THE UNDERGROUND RAILWAY, NEW YORE CITY.
nUMBER VII.
Continued from page 402.
The centering for the great 68 feet arch near 95 th street shown in the engraving in our last article, page 402, was put up and the arch turned while the trains were constantly passing and repassing beneath it. The centering was of itself a considerable work. In Fig. 17 we give an elevation thereof. It consists of a series of frames or ribs placed 5 feet 6 inches apart, from side to side. The back piece of the frame consists of two polygonal frames of boards 9×3 inches, so arranged that the boardsof one framebreak joints with those of the other, the joints, as usual, being in the direction of the
end of the back piece rests. The other vertical support, 10×6 inches, single, is placed nearer the center of the tunnel, and rises to the back pieces. The inclined shore, 12×6 incles, starts from the foot of this latter shore, and rises to the under side of the horizontal tie, where it abuts against a straining beam 4×6 inches, placed underneath this latter. These shores are strengthened by string pieces, 2×9 inches, double, and rest upon a sill placed transversely to the axis of the tunnel. Under this sill, and resting upon longitudinal timbers, 8×6 inches, are the wedges (three sets for each end of the rib) by which the frame is keyed up. The laggings are 3 nch plank.
The frames are braced together by two beams, 8×12 inches, placed horizontally across the upper side of the horizot:tal tie placed horizontally across the upper side of the horizon:tal ti
the clear, and the hight 16 feet 8 inches. The arches are semi-circular. Their center is 36 feet east and west from the center of the central tunnel. This latter has a span in the clear of 27 feet; and as the side tunnels have each a span of 6 feet, we have, for the thickness of the rock walls separating the side and central tunnels, 14 feet 8 inches. The midde tunnel is unlined, but the face of the rock is trimmed off to a very fair degree of smoothness. The two side tunnels, however, are each of them lined with brick 16 inches thick, and the space between the rock and the brick filled in with concrete.
The ventilation is effected through circular shafts sunk ver the summits of these tunnels, at the usual distance apart. These shafts are lined with brick 10 inches thick, apart. These shafts are lined with brick 16 inches thick,
and are 6 feet in diameter in the clear, and coped on top with

Fig. 17.-THE UNDERGROUND RAILWAY IN NEW YORK.-CENTERING OF THE GREAT ARCH, FOURTH AVENUE, NEAR 95th STREET.
radius of curvature, which, for the intrados of the 68 feet span, is 44 feet 5 inches. The back piece is strengthened and prevented from spreading laterally by a compound horizontal tie beam, composed of four beams 10×3 inches, placed in pairs and joined a little to one side of the center by a spliced joint, as shown in Fig. 17. This tie beam is placed a little above the springing line. Quite close to the crow is also placed a straining beam, 6×6 inches, single, supported by two inclined struts, 8×6 inches, single. The long horizontal tie beam is connected with the back piece by one vertical and four inclined ties, each composed of two pieces of timber which clamp the back piece and tie between them. The dimensions of the beams of the vertical tie, which is placed in the center of the span, are 9×2 inches, and those of two of the inclined ties, 9×3 inches. These ties are braced by single beams, 6×6 inches and 8×6 inches, placed in such wise as to convey the pressure on the back piece directly to the points of support of the frame. These supports are so arranged as to leave sufficient room for the passage of trains. They consist of three beams for each end of the rib, two vertical and one inclined. One of these, 6×6 inches, is placed upright against clined. One of these, 6×6 inches, is placed upright against
the abutment, a horizontal beam 3×5 inches, on which the
rib), placed, one along the backs of the vertical shores, and pene-hammered granite coping 10 x 18 inches, surmounted by two along the backs of the inclined shores. On the outside an iron railing. During the excavation of the tunuel, these of theselatter supports are placed inclined beams, $8 \leq 6$ inches, ventilating shafts served also as working shafts, the head. which bind the frumes in sets of threc, the beam passing from ings being carried forward north and south from the bases of the foot of the shore of one rib across the middle of the shore them, and the excavated rock raised to the surface by a small of the second to the top of that of the third rib. From here steam engine.
another beam passes to the foot of the sixth rib, and so on. The blasting was done in the must careful manner, the The ribs at the end of the tunnel, where the span is fifty charges in the neighborhood of the dividing wall being so feet and the radiusof the intrados 31 feet, differfrom the ribs just described in that they want the vertical shores and the ties joining it with the back piece. The inclined shore in this case rises from the foot of the aluutment.
rhe rock tunnels commence at 92 d street and extend to the north side of 94th street, a distance of some 550 feet. It will be remembered that at this point on the road was the old rock tunnel. This tunnel now forms the large central tun nel, and on each side of it was excavated a single tunnel. The three tunnels as they nuw exist are shown in cross section in Fig. 18. The two single tunnels are 18 feet high from the inches wide at the buttom: or, allowing 32 inches for the thickness of the two side linings, the span becomes 16 feet in

Fig. 18.-THE UNDERGROUND RAILWAY IN NEW YORK.-THE ROCK TUNNELS, FOURTH AVENUE, BETWEEN 9Rd AND 94th STREETS:

