Lamp, bracket. C. V. Bes
Lamp holder. J. C. Love
.
Lamp shade support, s. A. Prescott.. eather strap skiving machine, A. G. Ho ward Lightning rod, M. D. Phelps....
Loom for weaving piled fabrics, S. Sanford
Loom shuttle, P. Lear..
Mechantical movement, D. W. Whliamson..
Hill
Molder's Hask, N. M. Chafee
Mowing machine, E. C. Dewers...........
Nall kegs, manufacture of, S. F. Max well
Nall machine, cut, J. T. Westwo
Nall plate feeder, D. W. Keth ..
Neck tie, W. H. Hart, Jr..
Needes, grooving, R. Thompson
On cloth, etc., drying, A. Wilder
Oil, treating, v. G. Bloede....................
Ordnance, construction of, R. R. Moffatt
Ore, fux for treating, P. N. Mackay.......
Ornaments, etc., holder for, W. J. Garve
Padlock, etc., J. schade
Pall, o. S. Camp..
Palls, etc., metalilic lip for, s. Kirter.
Peg or ribbon peg wood, B. F. Sturtevant Peg or sole fastening, C. \& J. G. Rowland (r) Peg strips, machine for, C. \& J. G. Rowland, (r)
Peg wood, ribbon, B. F. Sturtevant...............
Pegging machine, B. F. Sturtevant......159, it
 Planos, repeating action for, F. P
Pigeon starter, H. A. Rosenthal. Hn, Gardner \& Blossom
Planter, corn, Lawrence \& Thomas
Planter, corn, A. M. Manny
Planter, seed, E. M. Potter.
Plow, C. G. Cox
Plow, A. Rigby
Plow adjuster, S. T. Ferguson Plows, sulky attachment to, G. Van Winkle
Printing press, W. E. Gump Printing press delivery, Mayall \& Harnett Puddler, revolving, w. \& G. H. Sellers.
Pulley block, differentlal, B.F. Warren Qullting machine, A. Beck Rallway frog, W. L. Lamborn

8

Reflector, G. Rosenthal
Refrigerator, J. H. RIdgway River Jettles, construction of, Mullett \& Schuma.........
Roll couplligs, binder for Roll couplings, binder for, J. Gillesple Roller, anti-friction, E. Ge
Roller, , land, w. Williams.
Rutl Ruffler, E. Powell.................
Safe deposit box, W. H. Butler. Sandpapering machine, H. W.
Sash fastener, G. B. Adams..
Sash fastener, G. B. Adams..
Sash fastener, J. N. Withers. Saw frame, band, N.
Saw set, J. b. Titus. Sewing machine, J. O. Ne.ll..
Sewing machine, boot, H. Du Sewing machine, boot, H. Dunham, Jr., (r)
Sewing machine, button hole, S. J. Baird Sewing machine, sock, H. P. Garland.
Shawl strap handle, Bruen \& Gridley.
Sheep, holder for shearing, J. R. Virgo
Sheet metal llds, soldering, G. H. Che
Sheet metal Ids, soldering,
Shell, explosive, H . Tyler
shingle planing machine, P. D. Burgher
Ships, mechanism for trimming, J. McNabb
hoe nails, machine for making, L. Soule
Shoe peg blank, B. F.
Shoc tip, H. White
Snow plow, Twitchell \& Parsons....
Soda water draft apparatus, w. Gee. Sole fastening, B. F. Sturtevant... Sole fastenings, compressing, B. F. Sturtevant
Spirit level, E. L. Barnes Spring, door, A. T. Ballantin
Steering apparatus, P. H. Jackson.............. Stool a ad cane, combined camp, F.A. Byram
Stool, camp, A. W. Hart.................. Stove, L. R. Comstock
Stove, cooking, E. O. Brinckerhoff tove drum, W. Boehmer....
Stove, heating, J. H. Robins
Street sprinkler, w. Westerfield
Stump puller, C. C. Hogue..
Sugar-coating pills, etc., W
Sugar-coating pilis, etc., w. Calrns...
Sugar, dryer for refined, A. F. W. Pariz.
Sugar, making grape, E. E. Pearse.......
Table for milliners, etc., lap, J. Duncan.
Telegraph sounder, J, H. Bunnell
Telegraph sendingand receiving, M.G
Telegraphle signal box, W. H. Sawyer
Textile material, pling, A. Warth.
extile material, pliling, A.
TItcket reel, L. J. Masterson.
Timber, flume for conveying, H. G. Parker.
Torpedo-flling machine, wolfe \& Lillendah
Toy, A. E. Hotchkiss
Tyre-leating device, J. Harr
Vegetable slicer, Λ Vuiller.
Vehtcle wheel, D. Grim.
Vehtcle wheel, G. Leverici

Wagon body, c. w. Kinne..............
Washng machine, James \& Strett.
Washing machine, Shipley \& W
Washing machine, t. stumm.
Watch case backs, forming, F. H. Wilhy
Water closet, W. J. Crow.........
Weather strip por windows, s. T. Varian.
Wedge, Iron, C. McDermott
Wells, tubing, W. T. Dobbs.....
Whiffletree hook, o. J. Smith.
Windmill governor, w. L. Olliver.....
Window shade fixture, c. De Quillfeld
WIndow ventilator, s. .w. Couch.
Window weather strip,

Wire way, A. A. Smith.
Wood boring ruachIne, C.
DESIGNS PATENTED.

8,064.-BOTtLEs.-F. S. Tpton, Rochester, N. Y.
,066.-Alto Relievo.-W. B. Gia, Philadeiphia, Pa.
8,
8,067.-HANDLE Socket.-J.R.Mackay, W. Meriden, Ct
8,068.-CIGAR Box.-M. Moll, New York city.
8.
TRADE MARKS REGISTERED.
2,22s.-Ciaars.-F. De Bary \& Co., New York ct
2,229.-SALvEs.-C Hetnrich, Plain nfeld, N. J.
2,230 .-Mrstards.-Jewett © Co., Milwaukee, W

2,232 to 2,236 .-Clorks.-F. Kroeber, Hoboken, N. J,
2,237. Craske.-lichtensteln \& Co., New York city.
2,238.-MEDICLNE.-E. G. Lewis, PItt sylvanta county.

2,240.-CIGARS, ETC.-G. Solomon, New Yor
$2,241 .-$ Cianss.-J. M. Selp, Allentown, Pa.

2,24.-SCaARs.-Woods \& Co., Baltimore, Md.
2.245.-SEwING SILE.- Brainerd \& Co., New York city.
246.-BATHING PowDers -F
SCHEDULE OF PATENT FEES.
On each Caveat........
On each Trade mark..
On filing each application for a P
On issuing each original Patent......
On appeal to Examiners-In-Chief.....
On appeal to Commissioner of Patent
On application for Retssue
On filing a Disclaimer..........................
On an apppication for Design (3x years)
On application for Design (7 years).......
On application for Design (7 years)
On application for Design (14 yeara)

CANADIAN PATENTS.

List of Patents Granted in Canada,
February 12 to 24, 1875
4,389.-A. Willson and E. M.
coupling. Feb. 12,1875 .
coupling. Feb. 12, 1875.
4,390--Jas. Laing, Dunde
machine. Feb. 15, 1875. Scotland. Overhead sewing
4,391.-F. C. Porter,
hle. Feb. 15, 1875.
,392.-C. W. Sellinas
spring. Feb. $116,1875$.
p93
4,393.-J. T. B. Bennett, Birmingham, England. Mak Ing coke and gas. Feb. 16, 1875.
4,394.-J. C. Tilton, Pltaburgh.
Feb. 16, 1875 .
395.-J. Carpenter, Mariners' Harbor, Northteld, N..
C. S. Wagon spring. Feb. 16, 1855 .
U.
,396.-T. Shaw, Philadelphia, Pa., U. S. Steam, air, and
hydraulc seated value. Feb. 11, 11855.
397.-H. Harris, Seaforth, Ont, Stove plpe damper Feb. 16, 1875 .
Feb. 16, 1875.
. 398. B. Arnold, East Greenwich, R. I., U. S. Nettlug machine. Feb, 16,1875
B99.-Win. Adamsun
4,399.-Wm. Adamson et al., Phlladelphia, Ta., C. S.
Making starch and fermented liquors. Feb. 7 , 1875 . 4,400.-L. H. Young, St. John, N. B. Punching ma chine. Feb. 18, 1875.
frame hanger. Feb. 18,1875 .
4,402.-I. F. Willams, Bristol, R. I., U'. S. Rubher boot
Feb. $20,1855.1$.
4,403.-F. Kent, Hamilton, Ont. Tyre tightener. Feb

4,403.- F.
$20,18 \mathrm{~T}$.

, $404 .-$ J. B. Larkin, Pittsburgh, Pa., U. S. Grate and
grate bar. Feh. $20,18 \pi \bar{j}$.
 Feb. 20, 1875 .
4,407.-T. Decodejo, New York city, N. Y., L. s. smoke
and spark conveyer. Feb. 20, 18i5.
4,408.-I. F. Williams, Bristol, R. I
boots. Feb, 20, 1875 .
$4,4149 .-$ s. L. Wiegand, Phlladelphia, Pa., U. S. Grate
bar, etc. Feb. $20,1875$.
4,410.-T. Irwin, Hanilton
,411.-Wm. Stephenson, Acton, Ont. Tempering oven
C412.-E. Hambujer, Detroit, Mich., U. S. Kocking
chatrand cradle. Feb chair and cradle. Feb. 22, 1875.
,113.-J. Grist, Jr., Ottawa,

$$
\text { ror. Feb. } 22,18 i 5
$$

,414.-J. M. Bruce, West Townsend, Mass., U. S., et al.
street lantern. Feb. 22, 1875.
,415.-J. M. Brostus et al., Richmond, Va., U. S. Car
axle box. Feb. 22, 1875.,
machine. Feb. 22. 1875.
,417.-D. S. Cornell, Warwick, Ont., et ul. Hand straw cutter. Feb. 23, 1875 .
saw carrlage. Feb. 23, 1875.
,419.- T. Penton, Sarnia, Ont.
heater, and engine. Feb. 23, , 1875.
t tiol.-L. M. Becker, Peckham, England. Sewing ma
clifne. Feb. 23, 1875 .
4,421.-B. Waggoner, Reach, Ont. Gang plow. Feb.
23, 1875 .
Feb. .3. 18i5.
,4:33.-J. F. Willams, Niagara, Ont. Boot latchet loop
Feb. 23, 1875.
424.-J. H. Osgood, Boston, Mass., C. S. Inking roll.
er composition. Feb. 24, 183
Feh. 24, 1875.
4, 126 . - . . P. P.
harrow and grain coverer. Feb. 24, 1875 . et al. Wheel
42t.-Wm. 1. Garton, Toronto, Ont. Wax thread
heating machine. Feb. 24, 1875.
4.428.-M. Hutchinson, Norfolk, X. Y., U. s. Heating drum. Feb. 24, 1875,
429.-A. Rodgers, Muwkezon, Mich., I. S. Gang saw
mill. Feb. 21, 18 in .

Adtertisements.

Engravings may head advertisements at the same rate
per line, by measurement, as the letter press. Adverper line, by measurement, as the letter press. Adver-
tisements must be received at publication offce an
early as Friday morning to appear in next isene.
Fleetwood Scroll Saw.

March 20, 1875.]
VALUABLE BOOKS HEAT, STEAM

Steam Engine.
Bourne.- Kecent Improvements in the Steam En-

 Burgh.-Practical Rules for the Proportions of
Modern Engnes and Botiers for L Land and Marine Pur-Burgh-The Slide Valve Practically Considered
By N. P. Burgh................................. Campin.-A Practical Treatise on Mechanical EnRIne ering: Comprising Metallurgy, Moulding Casting
 Colburn.-The Locomotive Engine: Including a
deseription of its structure, rules for estlmating ts

 Main and Brown. -The Indicator and Dynamome
tery with therl Practical Applications to the stean
Engine. with the Marne Steam Engine and Examination P pers. 1 vol. 12mo., cloth.
Norris. $-A$ Handbook fo

Roper.-A Catechism of High Pressure and Non-
Condensink Steam Enfines: Including the Modelling
 phen Roper, EngIneer. Full bound, tucks
Roper. - Handibook of the Locomotive:

 Watson.-The Modern Practice of American Ma-

 STEA Select Llist of books on STEAM AND THE
 henry carey baird, 406 walNut street, Phladelpha

Machinist's Tools.

EPILEPSY OR FITS

reeses adjustable stencil letters.

THE ECLIPSE

WATER WHEEL in the market
STILWELL \& BIERCE M' ${ }^{\prime} \mathbf{G}$

PATENT MACHINIST'S TOOLS

Planing \& Matching,

PATENT

Planing \& Matching

IUDIOW VATVBS.

NIAGARA STEAM PUMP

4Hubbard \& Aller Engines and Boilers, Pulleys,8hafting and Hanger
MACHINERY
IRON \& WOOD WORKING MACHINERY OF EVERY DESCRIPTION
Cold Rolled Shafting.
HANGERS, PULLEYS, COUPLINGS, BELTING, \&c
\&c. Send for Illustrated Catalogue and Price Llist.
GEORGE PLACE \& CO
THE BEST PLOW IN THE WORLD.

Address, United States Piano

 Seeds and Bulbs.
[LuESTRATED SpRing Catalogue now ready

\$77 (fut
Why Go West? send forsi page Mantux.

M ACHINERY.-Manufacturers of Wood-Work-

PRTARLE STEAM ENGINES, COMBIN

 815 TO 825 PER DAY!

Model Engines. Costings

Iadies at Fome

GFO. W. RBAD \& CO., AND STEAEER-CUUTTING

Hard-Wood Lumber
AND CHOICE FIGURED VENEERS.
The LARGEST STOCK! The GREATEST

american educational cyclopedia,

STPEI STAMPS.

EVER-BLTODMING ROSES,

SHINGLE \& BARREL MACHINERY TAVE CUTTERS HEADNGGAND, EQUHLIIERS, AAN

 AGENTS WANTED

Men or women. $\$_{3}$ a week. Proof
furnished. Business pilea:antand honor-
able

WOOD-WORKING MACHIN SEW צمRK.

1 He Union Iron Mills, Pittsburgh, Pa .

 The Toll-Gate ! Prize Picture sent free :An

diadle GEEDS

 MAGNETS-Permanent Steel Magnets
 EVERY MAN HIS OWN GLAZIER.

$\xrightarrow[\text { Sadvertiserments. }]{\text { I90 }}$

 Industrial Exposition. CHICAGO, 1875. Wil open soperember sil. and clowe MANGACURERS, ANENTORS GREAT WESTERN PUBLIC NO CHARGE FOR SPACE OR POWER. class in all respects.
Applications received at any time. For blanks and further information, apply to JOHN P. REYNOLDS,

ASSIGNEE ASSIGNEES SALE SALE.
 HOVGHTON'S AUTOMATIC HOUSE POMP,

IT PAYS! IT PAYS

WHAT PATS? ER \&
Every business man admits the necessity of advertising.
All who have tried it know the advantages and protit of
so doing. But it is not all who advertise that do it advanso doing. But it is not all who advertise that do it advan-
tageously, and in the most effective manner, to derive the greatest beneft for their money. As a rule, it is the best
econony to advertise what one has to sell or wishes to purchase, in papers having the largest circulation among Parties having Manufacturing Establishments to sell or lease, or who wish Estimates made for Constructing
Bridges, Dams, Iron Buildings, Furnaces, Heating Apparatus, Steam Engines, Boilers, Wood and Iron Working
Machinery, Agricultural Implements, or Contracts for Engineering Works of all kinds, will find that it pays to

The value of the Scirntific Amierican as an advertising medium cannot be over-estinated. It goes into all
the machine and workshops in the country, and is taken at the princlpal libraries and reading rooms in the United
States and Europe. A business man wants something more than to see his
advertisement in a printed newspaper He wants circulation. If it is worth 25 cents yer line to advertise in a pa-
per of three thousand circulation, it is worth $\$ 3.75$ pe We invite the attention of those who wish tomake their Weoskno
Back Page,
Inside Page,

- $\quad 81.00$ a liue
(inefonal, 1.00 a line ${ }^{\text {Insertion. }}$
per line, by me isurement, as the letter press. Adverearly as Friday morning to anpear in next issue. ace a
If any thing is wanted in the mechanical line, advertise
or it in the Scientific American. f one has a patent or machinery to sell, advertise in the Cirntific Amprican.
Address the publishers

Munn \& Co.,

IRON PINNERS,

B ANRUPTS SALE OF Horizontal

A CAUTION. -The public are hereby caut THE PULSOMETRER. まuvawaw BranchDepots : rton Square, Boston, Mas

 ASBESTOS MAYHRIALSROOFING, SHEATHING, BOILER FELTING, PAINTS (all colors), ROOFING PAINT. H. W. J0HNS, 87 Maiden Lane, N. Y.

Rope.

Machinists' Tools.

STANDARD BRICK MACHINE.

STEAM BOILER

Inspection \& Insuranue

COMPANY

Todd \& Rafferty MachineCo.

Asbestos Frelting Co.
OTISY MaFETY hoisting

REYNOLDS \& CO.,
 Sol EAGLE FOOT LATHES,

Corrugated Iron,

Portland Cement.

 Germany, Russia Prusiah spain, Portugal, the British
Colonies, and all other contries where patents an
Eranted I
all inventions patated trough thit Ageny, with the
name and residence of the patentee.
Patents are offen
sold, in part or w
by such notice.
by such notice.
a pamphlet of 110 pages, containing the laws and fall directions for obtaining United States patents, also a circola pertaining exclusively to Foreign Patents, stating cos
each country, time granted, etc., sent free. Address MUNN \& CO.
Publishers SCIENTIFIC AMERICAN,
37 Park Row
Branor OrFion-
Washington D. C.

NEWSPAPEET $\stackrel{\text { PILE. }}{ }$

 MUNN\&CO.,

