pation, and found so much to please and interest us th
propose to give a short description of it to our readers.
The messares a short description of it to our readers. and the operating room is in the seventh story. When a message is delivered to a receiving clerk, he puts it into a pasteboard cylinder, drops the latter into a pipe, the upper part of which is connected with an exhaust blower, and the
message is sent to the operating room without much loss of message is sent to the operating room without much loss of
time. When an operator in the room above receives a dispatch from abroad, he writes it out and delivers it to a clerk to copy. It is then put into an envelope and addressed, and dropped through a tube to the basement, where it is given to a boy for delivery to the person for whom it is intended. These arrangements seem to work very satisfactorily, and interested us exceedingly. 'The operating room, however, excited our greatest admiration, and it seems to have been designed to please the eye as well as for the efficient performance of the work. Nearly 400 wires are brought into this room and connected with the instruments, which are generally.operated by sound ; though there are a few printing instruments, in addition to those of the old and Stock Telegraph Company: The batteries are on the sixth story, occupying the greater part of this floor, and give the visitor, who knows the effects that can be produced with even a few cells, a very vivid idea of the company's business. Any one who gets up to this hight in the building should continue his ascent until he stands on the roof surmounting the clock tower, for the sake of the magnificent view. Standing in
this position, the beholder seems to be almost on a level with the spire of Trinity church, and the city and its environs present somewhat the appearance of an enormous map.
On retracing his steps, the visitor will do well to take a trip in the water balance elevator, and notice how smoothly and quickly it works. The principle by which the car is moved is exceedingly simple. It is balanced over a large pulley by an iron bucket which is connected to it by a rope. If water be admitted in the bucket, it descends and raises the elovator car; if the water is let out, the car descends, and
can be held at any point of its path, by the application of a can be held at any point of its path, by the application of a
friction clutch. In this brief sketch, we have merely glanced at the prominent features peculiar to the building, which, in design and construction, will bear comparison with the many other elegant structures in New York, and is an ornament to that part of the city in which it is located.

A NEW STYLE OF BOOK-MAKING NEEDED.

There are few books which have more than a temporary life or a temporary value. Like the daily newspaper, nine books out of every ten, perhaps ninety-nine in the hundred,
serve a present purpose, are read and thrown aside. This serve a present purpose, are read and thrown aside. This
leaving out of the account the great mass of books which have no purpose and are never read. Even of standard books in science or literature, new editions are constantly supprseding the old, and though the work itself be immortal, the individual copies have but a brief existence. Today the the book stores are full of the "latest edition;" tomorrow shelves of second-hand dealers. In a short time the fireplace shelves of second-hand dealers. In a short time the fireplace
or the paper mill have made an end of all but the struggling or the paper mill have made an end of all but the struggling
copies in unused libraries. Not one copy in a million is worn out by use, yet most books are printed and bound as though they were to be used for ever.
The direct consequence is that a man who has to read, say a hundred books a year-and he will have to d, something like that to keep up with the drift of thought in its various Appartments-such a man will have to pay for a hundred bindings which he does not want, a hundred packets of thick paper which he has no use for, and an uncertain but certainly large bill of charges for carriage, handling, and the like,
which might for the most part be avoided. A secondary con. which might for the most part be avoided. A secondary con- -
sequence is that few men can afford to buy many books, and those who do buy have to stand the excessive cost of small editions.
It is no doubt more satisfactory to the booksellers to handle a few books at a large price than a multitude of cheap ones,
the profit being the same, and naturally they favor that method of publishing. Nevertheless we believe that the nuccessful book maker of the future will print for the million as well as for the few, and be the gainer by it. We believe, too, that any responsible firm which should enter at once upon the work of printing good books, especially scientific
books, so that they could be sold for a quarter the price now asked for nooks of the kind, would achieve a splendid sucсенs. But they would have to print editions of a hundred thousand.
The book publisher prints an edition of a thousand copies, say of Helmholtz's "Essays," charges two dollars or two and a into a pamphlet a greater amount of matter at an immensely greater cost, taking illustrations and all into account, prints fifty or seventy-five thousand copies, and makes a proft,sell ing them at one tenth the price of the book. Printed on ing them at one tenth the price of the book. Printed on
thin yet clean white paper, on type the size of that of this page, the book could be sold in like quantity, unbound, for
the price of the magazine, and at a greater profit, the first the price of the magazin
cost being so much less.

We have taken an extreme case, a book not calculated to lee very popular, believing that the market for even such cheap enough. A work like Draper's " Conflict of Religion and Science" would outsell any magazine at the same price.

Of course an enterprise of this sort would have to be con ducted with great discretion-as every new venture must-
and possibly with a preliminary outlay like that involved in starting a successful magazine. The first issue might
take time to convince the public of the real existenc of the enterprise, and to prove itself worthy of confidence; this done, its success would be morally certain.
The comparative failure of several excellent series of nominally cheap scientific publications is no ground for doubting the success of a more liberal scheme such as we have suggested. The little pamphlets in question have really been very dear. Containing not a tenth as much mat ter as a Harper's or Scribner's Magazine-chiefly reprint matter at that-their price has been twenty-five cents. Printed on heavy toned paper and preunly covered, they were undoubtedly worth twenty-five cerits as things go: but the mass of readers have no money to spare for such luxuries At ten cents a copy, the pamphlets would find thousands of Said a prominent publind a hundred.
Said a prominent publisher to the writer not long ago:
The book business has seen its best days. Men The book business has seen its best days. Men do not read books any longer, they read the papers and magazines." In view of this change of habit in the reading world, the proper thing for the book makers to do is to change their habits accordingly. To a limited extent, high-priced, handsomely bound books will always be called for, but not by the multitude. 'To reach the masses, the book makers will lide to meet the publishers of periodicals on their own grounds, and give an equal amount of matter for the same price, and give when it is wanted.
To the objection that newspapers and magazines have their advertising pages to help them, it n ed only be sad that a book in pamphlet form will carry advertisements just
as well as a magazine; and with as large a circulation asas well as a magazine; and with as large a circulation
sured, the advertising pages would be just as valuable.

WHAT ARE BACTERIA

'Iruly a question of Life and Death! In their microscopic field of existence, the great battie of biology, the problem of life's beginning, must be decided. So, too, one of the great est problems of pathogenesis hinges on their origin and ef-
fects. Are they or are they not the cause of endemic and sofects. Are they or are they not the cause of endemic and so-
called "specific" contagious diseases?-a class of diseases which have been aptly described as distinguishing one country from another, one year from another; which have formed epochs in history, and, as Niebuhr has shown, have in!!ubut of empires; fall of cities suchasies and disable Heets take the lives of criminals which justice has not condeı.in od • redouble the dangers of crowded hospitals; infest the habi tations of the poor, and strike the artizan in his streugth down from comfort to helpless poverty; carry away the in fant from the mother's breast, the old man at the, end of life,
and fall with excessive fatality on strong men in their prime and vigor.

What are bacteria:

Four answers have been given to this question. Ehren berg's, that they are animal organisms of the lowest grade having an individuality of their own; Hallier's, that they are of the nature of spores, produced from and destined to develope into some of the simpler microscopic fungiCohn's, that they represent the free-swiming stage in the existence of certain alg æ; Bastian's, that they are the first and most common developmental phase of newly evolved living matter, capable, either singly or in combination, of developing into many different kinds of living things.
Ehrenberg's view is quite obsolete. They are not animals,
nor are all agreed that they are vegetables. For these and nor are all agreed that they are vegetables. For these and
other doubtful organisms of the lowest rank, Haeckel has proposed a new kingdom. -the protista, intermediates between and connecting the animal and vegetable kingdoms, and from the modification of which both animals and plants have been derived. Barring the last clause, the proposition bids fair to and a grerally adopted, as it relegates to a sort of no-man's land a group of organisms in which animal and vegetable characteristics are so united that they cannot be classed with
ither animals or vegetables. either animals or vegetables.
All that is positively known of the origin of these urganfusions of organic substances exposed to light and air, and under other conditions not so clearly understood. The small est-usually globular-specks, ranging between a one-hun-dred-thousandth and a one-twenty-thousandth of an inch in diameter, have been variously denominated monads, microzymes, and plastide particles. According to Bastian, who adopts many organizations which may afterward present distinct characteristics of their nwn; though some of them, through default of necessary conditions, may never actually develope into higher modes of being. From those which do continue their development, he holds, bacteria and other forms, which others have thought specific, are produced by a direct process of growth and development. In size and character, these bacteria and others differ according to the degree of putrescibility of the solution in which they appear, the amount of ditions. From this point of view, a rigid specific classification is uncalled-for and impossible.
According to Hallier's view, the smallest living specks of living matter-he calls them micrococci-are minute par ticles of plasma or naked matter produced by the repeated ing-u ing-up of the protoplasmic contents of the larger reproductive cells of certain fungi. When introduced into a fluid ca pable of undergoing alcoholic fermentation, these microordinary yeast cells; in an acid fluid, or one which becomes acid through fermentation, the micrococci assume the elongated forms commonly called bacteria, but which he name
anthrococci. The first and the last named multiply by fis sion, while the cryptococci increase by a process of budding. By an elongated growth, the anthrococci are described as de veloping into distinct fungi of the oïdium type.
Thus, determined by the nature of the fluid in which they grow, micrococci are said to develope either at once into torule cells from which a perfect fungus may result, or into bacteria, which develop into segmented filaments and thence into distinct fungi of a different type The various fungi so developed are supposed by Hallier to be capable of reproduc ing micrococci, as already described, and so completing the circle of life : an hypothesis which seems to have no other foundation than a desire to escape the necessity of admitting the origin of micrococci de novo.
Cohn classifies more extensively. By his latest scheme acteria are diviled into four groups and six genera, as follows

I. Sphæro-lacteria II. Micro-bacteria
 Micrococcus

II. Micro-bacteria
IV. Spiro-bacteria

Bacterium
3 Bacillus
4 Vibrio
5 Spirillum
The first group appears to correspond with the micrococci of Hallier and the plastide particles of Bastian. They are exceedingly minute darkish or colored granules, frequently presenting the appearance of beaded chains. The whole group is divided by Cohn into three sections-the chromo gens, the micrococci of pigmentation ; the zymogens, those of
ferment ; and the pathogens, those of contagion. The chromogens have been the means of producing miracles, by causing bread to exude blood under "supernatural" circumstances, as in the instances described by Rivolta. Among the pathogen micrococci are m. vaccino, observed by Chauveau and Sanderson in vaccine lymph; the m. dipthericus, to which diphtheria is attributed, and m. septicus, found in the milary eruptions of typhus, pyemia, and some other diseases. Lr ,ert mentions also small pox, septicemia, mycosis intestj nalis, and puerperal infectious diseases, as characterized by he presence of members of this group.
The true bacteria Cohn divides into two species, b. termo and b. linevle". The first are the "dumb bell"' bacteria, so called from their shape. Their length is about one ninethousandth to one twelve-thousandth of an inch, and they move with a slowly vacillating motion. These Cohn regard as essentially the ferment of putrefaction, and is doubtful whether putrefactive changes can take place without them. b. lineolce are rod-shaped and somewhat larger. They move b. lineolce are rod-shaped and somewhat larger. They move
with a somewhat stronger and more rapid to-and-fro motion. Lebert says they are constantly present in malignant pustule They are regarded as essentially the ferment of sour milk.
The desmo-bacteria, or linked rods, as their name implies, are divided into two genera-bacillus, with transversely lined filaments, and vibrio, with filaments cylindrical and curved. The first Cohn divides into three species: (1.) B. subtiles, a slender, supple thread found in stale boiled milk; length one five-hundredth of an inch. It has a pausing motion, like that of a fish forcing its way through reeds. (2.) 3 . arthrracis, an immovable, oblong, highly refractive body found in the blood of animals having carbuncle; length one ten-thousandth to one two-bundredth of an incl. It is occasionally found in chains of two or three links, and is remarkable for being unaffected by water, alcohol, ether, acetic, nitric,or phosphoric acid, soda, potassa,or ammonia. Sul phuric acid readily destroys it. (3.) B. ulna, which is distinguished from (1) by the greater thickness of its filaments and by its rigidity; length one six-hundred-and-fiftieth of an inch. It is found in the stale infusion of boiled egg. The vibrios are distinguished from the bacilli by their rotary motion. V. rugula, a curved, Hexible thread one twenty-five-hundredth to one twelve-hundredth of an inch long, is ound in the evacuations of cholera, diarrhoea, etc. Its rotation is slow. V. serpens is distinguished by the greater number and regularity of its curves, by the rigidity of its fila ment, and its more rapid motion; length about one twothousandth of an inch.
The last group embraces the corkscrew bacteria. The three species of spirilla are diatinguished chietly by their relative size, the great regularity and closeness of their curves, and their uniform corkscrew motion. Lebert assocites spiral bacteria with relapsing fever.
Whether bacteria are really responsible for the various maladies attributed to them is a question which involves too many considerations to be discussed in this connection.

The Diamond Drill in Dentistry.

At a recent meeting of the First Judicial District Dental Society, W. G. A. Bonwill recommended the diamond drill for the permanent separation of the incisors. The shape is pyrmidal. It makes about five thousand revolutions per min ute, and, in corsequence of its extreme rapidity, causes not the least pain, even when cutting upon the most delicate enamel. Working so rapidly and perfectly, it will cut through or over the surface of the poorest fillings, without disturbing them in the least.

What Two Dollars Did

W. J. Banderson, of Syracuse, says that a two-line adver tisement, which he put in the Scientific American a few weeks ago,brought him replies from all parts of the country, repaying him a hundredfold.

The imperfections of the diamond, and in fact of all gems, are made visible by putting them into oil of cassia, when the slightest flaw will be seen.

