Srimntifir Gurnirnt.

MUNN \& CO., Editors and Proprietors. poblished waekly at
NO. BT PARK ROW, NEW YORK.
o. D. MUNN.

TERMS

One copy, one year, postage tncluded...
ClubRates:
Ten coples, one year, each $\$ 270$, postage included.
Over ten copies, same rate each, postage included.
$2 T$ By the new law, postage is payable in ad van
the eubscriber then recetves the paper free of charge
Norz.-Persons subscribing will please to glve their full names, and Post
Oifice and State address, plaicly written, and also state at which tme the Olfice and State address, plaicly written, and also state at which time they
wish their subscriptions to commence, otherwise they will be entered from Wigh their subscriptions to commence, otherwise they win be entered from
January 1 st , 1sí. In case of changing realdence state former address, as January 18t, 1siu. In case of changing residence state former address, as
well as give the new one. No clanges can be made unless the former address te given.

VOLUME XXXII., No 10. [New Series.] Thirtieth Fear.
NEW YORK, SATURDAY, MARCH 6, 1875.

Contents. (Illustrated articles are marked with an asterisk.)	
Air ourrenta and air floats........ 148 Light visible at distance (17)....... 159	
mimissioner of Patents' report.. 144 Poisons and molluscs 119	
an	
${ }^{\text {c wool blue (31 }}$	
Enyile driver, the Engisi	
efor	
Galaranoters (9)	
Grease from hones extracting (23)	
Heating butidinge by steam (25)... 15	
Ink, red and green (45) 153	
Intoxication, phenomuena of	
Lamp d	

REPORT OF THE COMMIBSIONER OF PATENTS.

The annual report for the year 1874 , which has recently been published, presents a very satisfactory statement of the transactions of the Office during that time, and of its present condition. There have been 13,599 patents issued, which exceeds the number for any other year except that of 1860. There have been some extraordinary expenditures, but the revenues havern
ing a balance of $\$ 58,989.76$
The Officinl Guastte, which among other things has superseded the annual Patent Office reports, has the advantage over its predecessor of furnishing from week to week a brief description of the patents which have been issued during the week then ended, setting forth at least the titles, claims, and drawings of such patents, iustead of delaying till the end of the year, and several months,and sometimes a year or two, longer, before such information used to be communicated to the public. A charge of six dollars a year must, however, be met by those who would avail themselves of this information instead of receiring it gratuitously, as was formerly done through the annual reports.
A very great improrement has recently been introduced by placing the illustrations in each case in immediate proximity with the respective descriptions and claims. This was done in 1853, but for some reason was afterwards discontinued and a different rule substituted. It is much superior in point of convenience.
We are promised a general index of all the patents issued from 1790 to 18% inclusive. This index is to consist of two sets of three volumes each: the one of these sets containing an alphabetical list of the names of all the patentees, and the other an index of the sulject matter of all the patents that have been issued. These will be of great service. The
aggregate cost of both sets, being forty dohars, will,however, aggregate cost of both sets, being forty doHars, will, however,
probably prevent their being widely disseminated except in some of our principal libraries
The Commissioner suggests the propriety of making the Official Gazette to a considerable extent a business paper by rendering it a medium for advertising. If there are no political objections to such a course, we see none other of sufficient importance to prevent its being adopted. The pre-

Department not only a publishing house, but also a compe.
titor for advertising titor for advertising patronage, will probably not be long continued with
posed practice.
In the necessity of a thorough and systematic revision the patent law, as set forth in the report, we heartily concur, and trust that such a measure will not long escape the attention of Congress. The present law is full of incongrui-
ties and imperfections, which loudly call for the hand of thorough reformation. It is in many important respects far more objectionable than the law which it superseded.
But with regard to the Commissioner's idea of providing in those of rejections, we see a very grave objection. How in those of rejections, we see a very grave objection. How
would such an arrangement be successfully conducted? The would such an arrangement be successfully conducted? The
same rule should be made applicable to all cases. Every patent that is allowed by an examiner should be brought leefore another tribunal for revision. A double examination would thus become necessary in all cases. If the examiners
are fit for their positions this is supertuous; not it would be pernicious. The wrongful granting of patent is less harniful than the wrongful refusing of one. If it be said that the examiners who review the first decisions should be men of more ability and exp?rience than they who make those decisions, then we say,discontinue the latter and let the better examiners decide in the first instance.
Practically the present arrangement is in substance the same as the Commissioner proposes in all doultful cases The first examinations are usually made by the assistant examiners. If there is any doubt as to the patentability of the subject matter of the application, a rejection is usually the result. A second examination is then called for, which brings the matter before the principal examiner. If the Commissioner, will establish the rule that no patent shall be allowed to issue until the matter is presented to the principal examiner for his approval, he will have what he desires, and without any additional complication or expense. No Patent will in that case issue without a review of the decision of the
Officer who makes the first examination, whether the patent be allowed or rejected.
The importance of rendering a patent unimpeachable was long since brought to the attention of Congress by a former Commissioner as will be seen by reference to the Patent Office report for the year 1855. Whether any such plan is practicable, without entailing more injury than benefit, is a matter of no little doubt, but one which is well worthy of serious consideration by the law-making power.
As to the wisdom or efficacy of the competitive ex amination of candidates for appointment or promotion, we have very grave doubts. A man of superficial abili-
ties will generally, on such an examination, far outshine ties will generally, on such an examination, far outshi
another of far more sterling and useful qualities. another of far more sterling and useful qualities. fresh graduate from a college, with no experience and perhaps but little common sense, would often, on such an exami nation, surpass the most experienced and useful examiner to exercise of a very sound discretion on the part of the appointing power, will lead to a wise conclusion in such cases. we do not think that such a conclusion can generally he reached through a competitive examination.

PROGRESS AND PROSPECTS OF SOLAR CHEMISTRY.

Several important circumstances unite to give unusual terest to the solar eclipse to occur in April nest. The progress of solar chemistry has brought investigators face to face with problems of universal reach and significance, for be more valuable the four minutes of laboratory work A new instrument, the siderostat, destined, it is thought, to effect a great revolution in astronomical observation, will immensely increase the efficiency of spectrum photography and the conditions under which the eclipse will be visible promise better opportunities for the observation of totality
than can be enjoyed again before the close of the current century, or, more precisely, April 16, 1893. In not one of the four total eclipses which occur in the meantime-1878, 1882, 1886, 1887-or in that of 1900 , will the duration of totality be so great, or the central line of the eclipse present stations so favorable for observation. A glance at the grander results accomplished during recent eclipses-following chiefly an claborate review of the work in a late issue of the London Times-may help to make clear the grounds on which the ex ectations of the present are based.
Between the eclipse of 1860 -during which photography decided the long vexed question of the origin and place of
the strange red prominences seen round the dark loody of the moon at the moment that the sun's disk is covered-and the eclipse of 1868 , the spectroscope had revealed the approximate composition of the sun's atmosphere, taken as a whole. The great point to be determined in 1868 was not simply the place and shape of the prominences, but their material. The result is well known, namely, that they consisted of glowing gas, or a mixture of such gases, shot to immense hights Almost simultaneoushere.
Almost simultaneously with this discovery, it was found that the prominences could be studied spectroscopically independently of eclipses; and observers were not long in finding out that,outside the bright round face of the sun, was an envelope of glowing hydrogen-the chromosphere-into which magnesium and sodium, and, more rarely, iron and other heavy metals, were injected from below, in the form vapors were not all mixed aner ascertained that the gases and vapors were not all mixed up together, but that the lightest, such as hydrogen, magnesium, and sodium, were generally
at top; and that, as the others were shot up from time to
time, some more frequently than others, the heavier were, time, some more frequently than others, the heavier were,
as a rule, located lower down in the solar atmosphere than the other.
During the eclipse of 1869 , the results of previous obser vations were confirmed ; the halo of light outside the promi nence envelope was photographed, and it was established that an unknown gaseous element extended beyond the hy drogen, hitherto accounted the lightest form of matter. The green line, by which this substance is distinguished, has no as yet been identified with that of any terrestrial element. Great preparations were made for the observation of the great eclipse, 1870 ; lut the weather was bad, and, though results of considerable value were obtained, nothing strikingly mportant was decided. Better fortune awaited the observers of the eclipse of 18 in. The corona was photographed, under nearly the same instrumental conditions, from three different places, and the similarity of the pictures proved, be. rond all doubt, that part of the corona was a solar appendage. Evidence was obtained, making it extremely probable that the light of the outer parts of the true solar corona-the coronal atmosphere, as Janssen proposed to call it-was stronger in the violet and ultra violet parts of the spectrum than elsewhere. And it was further established that, for some distance above the hydrogen envelope, as seen without an eclipse, less bright hydrogen existed. The inference was that the chromosphere-or lower atmosphere of the sunconsisted of brighter hydrogen and other vapors
Since 1871 the spectroscopic study of the chromosphere has been carried on vigorously under the clear sky of Italy. and the clearer sky of our mountain observatory in the Far West. Throrgh this thin atmosphere, 9,000 feet above the ea, Professor Young has been able to study a much mort complicated chromosphere than appears to ohservers lower down. Among other things, he has found that, along with magnesium, there frequently appears the vapor of the meta calcium, the principal characteristic lines of which can be seen only under the most perfect atmospheric conditions. In the meantime, extensive laboratory researches have been un dertaken for the elucidation of the phenomena noserved in the chromosphere. It has been proved that, in the case of any one metal present in the sun, the metal behaves exactly the same in the sun's atmosphere as it does when driven into vapor by the passage of the electric current between thecar bon poles of an electric lamp, thus making it possible to in terpret many appearances in the chromosphere, which would otherwise be inexplicable: as for instance, the almost com plete spectra of hrdrogen, the metals of the alkalies and alka line earths, and the metals of the iron class, while such met als as zinc and lead show only a few lines. The metals of the tungsten, antimony, silver, and gold classes show no traces of existence in the sun's atmosphere; nor do the met aloids, such as oxygen, carbon, nitrogen, sulphur, and the like, which make up more than half of the parts of our plan et, so far as known. It would appear, however, that the presence of the latter may be inferred. In fact, it has been claimed that we have, in the solar system, exactly such a record as we should expect if this large class of bodies ex sted in a comparatively cool part of the atmosphere, at a hight above the hotter lower strata. It is also claimed that granting this, it is possible to explain the various classes of stars hy supposing that, as a star grows older and colder, the metaloids are enabled to exist lower down in the atmos phere, and thus to change the character of the spectra of stars bright and hot into that associated with those which are dim and possibly colder; until at last the metaloidal rain, so to speak, falling on the metals below, gives the material of a future crust.
Associated with these chemical questions are physica questions of the greatest interest, the solution of which will help to make clear the development of ourUniverse from neb ule to suns and worlds. How far the coming eclipse will further the inquiry remains to be seen. It is confidently ex pected that the result to be accomplished will be the "fruit and crown" of the work begun in 1860, and carried on with so much zeal by all civilized governments since that time.
'The course of the central line of this eclipse is mainly sea track, yet, in its passage from the Nicobar islands. in th Bay of Bengal, to Siam, it crosses several points that will af ford good stations for observation. At Kaikul, in the island of Camorta, totality will continue four minutes twenty-seven secouds. On Bentinck Island, the maximum duration of to tality will be four ninutes seventeen seconds; at Mergui,four minutes six seconds; at Tenasserim, three minutes fifty-seven seconds; near Bangkok, Siam, to which point astronomers have heen invited by the King, the total eclipse will last thref minutes fifty-four seconds.

AN IMMENSE TELEGRAPHING ESTABLIBHMENT.

The Western Cnion Telegraph Company moved into their new building, at the corner of Broadway and Dey street, in this city, on the first of February. Moving a large business of any kind from one place to another is usually a roublesome atfair, but the peculiarities connected with this business rendered the moving a matter of more than ordi nary complication. A merchant can send the fixtures and goods to the new store, and only loses the time required for rearranging them. The telegraph company, however, mus continue sending messages from one building as long as it is occupied, and on moving to new quarters must find ever! hing ready for carrying on the work. The wires cannot he hifted from the old building to the new, but a new set must be provided, and a considerable number of new instruments must be in position before any of the old ones can be taked down. So we find that the most of the apparatus and arrange ments in the new quarters of the company are also new. W
pation, and found so much to please and interest us th
propose to give a short description of it to our readers.
The messa a short description of it to our readers. and the operating room is in the seventh story. When a message is delivered to a receiving clerk, he puts it into a pasteboard cylinder, drops the latter into a pipe, the upper part of which is connected with an exhaust blower, and the message is sent to the operating room without much loss of
time. When an operator in the room above receives a dis. patch from abroad, he writes it out and delivers it to a clerk to copy. It is then put into an envelope and addressed, and dropped through a tube to the basement, where it is given to a boy for delivery to the person for whom it is intended. These arrangements seem to work very satisfactorily, and interested us exceedingly. 'The operating room, however, excited our greatest admiration, and it seems to have been designed to please the eye as well as for the efficient performance of the work. Nearly 400 wires are brought into this room and connected with the instruments, which are generally.operated by sound ; though there are a few printing instruments, in addition to those of the old and Stock Telegraph Company: The batteries are on the sixth story, occupying the greater part of this floor, and give the visitor, who knows the effects that can be produced with even a few cells, a very vivid idea of the company's business. Any one who gets up to this hight in the building should continue his ascent until he stands on the roof surmounting the clock tower, for the sake of the magnificent view. Standing in
this position, the beholder seems to be almost on a level with the spire of Trinity church, and the city and its environs present somewhat the appearance of an enormous map.
On retracing his steps, the visitor will do well to take a trip in the water balance elevator, and notice how smoothly and quickly it works. The principle by which the car is moved is exceedingly simple. It is balanced over a large pulley by an iron bucket which is connected to it by a rope. If water be admitted in the bucket, it descends and raises the elovator car; if the water is let out, the car descends, and
can be held at any point of its path, by the application of a can be held at any point of its path, by the application of a
friction clutch. In this brief sketch, we have merely glanced at the prominent features peculiar to the building, which, in design and construction, will bear comparison with the many other elegant structures in New York, and is an ornament to that part of the city in which it is located.

A NEW 8TYLE OF BOOK-MAKING NEEDED.

There are few books which have more than a temporary life or a temporary value. Like the daily newspaper, nine books out of every ten, perhaps ninety-nine in the hundred,
serve a present purpose, are read and thrown aside. This serve a present purpose, are read and thrown aside. This
leaving out of the account the great mass of books which have no purpose and are never read. Even of standard books in science or literature, new editions are constantly supprseding the old, and though the work itself be immortal, the individual copies have but a brief existence. Today the the book stores are full of the "latest edition;" tomorrow shelves of second-hand dealers. In a short time the fireplace shelves of second-hand dealers. In a short time the fireplace
or the paper mill have made an end of all but the struggling or the paper mill have made an end of all but the struggling
copies in unused libraries. Not one copy in a million is worn out by use, yet most books are printed and bound as though they were to be used for ever.
The direct consequence is that a man who has to read, say a hundred books a year-and he will have to d, something like that to keep up with the drift of thought in its various Appartments-such a man will have to pay for a hundred bindings which he does not want, a hundred packets of thick paper which he has no use for, and an uncertain but certainly large bill of charges for carriage, handling, and the like,
which might for the most part be avoided. A secondary con. which might for the most part be avoided. A secondary con- -
sequence is that few men can afford to buy many books, and those who do buy have to stand the excessive cost of small editions.
It is no doubt more satisfactory to the booksellers to handle a few books at a large price than a multitude of cheap ones,
the profit being the same, and naturally they favor that method of publishing. Nevertheless we believe that the nuccessful book maker of the future will print for the million as well as for the few, and be the gainer by it. We believe, too, that any responsible firm which should enter at once upon the work of printing good books, especially scientific
books, so that they could be sold for a quarter the price now asked for nooks of the kind, would achieve a splendid sucсенs. But they would have to print editions of a hundred thousand.
The book publisher prints an edition of a thousand copies, half a copy, and loses money. The magazine publisher puts into a pamphlet a greater amount of matter at an immensely greater cost, taking illustrations and all into account, prints fifty or seventy-five thousand copies, and makes a proft,sell ing them at one tenth the price of the book. Printed on ing them at one tenth the price of the book. Printed on
thin yet clean white paper, on type the size of that of this page, the book could be sold in like quantity, unbound, for
the price of the magazine, and at a greater profit, the first the price of the magazin
cost being so much less.

We have taken an extreme case, a book not calculated to lee very popular, believing that the market for even such cheap enough. A work like Draper's " Conflict of Religion and Science" would outsell any magazine at the same price.

Of course an enterprise of this sort would have to be con ducted with great discretion-as every new venture must-
and possibly with a preliminary outlay like that involved in starting a successful magazine. The first issue might
take time to convince the public of the real existenc of the enterprise, and to prove itself worthy of confidence; this done, its success would be morally certain.
The comparative failure of several excellent series of nominally cheap scientific publications is no ground for doubting the success of a more liberal scheme such as we have suggested. The little pamphlets in question have really been very dear. Containing not a tenth as much mat ter as a Harper's or Scribner's Magazine-chiefly reprint matter at that-their price has been twenty-five cents. Printed on heavy toned paper and pre.uly covered, they were undoubtedly worth twenty-five cerits as things go: but the mass of readers have no money to spare for such luxuries At ten cents a copy, the pamphlets wou
buyers where they now find a hundred.
uyers where they now find a hundred.
Said a prominent publisher to the w
Said a prominent publisher to the writer not long ago:
The book business has seen its best days. Men The book business has seen its best days. Men do not read books any longer, they read the papers and magazines." In view of this change of habit in the reading world, the proper thing for the book makers to do is to change their habits accordingly. To a limited extent, high-priced, handsomely bound books will always be called for, but not by the multitude. 'To reach the masses, the book makers will have to meet the publishers of periodicals on their own grounds, and give an equal amount of matter for the same price, and give when it is wanted.
To the objection that newspapers and magazines have their advertising pages to help them, it n ed only be sad that a book in pamphlet form will carry advertisements just
as well as a magazine; and with as large a circulation asas well as a magazine; and with as large a circulation
sured, the advertising pages would be just as valuable.

WHAT ARE BACTERIA

'Iruly a question of Life and Death! In their microscopic field of existence, the great battie of biology, the problem of life's beginning, must be decided. So, too, one of the great est problems of pathogenesis hinges on their origin and ef-
fects. Are they or are they not the cause of endemic and sofects. Are they or are they not the cause of endemic and so-
called "specific" contagious diseases?-a class of diseases which have been aptly described as distinguishing one country from another, one year from another; which have formed epochs in history, and, as Niebuhr has shown, have in!!uenced not only the fall of cities suchas Athens and Florence take the lives of criminals which justice has not conder.in ad redouble the dangers of crowded hospitals; infest the habi tations of the poor, and strike the artizan in his streugth tations of the poor, and strike the artizan in his strelugth
down from comfort to helpless poverty ; carry away the infant from the mother's breast, the old man at the end of life, and fall with excessive fatality on strong men in their prime and vigor.

What are bacteria!

Four answers have been given to this question. Ehren berg's, that they are animal organisms of the lowest grade having an individuality of their own; Hallier's, that they are of the nature of spores, produced from and destined to develope into some of the simpler microscopic fungiCohn's, that they represent the free-swiming stage in the existence of certain alg æ; Bastian's, that they are the first and most common developmental phase of newly evolved living matter, capable, either singly or in combination, of developing into many different kinds of living things.
Ehrenberg's view is quite obsolete. They are not animals,
nor are all agreed that they are vegetables. For these and other doubtful organisms of the lowest rank, Haeckel has proposed a new kingdom-the protista, intermediates between and connecting the animal and vegetable kingdoms, and from the modification of which both animals and plants have been derived. Barring the last clause, the proposition bids fair to and a grerally adopted, as it relegates to a sort of no-man's land a group of organisms in which animal and vegetable characteristics are so united that they cannot be classed with
ither animals or vegetables. either animals or vegetables.
All that is positively known of the origin of these urganfusions of organic substances exposed to light and air, and under other conditions not so clearly understood. The small est-usually globular-specks, ranging between a one-hun-dred-thousandth and a one-twenty-thousandth of an inch in diameter, have been variously denominated monads, microzymes, and plastide particles. According to Bastian, who adopts many organizations which may afterward present distinct characteristics of their nwn; though some of them, through default of necessary conditions, may never actually develope into higher modes of being. From those which do continue their development, he holds, bacteria and other forms, which others have thought specific, are produced by a direct process of growth and development. In size and character, these bacteria and others differ according to the degree of putrescibility of the solution in which they appear, the amount of ditions. From this point of view, a rigid specific classification is uncalled-for and impossible.
According to Hallier's view, the smallest living specks of living matter-he calls them micrococci-are minute par ticles of plasma or naked matter produced by the repeated ing-upion of the nuclei of fungus spores, or by the break-ing-up of the protoplasmic contents of the larger reproducpable pable of undergoing alcoholic fermentation, these microordinary yeast cells; in an acid fluid, or one which becomes acid through fermentation, the micrococci assume the elongated forms commonly called bacteria, but which he name
anthrococci. The first and the last named multiply by fis sion, while the cryptococci increase by a process of budding By an elongated growth, the anthrococci are described as de veloping into distinct fungi of the oïdium type.
Thus, determined by the nature of the fluid in which they grow, micrococci are said to develope either at once into torule cells from which a perfect fungus may result, or into bacteria, which develop into segmented filaments and thence into distinct fungi of a different type The various fungi so developed are supposed by Hallier to be capable of reproduc ing micrococci, as already described, and so completing the circle of life : an hypothesis which seems to have no other foundation than a desire to escape the necessity of admitting the origin of micrococci de novo.
Cohn classifies more extensively. By his latest scheme bacteria are divilled into four groups and six genera, as follows

4 Vibrio
6 Spirochæta
The first group appears to correspond with the micrococci of Hallier and the plastide particles of Bastian. They are exceedingly minute darkish or colored granules, frequently presenting the appearance of beaded chains. The whole group is divided by Cohn into three sections-the chromo gens, the micrococci of pigmentation ; the zymogens, those of
ferment ; and the pathogens, those of contagion. The chromogens have been the means of producing miracles, by caus ing bread to exude blood under "supernatural" circumstances, as in the instances described by Rivolta. Among the pathogen micrococci are m. vaccino, observed by Chauveau and Sanderson in vaccine lymph ; the m. dipthericus, to which diphtheria is attributed, and m. septicus, found in the milary eruptions of typhus, pyrmia, and some other diseases. Lr,ert mentions also small pox, septicæmia, mycosis intestinalis, and puerperal infectious diseases, as characterized by he presence of members of this group.
The true bacteria Cohn divides into two species, b. termo and b. lineole". The first are the "dumb bell" bacteria, so called from their shape. Their length is about one ninethousandth to one twelve-thousandth of an inch, and they move with a slowly vacillating motion. These Cohn regard, as essentially the ferment of putrefaction, and is doubtful whether putrefactive changes can take place without them. b. lineole are race con b. lineolce are rod-shaped and somewhat larger. They move
with a somewhat stronger and more rapid to-and-fro motion. with a somewhat stronger and more rapid to-and-fro motion.
Lebert says they are constantly present in malignant pustule, They are regarded as essentially the ferment of sour milk.
The desmo-bacteria, or linked rods, as their name implies, are divided into two genera-bacillus, with transversely lined filaments, and vibrio, with filaments cylindrical and curved. The first Cohn divides into three species: (1.) B. subtiles, a slender, supple thread found in stale boiled milk; length one five-hundredth of an inch. It has a pausing motion, like that of a fish forcing its way through reeds. (2.) 3 . arthrracis, an immovable, oblong, highly refractive body found in the blood of animals having carbuncle; length one ten-thousandth to one two-bundredth of aninch. It is occasionally found in chains of two or three links, and is remarkable for being unaffected by water, alcohol, ether, acetic, nitric,or phosphoric acid, soda, potassa,or ammonia. Sul phuric acid readily destroys it. (3.) B. ulna, which is distinguished from (1) by the greater thickness of its filaments and by its rigidity ; length one six-hundred-and-fiftieth of an inch. It is found in the stale infusion of boiled egg. The vibrios are distinguished from the bacilli by their rotary motion. F. rugula, a curved, Hexible thread one twenty-five-hundredth to one twelve-hundredth of an inch long, is ound in the evacuations of cholera, diarrhoea, etc. Its rotation is slow. V. serpens is distinguished by the greater number and regularity of its curves, by the rigidity of its filament, and its more rapid motion; length about one twohousandth of an inch.
The last group embraces the corkscrew bacteria. The three species of spirilla are diatinguished chietly by their relative size, the great regularity and closeness of their curves, and their uniform corkscrew motion. Lebert assocites spiral bacteria with relapsing fever.
Whether bacteria are really responsible for the various maladies attributed to them is a question which involves too many considerations to be discussed in this connection.

The Diamond Drill in Dentistry.

At a recent meeting of the First Judicial District Dental Society, W. G. A. Bonwill recommended the diamond drill for the permanent separation of the incisors. The shape is pyrmidal. It makes about five thousand revolutions per min ute, and, in corsequence of its extreme rapidity, causes not the least pain, even when cutting upon the most delicate en amel. Working so rapidly and perfectly, it will cut through or over the surface of the poorest fillings, without disturbing them in the least.

What Two Dollars Did.

W. J. Banderson, of Syracuse, says that a two-line adver isement, which he put in the Scientific American a few weeks ago,brought him replies from all parts of the country, repaying him a hundredfold.

The imperfections of the diamond, and in fact of all gems, are made visible by putting them into oil of cassia, when the slightest flaw will be seen.

