## bovedets from field and garden.

 Our contemporary The Garden, in discussing the arrangement of bouquets, states that the excessive formality of the present orthodox form of presentation or ballroom bouquets exhioits a kind of close packing, in which the delicate graces of flower form are entirely submerged in consequence of this close, even tight, juxtaposition. The end sought in this close, even tight, juxtaposition. The end sought inthiskind of grouping appears to be a method of packing tothis kind of grouping appears to be a method of packing to-
gether (according to price) an abundance of rare and, consegether (according to price) an abundance of rare and, conse-
quently, expensive flowers, all of which must be got intothe quently, expensive flowers, all of which must be gotintothe
samelump. This system, of course, necessitates the use of such flowers as are more or less rare, and there is, perhaps, no other way of making up a bouquet that shall be fairly worth, in intrinsic value, from $\$ 1$ to $\$ 25$. The cut flowers of which the bouquet is composed are, probably, worth all the money, at their respective market prices; and for certain occasions, bouquets so manufactured may be deemed appropriate, even necessary; but as works of art they are utterly valueless. A few elegant grasses from the meadow, combined with a selection, at any season, of flowering branchlets from the shrubbery or flowering branch hom the shrubbery o common garden border, and a freehanded and tasteful grouping, without crowding, and with a well balanced proportion of natural foliage,
may be made to form a composition such as a may be made to form a composition such as a painter might desire to transfer to his canvas while he assuredly could never wish to dip brush in color for one of the expensive bou quets of the caulitiower shape. Such has long been a favorite theory of the writer in the matter of flower grouping ; and the other day he found it gracefully exemplified on the draw ing room table of a friend, by a graceful hal wild bouquet from field and garden, formed with the free grace and uncrowded arrange ment which, as nearly as may be, illustrated his views. It is ned as may be, ilustrated his views. It is needless to state that a lady' fingers and a lady's taste were the joint au thors of the composition. In the arrange ment, each flower and grass of the gathering had been made to find its seemingly proper place, unjostled by its neighbor, and so freely and easily located in its basket work recepta cle, supported on three slender canes of bam boo, that even its foliage had room to display its graces and modes of growth. With the permission of the lady flower grouper herself a drawing was at once made, a reproduction of which, in the form of a careful wood en graving, and for which we are indebted to ou valuable contemporary, will be found on thi page.

The central object was a small spray of guel der rose, with two or three of its spherical masses of snowy flowers, surrounded and supported by their own leaves. There was also rose, perhaps one of the first of the season i the garden where it was gathered; and ther were some smaller Scotch roses, acccmpanied by sprays of their miniature foliage. Ther wasalso, it will be seen, a flower of white pink with bude, and with leaves which have room to display their delicately slender forms and the pale glaucous hue of their dainty green A common corn flag towered in the center and on the left was a single iris, backed by its blade like leaves. Grasses of several kind shot upward, crowned by their feather-like inflorescence, which added a pleasing light ness and careless grace to the composition The effect was hightened as regards color by not more, of pelargonium flowers, gathered with their leaves, and by two or three kinds of fern, one gracefully weeping frond being allowed to droop negligently to the ta ble, the slender extremity of which curled itself fantastically, as with a set declaration against primness, trimness, or any kind of slavish formality.
The value of grasses for arrangements of this kind is well shown in this case. Ferns themselves cannot show so airy a grace or such delicacy of form, Many graceful wild grassea may be gathered in the fields, and many beautiful hardy grasses are as easily grown in any cottagegarden as the hard flowers of which this charming bouquet was composed

## Magnets.

M. Jamin describes experiments which support these thre propositions: (1) The number of elementary magnetic threads, and so the quantity of magnetism a magnet may contain, de pend only on the middlesection. (2)The opening (epanouissement) of the poles of these threads, or the distribution of in tensities, is regulated by the form and extent of the exterior surfaces of the magnet. (3) If the surfaces diminish, the tension increases till they become insufficient to allow of the elementary poles opening out, and a portion of the two contrary magnetisms disappears, reproducing the neutral state.
On combining 22 magnetized plates (each 004 inch long, 0.04 inch thick, and 2 inches broad) in a bundle, with pasteboard 0032 inch thick between adjacent plates, each plate lost magnetism, and so the bundle, the loss of the latter being 50 per cent, which is less than in the case (first experimented on) of superposition without intervals; the loss was then 66 per cent. In this first mode all the magnetism retained was carried to the exterior ; there was none, oralmost none, between the plates. In the othermode thequantity remain ing ( $151 \cdot 1$ ) was divided into two portions - - (1), 85.5, whic was expanded on the exterior ; and (2), $65 \cdot 6$, which remaine
n the intervals. With wider intervals the exterior magnetism is diminiehed, the interior increased; and gradually the plates act as if they were independent.

Carbon in Cast Iron and Steel
M. Boussingault contends that in cast iron, and in certain steels, the carbon is in two states-(1) combined with the iron and therefore invisible ; (2) disseminated in the metal, either as an amorphous black powder or in brilliant crystaline lami nex, constituting the graphite of mineralogists. There is reason to believe that when cast iron is in fusion all the carbon i combined and is invisible, but that a portion becomes free on cooling. On acting upon a carburetted iron with acids, the state of the carbon is at once made known. The free carbon remains mixed with the insoluble residue. If no graphite is present, but merely combined carbon, thare is no carbon aceous residue. The carbon is eliminated during solution imparting a characteristic fetid odor to the hydrogen gas giv on off, due to volatile oily matters. This oily matter wa


A JUNE BOUQUET OF GRASSES AND HARDY FLOWERS. we ehall now

Sword Manufacture in Birmingham.
The manufacture of swords is one requiring great akill in all its departments. Success in this work depends upon the acquired still, the long experience, the educated eye, and the manipulative power which seem to require many gene rations of workmen before they are attained in their higher excellence. The slightest mistake in working would make a sword blade useless, and this applies to each of the three great processes through which it has to pass-forging, tem pering, and grinding. From the necessity of all the wor being skilled work, each part of a sword-the blade, the grip, the hilt, the scabbard-is made by hand, and the wit nessing of the manufacture is thereby rendered eppecially interesting. For the excellence of his swords, and for the skill displayed in every part of the work, no name in th history of the trade surpasses, and few if any rival, that of Mr. C. Reeves, of Birmingham, Eng., over whose workp, w.th such efficient guides as Mr. Reeves and his son, says Irou, witness the making of a sword under the most favorable circumstances.
forgine the blade
The first process is the forging of the blade. The steel comes from Sheffield in double molds, (the length of two blades), as tis called, and is the best steel, and is n strips, each strip being the length of two swords. The workman takes the strip and frst breaks or cuts it across the middle The handle end cf the blade is of iron, a this metal bears more knocking about an can be used in a manner that would be fatal to steel. The iron end is then puti the fire, and the tang, or part to fit into th hilt, is forged. The blade is then passed through the fire a large number of times, and beaten out on the anvil in order to distribute the metal equally in every part At the same time the furrow is worked up the center of the blade, wide or narrow ac cording to the pattera and size required In those known as Scotch blades two fur ows are beaten. This is a work requirin great care and skill. The future worth of the blade depends upon the skill of the for ger. The slightest defect or inequality in he distribution of the metal makes th blade to that extent imperfect. With skillful workman this is, of course, of rare occurrence. He knows precisely the amount of hammering required. It may be noted here that every blade passe hrough the fire no fewerthan twenty.five times before it is completely forged.

TEMPERING THE SWORD BLADE
After forging follows the most delicate and imporiant part in making a sword blade-tempering. On this process de pends the perfection of the weapon, and it is quite pleasant to listen to Mr. Reeves while he descants on this part of the work The object of tempering being, of course to give the steel the required elasticity, must not be too hard or it will break, and it mustnot be too soft or it will bend; but must be so equally tempered that, when it point is pressed on the ground, the blade will, when free, at once take its natura shape without hurt or detriment in th slightest degree. The mode by which thi oticed by Proust in 1799. M. Chevreul remarked that in this great, this necessary quality, is secured is as simple as it case chemical forces give rise to compounds analogous to those ormed by vegetable organisms. More recent researches have established that these compounds are not merely analogous butidentical. The author does not believethat a steel exist absolutely free from carbon.

## Ex-Commissioner of Patents S. S. Fishe

With the deepest regret we record the death, by drowning on August 15, of Samuel S. Fisher, Eeq., of Cincinnati, o formerly Commissioner of Patents, the duties of which im portant post be performed with the most distinguished ability till the end of the year 1870, when he resigned. The accident which terminated this useful life was truly calami tous, as Mr. Fisher's son was drowned at the same time They left Elmira, N. Y., on a sammer boating excursion intending to float down the Susquehanna to Havre do Grace and enjoy the wonderful scenery which that river presents. The boat was unfortunately capsized in the Conewago Rapide ourteen miles below Harrisburg.
The record of Commissioner Fisher will long sur vive him. His learning and practical good sense, accompanied by great force of character, gave him more than customary authority over the important department in which he presided, and enabled him to carry out many salu tary reforms in the administration of the Patent Office. As most important litigations were entrusted to him, and some very heavy cases were in his office at the time of his death Comvissioner Fisher served his country in the late war, a Colonel of an Obio regiment, was President of the Board o Education in Cincinnati, and has filled many other impor tant public potitions.
Recently, at New Haven, Conn., and vicinity, there was continuous rain for nearly forty hours, during which perio
ffective. Before the blade can ba tempered it must be made extremely hard; this is done by first passing it through the fire, and then, while hot, it is plunged into water. The firs plunge hardens the blade to such an extreme bardness tha it is as brittle as glass, and if thrown down would break into pieces. Again it is passed through the fire and then beaten straight, for the effect of the action of the water on the ho metal is to make it of all shapes. Just at the point at which the blade takes a particular color, known at once to the prac ticed eye, it is again plunged into the water which, in tech nical language, " prevents it going down lower," and is tem pered. It can now be bent backwards and forwards with out any fear of its breaking, and is ready for the grinder. GRINDING THE swords.
The grinding is done on the best Leeds stones, the blade being placed in a frame of wood, and its surface pressed on the stone until the work is done. This also depends a pontb skill and the eye of the workman. In grinding the furrows, a stone of a peculiar construction is ured. The face is cut nto raised flutings of the size and sbape of the furrows of ifferent swords, and on these the blade is pressed, and th furroweffectually ground. This is called the hollowing stone Each blade takes from an hour and a half to two or thre ours grinding, according to its quality. We saw one blade ground, and also some matchets, a kind of scimitar knife used for cutting down sugar canes, etc, in India.

## sword polishing

The blade is now ready for polishing. This is done on lathes worked by steam. Different sized wheels are fitted on the apindle, and lard oil and double washed emery are used in the operation. Theblade is often put into lime dust during the process; and on the lathe brush used, a crocu dust, of deep purpletint and ground very fine, is thrown over the brush, and a most brilliant polish is the result. Scab
bards and hilts, and other ornamental parts of the aword, are also polished in much the same manner. In the case of acabbards, a larger whenl is used instead of the ordinary lathe brushes. When polished, the blade is ready for the hilt and cabbard; so we will now see how these are made. And first for the scabbard.

MAEING THE SWORD BCABBARDS.
In making a scabbard, the workman takes a piece of flat steel cut to the required size. He first places it on the top of an open vise, and beats it with a wedge-shaped wooden mallet, bringing the two edges closer together each time it passes along the vise. It is then beaten on both sides until they almost meet; a mandrel is then put down it, and the steel beaten close round the mandrel, both edges being hammered over. The edges are then soldered. It is next beaten on an anvil all round, the mandrel is withdrawn, and the scabbard is ready for the drag, which is a piece of iron fitted to, and fastened on, the bottom of the scabbard. Th bands are then put on, and the scabbard, after being filed and smoothed, is ready to be polished.

## MAEING THE SWORD GRIHS.

Themaking of the gips is also a very interesting bit of work. These are the handles by which the sword is grippea, bence the name. A grip at first is a bit of walnut, oblong in shupe, but narrower at the exd than the top. The back, which is made of metal, is placed on it, and the wood is worked into the required shape by files. A large number of different shapes, sizes, and cutting powers are used in this tenon for the ferrule made, it is then "balled." For this purpose it is fastened in a vise, a three-sided file cuts a deep purpose it is fastened in a vise, a three-sidedion is rounded or indention at regular intervals, each division is rounded or
balled by a file, and the indentions connected by slanting interstices cut by a handsaw. The grip is then drilled through in a lathe, for the purpose of receiving the tang. When this has been done, a piece of the skin of a dog fisb. which has been a long time soaked in water, is cutoff. Every bit of fleeh on the inside of the skin is then carefully cut off, and a piece of pure skin is left. This is put round the grip, a piece of string or wire is fixed by a loop to a piece of ateel fratened in the vise, and the workman binds the ekin tightly round the grip by winding the string or wise on again. In making a grip, it passes through the workman's hands no fewer thạn thirteen times.
dressing the hilts.
A hilt is at first a flat bit of metal of a peculiar shape, and may be cut to any pattern. A large number of these are used, which are all made to a regulation size. The pattern used is placed on the metal, which is then marked. Tbey are then filed and cut by hand, beaten on blocks and knobs into ready to be fixed to the sword.
This is called mounting. In the cheaper swords, the blade is bought from one person, the hilt from another, the scab. bard from a third, and so on. But in this manufactory every part is made in the works, and each piece is prepased to suit and fit the other parts, so that when fitted together the aword is firm and sound; and the parts never give way or become loose, as they do when stuck on to the tang of a blade without any reference to their weight or suitability for each other and the blade to which they are attached. In nuch cases the parts with little wear become loose and rickety, and depend only upon the small rivet at the top for their security. In ordinary swords the blades and hilts, afterhaving been ground, filed, and polished, are taken into the mounting shop. There the tang is placed in the grip. The hilt is fastened on by passing a rivet into the top of the grip, and fastening it to the tang. The hilt is drawn over this rivet, which pasees through a hole at the top. It is then filed and broken off at a short distance from the hilt. The rivet is then welted by being filed, and smoothed until it has the appearance of an ornamental knob, forming an in the mounting of best work, great care and akill amplete. In the mounting of best work, great care and skill are required In the mounting shop, a very ingenious tool is used, called a
float. It is a long bit of steel, shaped almost like a tang, float. It is a long bit of steel, shaped almost like a tang, with a series of blades along its surface. The grip is worked
to and-fro on the float until it is cut to the exact size and to and-fro on the loat until it is cut to the exact size and
shape of the tang on which it is to be fixed. Great skill is shape of the tang on which it is to be fixed. Great skill is
required in this delicate operation. In this mounting room the swords are proved. This is done by placing the point of the blade on the floor, and bending it backwards and forwards. After it has stood this test, it is subject to another The workman strikes the blade strongly on a wooden block both on the edge and back, and can tell by the ring whether it is of true and perfect quality. By these tests the slightest fault or flaw would bs detected, for a very small fault, indeed, would cause the blade to break.
The scabbards are lined. In the ordinary sword, two thin strips of wood of the shape of the scabbard are placed on either side, and they must fit so accurately that neither in dra wing nor in ehfathing the sword must the slightest ob. struction be perceptible. In the betterswords, leather is used in lining.
In the mounting and ornamenting of ewords, any amount of artistic work can beemployed either on the blade, the hilt, or the ecabbard. The rank of the officer is indicated in this manner, and naval swords are ornamented differently to military. The work put on presentation swords is often most elaborate and expansive.

A New Pavement, by Charles Pennington, of London, uch as tar ard tan concrate coveren with an elastic layer, are set, the crevices being filled with concrete.

## A NEW SCIENTIFIC MUSEUM.

Operations bave begun for the erection of the Peabody Museum in New Haven, which, when completed, will con tain some of the largeat and richest zöological, geological, nd mineralogical collections in the world. The institution is founded under a bequest of $\$ 150,000$ from the late Georg Peabody, and is designed to bear the same relation to Yale College as the present Museum of Comparative Ziology oes to Harvard
The building will consist of a centraledifice and two wings. or the present, only one of the latter is to be erected, with frontage of 115 feet on one street and 100 feet on an ther. It will cost $\$ 160,000$. be built of brick with stone trimmings, fireproof, and contain, including basement four available stories.
The fourth story is assigned to archzology and ethnology the third to zoiology, the second to geology, the first to lec ure rooms and mineralogical collections, and the bapemen o working apartments and a large class of heavy specimens, showing fossils, foot prints, etc.

## The Brazillan Telegraph

The great ocean cable between Lisbon, Portugal, vid the Azores, and Rio Janeiro, Brazil, is now complete and open for business. The charges from New York to Rio aneiro are about $\$ 2.50$ per word. The mesrage goes vi England, and through some eight thousand miles of sub merged cables. Complimentary messages have been es changed between President Grant, the Emperor of Brazil the President of the Argentine Republic, and the President f Uruguay.
Last year the section of the above cable between Lisbon nd Madeira was broken, and so remained until the present ummer, when the two ends were fished up, joined, and relaid. The depth of water at the place of fracture wa 2,500 fathoms, or about $2 \frac{1}{2}$ miles deep, and the successful finding, raisiag, and joining of the broken ends at sea, shows the great perfecticn of mechaniam and skill that ha been acquired in ocean telegraph engineering.

## Fast Trotting.

At the Buffalo, N. Y., races, August 7, the famous hore "Goldsmith Maid" trotted the mile in $2 \mathrm{~m} .15 \frac{1}{8} \mathrm{~s}$. After the race, the Maid was stripped and led in front of the judges stand, when the immense crowd arose and greeted her with deafening cheers. Her driver, Budd Doble, was ordered on the judges' stand, where he received a becoming ovation. In 1867, the racer "Etban Allen" trotted a mile in 2m. 15s. But both these performances were surpassed by one of "Goldsmith Said's" three one mile heats at Rochester, N. Y., on August 12, which was trotted in 2 m . $14 \frac{3}{4} \mathrm{~s}$.
Running horses make much quicker time than trotters. In 1850, the English horse "Black Doctor" is reported to have run the mile in 1 m .40 s .

The Chassepot as Altered.
Two years ago, the French government decided to adopt the metallic cartridge in its military equipments, and an oflicial commission was appointed to ascertain the best plan for altering the Chassepot rifles, one million or more in number, so as to receive the new ammunition. The commission has just decided to adopt the plan of alteration proposed by M. Gras, Captain of Artillery. The altered Chassepots will bave a range of from one and a half to two miles. At a range of one and a half miles, the bullet has force enough to flatten against an iron plate. The accuracy of fire is very satisfactory

The August Meteoric Shower.
In the viciuity of New York, clouds obscured the heavens on the evening of August 10, and few observations of meteors were made. But we learn from a correspondent at Martha's Vineyard, Masf., that, near Edgartown, many beautiful meteors were seen.

## DECISIONS OF THE COURTS.

United States Circuit Court...-District of Massachu-
ottle fastener.-patext of h. w. putnam, granted march 15, 1859



United Statew Circuit Court, Southern District or
Ohio. ohio.
[In equity - Before Swing, J.-Decided June, 1874.]
Swing. Judge.



United States Circuit Court--District or Massachusetts

## in equity --Before Clifford, Jullge.-Dectied May $29,1874.1$





 Decrec for compluinant.

## 

## NEW BOOKS AND PUBLICATIONS.

a lleleminated History of the World
We have lately recetved an educational novelty. which. after examina ho we can recermmend to the notice of teachers and studcute as a valua printe. 1 tu colors, and in dimeuslons twenty-two feet long by thrty inche Wide. Its alm is to teach the history of the world, blbltcal, anclent, medle val, aud modern, rangling over the entre pertor of human knowlcoge, from
4004 B.C. to 184 A.D., or 5,878 years of histortc tune. The plan adopted 1004 B.C. to 1844 A.D., or 5,888 years of historic cune. The plan adopted,
which is a veryingenloua one,ls to reprecent the progress of time by a con thouous black line, which is divided Into ceuturtes, decadcs, and years. Parallel whih this are other lines, or atreams, representing nations, and the ivision or flowing togethcr of these indicates conquesta, foundations of w States, bnil elmilar eventa. The arrangement of the map is such tha he student secs at a glance exactly the condition of the world at any giver
ate; and by the ald of colore, plitires, and stinllar helps, he la given an Idea of the progress of arta, names and successlon of rulers, and almillar fact
 of this remarkable production, stnce it so well known that, whitle a prrson Gay readily master the history of one people, he frequently, in taking up that of another nation, 18 at a loss to connect contcmporaneous evente, and to forma aingle and detalled history of mankind. With the chart unde revlew, such a difficultyneed not be encountered, alnce the student, whille at work upon the hitatory of a single nation, need only klavee at the map to be informed at once as to what the rest of the world was dolnz during the
peritud pasped over. The execution of the work is excellent, and fid cates pertuds passed over. The execution of the work is excellent, and ind caten should not go unrewarded. The length of the map necessitates its mount Ing upon rollers and arrangement in a neat frame, in whtch it is hung agalnat the wall ao as not to occupy more than three fcet of space, sultable cranks on the ends of the rollers allowing the chart to be unwound llike a
panorama. The author is Mr. S. C. Adame, of CIncinnati, Ohto. The price panor,
18 815.
Mandal of patent Law, with an Appendix upon the Sale of Patents. By William Edgar Simouds, Counsellor in
Patent Cases. Hartford, Conn. : Published by the AuPatent Cases. Hartford, Conn. : Published by the Au thor.

## practice.

## Inventions Patented in England by Americans. <br> Complled from the Commisaloners of Patenta' Journal., <br> Corser Clasp.-J. P. McLean, Brooklyn, X.f. <br> electric telegraph.-R. K Boyle, New york city. Electro.Magetic Governor.-J. M. Biadford, Portland, Me Fasfening Seams.-J. W. Davibe <br> Needle-Threading Hoos, - <br>   Safety lanff.-B. Tappan, Steubenville, Ohto. Solar Compass.-C. T. Pierson, Ramapo Spectir a. -E. D. Pape, New York city. SFECLEA. -E. D. Papc, New York city. SIEAM PUMP. $-W$. Atkingon, Gardner, 111 <br> Sterl Mancfactere.-T. S. Blatr, Pittsburgh. Pa <br> Tape Weating Machine.-F. F. Burlock, Birmingbam, Conn Trans mitting Mcaic by Elbctricity.-E. Gray, Ch cago, Ill

## zecent cantricau aud forcigu Fateuts.

Improved Fireproot Rooit.
Fredertc J. Hoyt. Batavia, N. Y. - The bbject of this invention is to relsder the roofs of bulldings in blocks, or where bullt close to one another not only watcrproof but fireproof. The ordtnary flat roof to bult on tlon. The front wall ts extended a foot or morc above the roof. The side walls and rear wall are brought to a level with the front wail, lcaring spaces in the slde walls ncar the top, for fitting In Jotsts three feet apart.
ou which, from front to rear, strips of wood arc fastened on edgewise, one ou which, from front to rear, strins of wood arc fastened on edge wise, one
fourthinch apart. This Is covered with a waterproof composition.on top of Which is placed two to three inches of loose rravel, screc ned so that none
will pass through the openings into the lower roof. The waler pasilig will pass through the openings into the lowcr roof. The Waler pasilig
through this upper roof falls on thelow $\in$ r roof, and runs oft bs conductors arranged through the wall and into the lower root in the ordinary manner,

## Improved Lantern.

n of the lantern io made double, with a $e$ eries, of holes connecting with a hollow space for
purposes of ventllation, a chamber beneath the wick chamber, and a tube connected therewith, which passes upward through the globe. An oll tube on the globe connects the oll chamber with the wick cbem'if . A wick !n
the end of the oll tube may be adjugted to allow the oll to flow to the wick chamber fast or slow. There is an inverted funnel over an opening througn the ofl chamber connected with the tube by which heat is conducted down
beneath the wick chamber. A atrong current of heated air passeg up tbrough the opening, and to caught by the inverted fundel. The ofl in the
wick chamber is thus boon heated, and the burners consequently aford Wick chawber is thus sood heated, and the burners consequentis afford and
olear and bright tiame.

