ASTRONOMICAL NOTES.

Observatory of Vassar College.
For the computations of the following notes (which are approximate only) and for most of the observations, I am
indebted to students. indebted to students.

Positions of Planets for January, 1875. Mercury.
On the 1 st of January, Mercury rises at 7 h . 4mi. A.M., and sets at 3 h . 53 m . P.M. On the 31st, Mercury rises at 7h. 57 m. A.M., and sets at $6 \mathrm{~h} .4 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.
Mercury and Saturn will be in conjunction on the morning of the 27 th , and must be nearly together in the evening; but they are so far south in declination, and set so early, that it will not be easy to see them.

Venus.

Venus should be looked for in the morning, being west of the sun after the transit.
It rises at $4 \mathrm{~h} .56 \mathrm{~m} . \mathrm{A} . \mathrm{M}$. on the 1 st , and sets at 2 h .46 m . P.M. On the 81 st , Venus rises at 4 h . 13 m . A. M., and sets at $1 \mathrm{~h} . ~ \check{0} 1 \mathrm{~m}$. P.M.
Venus attains its greatest brilliancy on the 12 th, at which time it pussess the meridian a little after 9 A.M., at the low altitude of $: 31^{\circ}$

On the 1st, Mars rises at 2 h .18 m . A.M., and sets at 0 h . $4 \pi \mathrm{~m}$ P.M. On the 31 st , Mars rises at 1 h .50 m. A.M., and sets at $11 \mathrm{~h} .: 88 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.
The apparent diameter of Mars is now rery small, and its southern declination is large; of eourse it is not a good time for making observations on the planet.

on the plan Jupiter.

Although Jupiter's relative position is becoming better, it is yet not very favorable to observers. Jupiter rises on the 1 st at 1 h .41 m. A.M., and sets at 0 h .29 m. P.M. On the 31 st , Jupiter rises at 11 h .53 m . P.M., and sets at 10 h . 35 m . the next morning. It can be beautifully seen at early morning. saturn.
Saturn, also, is far south in declination, rises in the morning, and sets early in the evening. On the 1st, it rises at 9 h .94 m . A M., and sets at 7 h .10 m . P.M. On the 31st, it rises at 7 h .36 m . A.M., and sets at 5 h .30 m . P.M.
Saturn and Mercury are nearly in the same position nea the last of January.

Uranus

Cranus is in northern declination among the small stars of Cancer. On the 1st, it rises at 7 h .18 m . P.M., comes to meridian at 2 h .22 m . in the morning, and sets at 9 h .26 m . On the 31 st , its position is very good. It rises at 5 h .15 m . P.M., comes to meridian about midnight, at an altitude of 66°, and sets at 7 h .25 m . the next morning.

Neptune.

Neptune is too far off to be seen without the aid of good telescopes. It rises at 0 h .29 m . P.M. on the 1 st , and sets at 1 h . 35 m . the next moming. On the 31 st , it rises at 10 h .31 m . A.M., and sets at 11 h .37 m . P.M.

Meteors.
Very bright meteors were seen on the evenings of December 11,12 , and 15. One which passed from the zenith to the south west, at 8 h .27 m . P.M. on the 11 th , was so large as to attract the attention of persous who occupied a brilliantly lighted room.

Sun Spots.

'l'he record is from November 16 to December 16 inclusive. The photographic picture of the 16 th shows the group of spots seen on the 14 th , consisting of several very small spots. The next picture was taken on the 19th, when one large spot appears near the place where we should look for the group. Clouds prevented photographing again until the 25th, when a large spot was seen near the center of the disk, preceded by a smaller one. On the 26th, no change took place, except that caused by the sun's axial motion. From this time until December 10, on account of clouds and wind, but three pictures were taken, and no spots were observed except a very small group on December 4. December 10, a group of good size appeared, of which five photographs have been taken, showing marked changes during its passage across the disk. The picture of the 10th shows three spots of moderate size just within the eastern limb. On the 12th, the most westerly of these was surrounded by small spots arranged so as to form nearly a complete circle. On the 15 th , the group consisted of five distinct spots of good size. On the 16th, no change.

GLUE

During the progress of a recent investigation, 1 observed," says S. Dana Hayes, in the Americen Chemist, "some chemi cal characters of commercial glue, that I believe have not been previously described.
Analyses of two samples of white glue, of the best grade. yielded the following results

	$\because \mathrm{Yo}$ trac. 1 ex glue.	Frozen gl
Moisture (loss of weight at $212^{\circ} \mathrm{Fah}$). . . Gelatin, with a little animal fiber and	16.70	$16 \cdot 28$
fats.	79.85	80.42
Carbonate of lime	$1 \cdot 42$	$1 \cdot 33$
Sulphate of lime.	$0 \cdot 41$	$0 \cdot 34$
Phosphate of nagnesia	$0 \cdot 35$	0.31
Alkaline salts.	$0 \cdot 17$	$0 \cdot 12$
Silica, oxide of iron, etc	0.09	0.08
Oxide of zinc.	$1 \cdot 01$	$1 \cdot 12$

Total
100.00

$\overline{100.00}$

Analyses of ten more samples of frozen and sheet glue, of common grades, and from different makers, showed the pro portion of water contained in them to vary from fourteen to eighteen per cent, averaging seventeen per cent. And the proportion of ash or mineral matter varied from three to sir
per cent, uveraging rather less than four per cent. Two o these samples contained about one per cent
and two of them contained sulphate of line.

Analyses of two samples of commercial gelatin averaged sixteen and a half per cent of water, and $2 \cdot 56$ and $3 \cdot 11$ per cent of ash, respectively. There was no oxide of zinc or sulphate of lime in these gelatins.
The presence of so much water was quite unexpected and as the quantity is rearly the same in fresh and in seasoned specimens, it is not a make-weight, although steam is very freely used in the rooms where glue is packed by the manu facturers. The carbonate of lime comes from the quick lime used for cleaning and preserving the animal matter, or glue stock, while the sulphate of lime is formed by the addi-
tion of small quantities of tion of small quantities of sulphitricacid during the process of manufacture, to neutralize the lime that is carried forward ly the solutions of glue. The oxide of zinc is said to be added to prevent souring, or the acidity caused by decomposition, and it also improves the color of the glue; but it is not very generally used, as these analyses indicate. I have heard of the use of sulphate of rinc, alum, magnesia, etc., by gluemakers, but I did not find any other substance than those named above in these specinens, which represented the article commonly sold and used.
The impure glues, or those containing the most mineral matter, became almost inseluble after they had been broken into small pieces and heated in a hot air bath (copper oven) at 212° Fah., for two or three hours, until they ceased to lose weight; they then soften and become dough-like, but do not dissolve when boiled in water for some time. The purer gelatins were not so much injurell, and one specimen, containing only 2.56 per cent of ash, was not materially affected by this thorough drying. The solid sheet ghe, while drying in this way, tumefied, and became very porous: the frozen glue did not alter in structure.
The conclusions drawn from these experiments was that the excess of lime combines with the gelatin and, perhaps with the extraneous animal matters of the glne, at the high temperature, forming a compound like lime soap, as the whole quantity of lime is retained in the insoluble portion left after boiling the dried glue in water. Such an explanation accounts for the difference noticed in the effect of drying upon gelatin and common glue.

Inventions Patented in England by americans.
Complled from the Commissloners of Patents' .Journa
From Novemher 2 to November 26, 1874, Inclusire. attaching Teapot handele, etc.-Tiffany \& Co., New York city Bale Tig.-W. Cooper, Tyler. Texas.
Barrel.-A. Nabon, New York city.
Boorb and biot Maging machinert.-F. D. Ballou et cul. Bonton, Mass, Carbureting Air.-T. b. Fogarty, Warren, Mass.
Cartridee Shele.-W. F. Parker, Meriden, Conn.
Chemical Telegraph, etc.-W. E. Sa wyel, Washingt
Distilued Water.-W.A. Lighthall, Brooklyn, N. Y.
Drain Pipes, etc.-H. Hirsch, New York city.
Dress Protector.-c. Murnhy, Cumden, Me.
Driss Protector.-C. Murphy, Cumden, Me.
Fabtening Betrons, exc.-Z. K. Young, Ftiladelphia, Pa
Fabtening Butrons, xtc.-Z. K. Toung, Filliadelph
File C Cuting Machine.-c. Vogel, Fort Lee, N. J.
File Cutting Machine.-C. Voge, Fort
Fish Joint. - J. Hampoon, Newburgb, N. Y
girinding and Polishing Machinery.-J. h. Volk. Chicago, ill. Ironing Machine.-T. s. Wiles, New York city.
Lightine Gabs.-H. b. Stockwell et al., Brooklyn, N. Y.
Loom Weft Stop.-J. J. Swltzer, Boston, Mabs.
Mecianical Toy.-W. A. P. La Grove of N. Y. city), London, England.
Nobing Device for animals.-w Crighton, Fall River, Megs, Nosing Device for Animalb.-W. Crighton, Fall River, Mass. Planoforte.-A. Stelnway, New York city.
Preparina Textile Fibers.-H. B. yeech Ratchet Brace.-J. W. Evans, New York city.
Reapingt and Bunding Girain.-E. Horton, Hartford, Conn.
Refrigerator.-J. J. Bate, Brooklyn, N. Y.
lotary Motorand Pimp.- J. H. Field, Edgelield, Tenu.
Sewing Michine.-Singer Manufacturing Company, New
ewing M.ichine.-Singer Manufacturing Company, New York city

Steas Eveine.-T. L. Jones, Natchez, Miss.
Stocking Darner. - O. S. Hobmer, Boeton, Masb.
Stopper.-N. Thompton (of Brooklyn, N. Y.), London, England
Street Lasp.-E. Parkman (of Madisoz county, Tenu.), London, England. Trlegraph.-W. E. Sawyer. Wabhington, D. C.
Trimang Wall Papers.-H. L. Todd, Cornin

Ing, N. Y., etat.
Tyrib on whells.-E. Mellon, Scranton, Pa.
Water Mbter.-F. W. Brooks, New York cits

NEW BOOKS AND PUBLICATIONS

($\$ 5$, gold) a year. London: J. Van Voorst, 1 Paternoster Row. During the past three or four years, the Chemical Society of London has heen engaged in an undertaking which deserves the support and recognition of all who are interested in the progress of physical, and especially chemicsi,
sclence. For the past few years of its existence, the soclety pnblighed sclence. For the past few years of its existence, the soclety pnblished quar-
terly a report of lts proceedings, including the papers on chemical subjects whitch had been read at themectings. Afterwards it was found desirable to fssue the Journal monthly; and thils formit retained till the year 1881, when, with the ald of funds, partly derived from voluntary subscriptions by the Fellows of the Soclety, partly from a subsidy recelved from the British Association for the Advancement of sclence, the soclety undertook the task of printing, not only
papers read at the meetings in London, but abstracts giving the results of papers read at the meetings in London, but abstracts glithe the results of
every memoir on chemicalor allied physical subjects publlshedelther at home or abroad. The monthly Journal of the Chemical Soclety thus becomes complete chronicle of the progrcss of chemistry all over the world. Taking the last number of the journal, we ind that the 100 pages of which it conslists contain about 150 abstracts of papers taken from seventeen different journals, including the Annales de Chimie et de Physique, the Comptes Rendux of the
Frencl Acsuemy, the Berichte of the Berlin Chemical Soclety, Poggendorf: Annalen, and the Journat.fur praktische Chemie. The student of theoretical chemistry or the manufacturer, the mineralogist, the physiologlst, or the sclentlifc agriculturist, may here ind a complete and yet conclise record of all
that has been lately done in the department in whleh he is specially interested. We trust that such an important undertaking will not be allowed to fall to the ground for want of support
Tre Polarization of Light. By William Spottiswoode, F.R.S
willam spottiswoode is the Vice-President of the Royal Soctety;
Mr. Willam Spottiswoode is the Vice-President of the Royal Soclety; and,
athough an amateur, is widely known as a profound and accomplished clentist. The book before us (No. 6 of Messis. Macmillan's excellent Natcre Series) contains the substance of lectures delivered to the work
people in the employ of Messrs. Spottiswoode \& Co., printers, etc. The ranch of optical science herefn treated is clearly elucidated, and its great mportance in technology and its beauty as a study of natural phenomena

Tables for the Determination of Minerals yy thelf PiysiCal Properties, etc., for the Use of Students in the Field. Translated from th
Frazer, Jr., A.M., et
We have here an exceedingly useful and compendious guide for explorers, who frequently have to pronounce on substances in situ, where no laboratory 18 at hand. The eminent author gives many new lights on classilication, and his alm has been throughout to render the sclence of mineralogy as clear and accessible as its complicated nature will permit. The transl vesets or ine Gander
ects of the Garden, their Habits, ytc. By A. s. Packard,
Jr., Editer of "The American Naturalist"" etc. Nso (by the Jr., Editor of "The American Naturalist," etc. Also (by the
same Author) Insects or the Pond And Stream. Price 25 cents each. Boston, Mass.: Fstes and Iauriat, 143 Washington street.
Two numbers (of twelve) of a moss. Interesting serles of handbooks of natu-
ral history. We commend them especially to the noticeof our young readers, The
The Stone Age, Past and Present. My e. b. Tyler, Author of Primitive Culture, etc. And "Theory of a Nervous Ether, Estes and Lauriat, $1+3$ Washington street
The first of these essays is an interesting treatise on the nise of stone fumple mentsinialluges, and it points ont some forcible instances of the survival of the use of such tools to this day. The second paperis a resume of the theo-
les on a subject which has been widely auld discursively treated, with som rig on a subject which has been widely anll discursively treated, with some f the eminent author.
Register of Rural Aphans. Price :3 cents. Albany, N. Y.: Luther Tucker \& Son
Messra. Luther Tucker de Son. Publishers or the Albany, N. Y., Cultira
ros, have issued their lluastrated Annual for 1875 in a very attractive form. It contains a large number of engravings of interest and use to agriculturists, and is full of practical suggestions and directions of importance to hort culturists and fancy gardeners.
international Review. Sif. Six times a yeat. New York:
A. S. Barnes \& Co. d. Barnes \& Co.

Dr. MeCout, Por January and February contains several valuable articles. Professor Tyndaldent of Princeton College, reviews the lateutterances of Professor Tyndall, about the potency of matter, and shows the weak polnt or Hartdiscusses the proposed Centennial Exhibition and that of Vienna
The Chemist's and Druggist's diaity for 18\%j.
A useful and conventent form of dary. published by the proprletore of on annual Report of the Treasurei of the United States to the: Secretary of the Treascky, for the Fiscal Year ended June 30, 1874. Washington, D. C.: Government Printing Office.
Mr. Janks Vice, one of the largest beed dealers of Rochester, N. Y. has Just pubitshed the first number of his FLoril Guide for 1875. This is a goond
sized magazine, veautifully ullustrated, and containing descriptoons of the best flowers and regetables, with valuabled directions for culture. It is issue quarterly in English and German, and sent to any person for the nomina uarterly in English and Germa
The docble cenfury calendar and silicate Note buor is the title of a pocket volume forwarded to us by Mr. C. w. Tounggren of Amboy, Ill. The sillcate part is usef
known watch concern.

