Busiucss aud eprsonal.

 The Charoe for Insortion under the nocd is $\$ 1 a$ Line.

 Adurose F. E. DITxon, Box 84, P. . O., Torouto, Ontarto.
 Δ Amateurr' Phootograph Apparatus, for Home

O. A. Darls, Sacranento, Cal., wants 100,000 more
Hasand Cotton Reases made on royalty. "Fairy" Flectric Engines, With battery com-
plete, $\$ 8$; without battery, 84 Electro-Magnetic Manuacturing Co., s6 Broad St.-P. O. Box 1804, New York. For Power Hammers or Boit Headers, the beat,
g. C. Forsast \& Co., Manchester, N. H. Every metal worker should have a Universal
Hand Planer. For Catalogae, J. E. Sulterilin, Manufactarer, 60 Duane Street, New York.
John W. Hinl, Mechanical Engineer, Dayton, Ohio.
Drawinge, opinions, and advice. Price only three dollare-The Tom Thumb Eliea
tric Telegraph. A compact working Telegraph Apparatua, for sending meseages, mativg magnete, the electric light, giving alarms, and rarlous other parposes. Can be put in
operatlon by any las. Includeb batterg, kes, and wires.
Neatly packed and sent to all parts of the world on recelpt Cast Iron Binks, Wash Stands, Drain Pipe, and
Sewer trape. Bend for Price Llet. Balley, Farrell 4 Co., ittaburgh, Pa .
Pratt's Liquid Pannt Dryer and White Japan surI. W. Pratt \& Co., 38 Fulton Street, New York.
 thogroph, ac.
Many Now England Manufsctorles have Gas
Worke, which Hght them at one fourth the cost of coal Works, which light them at one fourth the cost of coal Plpe Co., Prorldence, R. I.
Hotcilikes Alr Spring. Forge Hammer, Deot in the
martet. Prices low. D. Frisble \& Co., New Haven, Ct.
 Scale in Steam Boilers.-I will remove and pre-
ent Scale in snys steam Boller, and make no charge unt11 rent Scale in snysteam Boller, and make no charge until
the work is foumd satisfactory. leorge W . Lord, Phlladelphla, Pa.
For the best Cotton Cans and Galvanbed Fire
Palli, addrese James Hill, Providence, R. I. For small dize Srew Cutting Engine Lathes and
Drill Lathee, addrese Star Tool Co, Providence, R. I. Mechanical Expert in Patent Casees. T.D. Stetson,
23 Marray 8 st., New York. Far the Deot Portable Engine in the world, add
Baxter Steam Englne Co., 18 Park Place, New York. Mlaing, Wrecking, Pumping, Drajnage, or Irrife-
ting Machinery, for sale or rent. see advertisemant. An. drewa' Patent, In Blde page.
All Fruit-an Tools, Ferracute, B-1dseton, N. J. Hydraullo Presse and Jacks, new and second
hand. Lathes and Machinery for Pollesulng and Buffing
Metalis. E. Lyon, 470 Grand Street, New York. Iron Frame Band Saws, cheapest and best, $\$ 150$.
Δ ddress S. C. Forsaith \& Co., Manchester, N. H. Brown's Coelyand Quarry and Contractor's Appa-
ratus for hootsting and conveying materias by fron cable. W. D. Andrewa $\&$ Bro., 414 Water St., New York. Temples and Ollcans. Draper, Hopedau, Mase. For Surface Planers, small alze, and for Box
Corner Grooving Machines, send to A. Davis, Lowell, The "Scientific American"" Office, New York, is
atted with the Miniature Electric Telegraph. By touching ittle bations on the deelks of the managers, olgnals ere sen
to perons in the varous departmente of the eetabilishto persons in the various departmente of the establish-
ment. Cheap and erfective. Splendid for shops, oftces,
dwellungs. Works for any distance. Price 86, with good dweulings. Works for any distance. Price sb,
Batterg. F. C. Beach \& Co., 2s Brodway,
Mikere Bend for free llluatrated Catalogae.
For Deat Preser, Dles, and Fruit Can Tools, Blise Eamee Patent Molding Machings, for Metal Cast
nga. Savee fully one colird In cost of labor of molaing,
 Peck's Patent Drop Prea. For choulars, addreas
milo, Peck \& Co., New Haven, Conn.

Dlamond Cartoon, of all elizes and d abapes, for -
drillumg rock, saming stone, and tornimg emery wheels,

 I. H. shearman, 4s Cortandt St., New York.

For First Clase Steam Boilers, addres Lambert-
 Hor' 1 and Vert' 1 Eng' Ies; ; Hoistling Engines; the celebra.
tod A mes'
' Portable Engines ; Bollerg of all kinds ; Climax
 Cortlandt St., New York. Works at Newburgh, N. Y. Buy Boult's Paneling, Moulding, and Dove-ailing
Machine. Send for circular and sample of work. B. C.

E. S. will find $:$ description of mica on p. 88, vol. $25 .-\mathrm{J}$. J.'s proposition as to an astronom-
ical problem is utterly unintelligible. W . P. Will find directions for black enamel leather on p. 122 , vol. 2i.-E. S. can bleach moss by using a preparab
tion described on p. 91, vol. 28.-H. W. M. and W.J. will find a deecription of the art of molding or modelling on p. 58 , vol. $24 .-C$. C. Will find a rectpe for
solder for gun barrels and other iron and steel work on p. 358, vol. \%i.-J. V. will finddirections for japanning iron work on p. 208, vol. 28. Bronzing rections for cleaniug brass and nickel plating on . 870, vol. 20.-F. E. W. Will find a recipe for indelible ink on p. 112, vol. 2r. Japanning on iron is de-
scribed on p. 122, vol. $27 .-W$. L. A. Will find an account of the canal boat award on p. 81, vol. 30.-
W. C. R. can keep the rust from his plowshares by W. C. R. can keep the rust from his plowshares by
followiug the directions on p. 283 , vol. 81. - J. W. P. will find a rule for proportioning cone pulleys on p. 180, vol. 20.-J. H. D. Will find explicit directions -W. P. M. will find full directions for treating su-
mac on p. 383 , vol. $12 .-$ B. B. B. will find a formula for silver plating without a battery on p. 299, vol. 31. Galvaniting wrought iron is described on p p
846, vol. 31. -W. J. can temper his brace bity to 846, vol. 31.-W. J. can temper his brace bity to a
straw color by the method given on p. 21 , vol. 31.W. H. H. Will find directionsfor making a good so the master mechanic of a railroad.-B. F. G. WW find directions for nickel plating steel on p.43, yol
31. Poliahing brass is described on p. 1a8, vol.
z.j. A. \& G. will find full directions for etching on
glass on p. 409 , vol. 31 .-J. E. will find rulerfor calculating the proportions of gear wheels on p. 330 vol. 24.-E. B. W. Will ind directions for mending
rubber boots on $p .223$, vol. 30.-J. C. H. Whll find full directions for stuffing and mounting antmals
on p. 250 , vol. $30 .-H$. D. P. Will find a recipe for scarlet ink on p. 200, vol. 20 . W. T. T. will find full directions for washing flannel and other woolen fab rics on p. 287, vol. 3J.-H. F. H. will find instructions
for gllding on walnut on p. 90, vol. 89.-E. B. M. for gilding on walnut on p. 90, vol. 83.-E. B. M
will find directions for turaing iron on pp. 78, 122, vol. 30.-M. B. can galvanize iron wares by the pro
cesa described on p. 3 tb, vol. 31.-D. H. M. Will find a description of a simple and excellent filter on p.
251, vol. 81 . J. H. B. Will find instructions for gilding on china and glass on p. 41, vol. 27.-J. J. and many others will find that the antisnoring device is illustrated on p. 84, vol. 24.-F. W. Whll find a revol. 81.-A. G. S. and D. M. Will find a formula for harness blacking on p. 218, vosurement of engine power on p. 16, vol. 29, and on indicating enginee on p. 64, vol. 30 .
(1) G. W. says: 1 . I have thought of ma and stove flues, running from the cellar to the top of a dwelling. Can I make it with iron hoops, strong enough to be safe when filled with water to a hight of 25 feet, usiug water lime in laying the brick and plastering inside? My object is to prevent freezing and to economize in room and
brick by combining the cistern wall with the inside walls of the flues, thus making a reservoir
for water by letting it rum from the roof and thence to any part of the house, through pipes,
properly arraged in the walls and secure against frost. A. By makdug the interior wall of the cletern of sufficient thickness to readrt the preasure, such a construction is poestble. But it is objectionable in two respects: First, the water at the
bottom will be so low as 10 be capable of betng bottom win be so low as 10 be capable of being
supplied only to the lower part of the house; and secondly, the column of water will be so extended when full as to cause an undue pressure at the
bottom. Both of these objections will be overcome by adopting the usual tank at the upper part of the house, and the danger of freezing in such case is less than is generally supposed. 2. Can
a four inch wall of brick be built around the out-
side of a wooden frame building, instead of siding the house with wood, anchoring the word to the frame occasionally? The object is to save painting; it would also be safer from outalde expooure co fre. A. We constder such a construction very
impracticable, as the unequal cettlement of the diverse materials would cause them to separate, and thus in a very short time cause the house to have
tie appearance of a rutin. The erpense of mating the appearance of a rutn. The expence of mating
the wall entirely of bilok, marevier, would not
ghiexicam.
[January 2, 1875.
(2) W. L. says: In order to ventilate and carry of a portion of surplus heat in a amall conin the calling, 18 inches in diameter, canryling a sheet iron tube of the same size through and
about four feet above the roof, with a cap. The roomis heatedby a double tier of hot water pipes. Contrary to my expectations, instead of having an
upward draft the cold alr blows down the shaft upward draft, the cold adr blows down the shaft
during a windy day, and on still days is sluggish during a windy day, and on still days is sluggish
and inert, affording no satisfactory ventliation. How can I obviate the difficulty? A. You do not air near the floor. If you have no such opening, we should suggest one as a remedy.
(3) A.C. R. says: No. 1 asserts that houses out them; but No. 2 says the contrary, and that house built on solid foundation without cellar is not likely to be affected by disease arising from impure air as easily as the house built on a cellar.
Which is right? \mathbf{A}. There have been so very few couses built without cellars that this question vessel with sand and then pour water into it so as tossel with sand and then pour water into it so as
oo allow the lattor to rise to within a short distance of the surface, you have a good representation of the way the water lies in the earth; but sometimes it is at one hightand sometimes at another. In some
localities it lies deeper than in others. It this city, localities it lies deeper than in others. It this city,
at one section, water can always be found within at one section, water can always be found within
8 feet of the surface; on the other hand, at Passale 6 feet of the surface ; on the other hand, at Pasaatc
Bridge, a well had to be sunk 60 feet before water
could be culd be obtained. It can, therefore, easily be incellar, will depend upon the nature of the soil in this respect, for it would make very little differ-
ence as to dampness, to a house at Passaic Bridge, ence as to dampness, to a house at Passaic Bridge,
whether. it had a cellar or not. But answertng generally as to cellars, if the first floor is set high up from the ground and is well ventllated beneath, the probabilities of health are in favor of the
house that has no cellar.
(4) J. G. R. says : 1 . In consequence of a
oo severe strain on our engine, the foundation too severe strain on our engine, the foundation
wall is shaken. Can we remedy it by passing Rowall is shaken. Can we remedy it by pasaing Ro-
sendale cement (sufficiently diluted) into the cracks, or would it be better to bind it with bolts and plates? A. We think it would be well both We have another foundation in which mine wate has eaten the keys from the lower bolt ends, hereby causing the bolts to turn when the nuts are turned. Can I tighten the bolts in the masonwith fine iron folings? in an an sal ammoniac mixed
A. We scarcely think can use the sal ammoniac and iron filings, unless there is a good chance to make a driven joint. Melted sulphur will answer very well, if you can
prevent it from running out of the bottom of the openings as it is poured in.
(5) E. M. asks: 1. What part of a horse power will it wake to run a sewiug machine? A.
Prom $1-30$ to 1-20. 2. What bore of cylinder would be the most economical to run 10 family machines?
: Fomu 2 to 2% f fanes 14 aswer very well. 3 . Will a \% supply pipe supply stear very well ${ }^{2}$. inches cylinder? A. In general, yes.
(6) R. L. H. says: What is the difference in temperature, or relative heat, of the oxyhydro-
ren blowpipe and the common blowpipe? A. The gen blowpipe and the common blowpipe? A. The
temperature of the commonmouth blowpipe at its temperature of the common mouth blowpipe at its
hottest point isabout, 0000° Fah. That of the oxyhyrogen blowpipe ha
(7) F. W. asks: 1. How can I cover muslin with a thin coat of gum? A. You do not state
what kind of gum. 2. Howcan I color it black insidde and a light yellow outzide? A. We know of nobetter method than that of coating it with size, nobette
and the
brush.
How can I clean dogakin gloves? A. We can ro mmend benalne for this purposc
(8) J. G. C. says: 1. What is the relation with regand to focus in the magic lantera? A. The relation depends upon the amount to which it is
deared to magnisy the objects placed before the condensers. To give the relation in any particular lensee employed. 2. What th the uee of the Lieber kuhn? A. The Leberkuhn consists in plasing the amall lens in the center of a highly polished conlight is reflected uilver, by which means a strong ect, which is thus examined with great ease.
(9) A. D. P. asks: What is the best method of separating gold and lead? A. By means of There is a rock in North Camilina called the co stone. What is it? A. Send us a spectmen.
(10) C. A. asks: What kind of furuace or
etort isued in makinglampblack? A. The burning of the tarry and pitchy combustibles is carried on in any suitable furnace. The smoke is conin chambers hung with sacking, upon which the ampblack is depoated.
(11) S. P. B. asks: What kind of steel are rolled or hammered. 2. What is the dirference between cast and spring eteel? A. The first is ce mented steel, melted, cast into ingots, and rolled into bars. Spring steal is produced, according to
Bauerman, by heating blistered steel to on orange red heat, and drawing down in edze by hammering or rolling.
(12) T. A. C. says, in reference to lining
eharting (p. 840, vol. 81): 8uppoee T. F.'s elharting is already up, and has sot out of true: do not put him to the trouble of removing it from the bear inge, but tail him to stretch a line parallel with the
abarting, ehat is, equidistant from the ends, as clooe
the surroundings will permit. Truelt laterady by
the line and then level it up. A. This is a the line and then level it up. A. This is a good
(13) I.G.H.says: To run a saw mill,we have en shaft only, $31 / 6$ feet diameter, surface 15 inter This pulley is so small (in order to give the neces sary speed) that the belt will slip. Can we, by putting in another countershaft, improve the mill by
heiting from the engine, and then to the present shaft, thoroby givingan opportunity to increase the pnlleys to a size that will prevent slip? Theengine is said to be 60 horse power. It is argued that this extrashaft would wake so much more power that
the engine would not drive the mill. Can you tell us about how much power it would consume to drive this extra counterghaft, it being about 8 fee long? A. The change suggested would be a decided improvement; and instead of a loss, more of the present.
(14) E. C. D. Jr. as'as: How can I test soda diluted acid are required to deatroy measures of reaction of and to neutralize 100 grains of a spect men of soda salt. The acid is measured in the al kalimeter, which is a straight glass tube, or very
narrow jar, with a lip, about gs of an inch in width and 14 or 15 inches in hight, generally mounted up on a foot, and capable of containiug at least 1,000 grains of water. It is graduated into 100 parts
each of the test acid, 4 ozs. oil of vitriol are diluted with 20 ozs. of water, or larger quantitles of acid an water are mixed in these proportlons. About $\$ 4.02$ bicarbonate of soda is heated strongly by a lamp which 171 grains are immediatoly weighed, that quantity containing 100 gralns soda. This portlon of carbonate of soda is dissolved in 4 or 5 ozs. hot water, contained in a basin and kept in a state of gentle ebullition, and the alkalimeter is flled up to
0 with the dilute acid. The measured acd is to be 0 with the dilute acid. The measured acdd is to be gradually poured into the soda solution, till the ac line, and becomes distinctly acid, and the meagure of acdd necessary to produce that change accurate y observed. The last portions of the acid must be carefully added by a single drop ata time. It may probably require about 80 measures. In applying the test acdd, it is poured from the allualimeter, as before, upon 100 grains of the soda salt to betested, dissolved in two or three ounces of hot water, the dition of acid. The salt contains as manysrains dition of acid. The salt cons as ins many grain ize it, and, therefore, so much alkall per cent. The flrst trial, however, should only be considered an approximation, as much greater accuracy will be often made in the cold; but it is very advantageous to have the alkalinesolution in a basin, in which it is heated and evaporated duringthe addition of the more ic. of the carbonic acid and the concentration of the solution. With such precautions the proportion of soda may be deternined to 0.1 grain in 100 grains salt; and an albalimetrical determination, made in a ary enalysde.
(15) B. L L H asks: Is the pressure in a bollergreater at the mud ralve than it is at the safety valve or other part of the bollor above the polntin the boller, and least at the higheast point.
(16) W. F. McK., H. B., and many others say: We are about to build small engines to drive a cylinder, say, 4 Inchealong. We want the dimen sions of all the working parts. A. Makea drawing of a large engine of good deefign on a reduced
ecale. This will give you a fairidea of the proportons.
(17) H. B. asks: What sized boiler should I use, with how many flues, to furniah steam to
two cylinders $24 \times 1 \frac{1}{6}$ inches? A. Make the boiler two cylinders $21 / 6 \times 1 / /$ inches? A. Make the boiler
with from 18 to 20 square feet of efflent heating surface per hore power
(18) A. B. C. says: We are sinking a shaft in very hard rock, below the 700 feet level. The
ahaft at the 700 feet and about 15 feet below is running at an angle of 59°, and is 8 feet long by $4 / 3$ fee wide in the clear. At the 700 feet, a tunnel was run in the hanging wall or side about 12 feet, when wo this soft ground m order to sink it faster. How this soft ground m order to shall we have to elnk before we striker. it, as we are no
feet.
(19) E. W. M. asks: If a pipe from a large pipe of the same diameter has a check valve on pipe of the same diameter has a check valve on the water in the tank and pipe betng of the tank, head, on which wank and greatest? A. The preasure will be the same on each, and water will flow with the same velocity from each, if the heeds are equal.
Is steam used for heating buildings ordinarily enginee? A. No.
How can I whiten ivory after it has turned yellow? A. Rub it with pumiceetoneand water, and
expoee it to the rays of the sun in an airtight alas case. Ropeat the operation several times, if neces
You gave a recipe for bluing glass chimneys; wil You gave a recipe 10 bluing glass chinneys; wil
not the heat cause the color to peal off " A. No. What causes blistering on paint, when heatis ap
plied? A. The moisture in the paint is vaporized. You givea recipe for plating smallarticles with Yut a battory, taken from Watt's "Mebllugy.
Will that, plating stand for 6 monthe with moderate

