storm's center; and this cause may operate with sufficient force to carry the storm's center westward, as actually hap pened in several instances in the years 1872 and 1873 . On the other hand, an increase in the velocity of the wind in the eastern quadrant lu_ds to produce a greater precipitation on the eastern side of the storm's center: that is, tends to push the storm's center eastward, or increase the velocity of its progress.

Srixutifir Smmerican.

MUNN \& CO., Editors and Proprietors. POBLISHED WEEKLY AT
NO. B7 PARK ROW, NEW YORK

>	O. D. MUNN. A. E. BEACH.

TGIRMIE。

One copy, one year....
One copy, six months
Clud rates $\left\{\begin{array}{l}\text { Ten copies, onn year, each } \$ 2 \text { so. } \\ \text { Over ten codies, samo rate, esch }\end{array}\right.$
VOLUME XXXI, No. 6. [New Series.] Thoenty-ninth Year.
NEW YORK, SATURDAF, AUGUST 8, 1874.

Contents: (Illustrated articles are marked with an asterigk.)	
ADswersmo Hoink an............... 91 Me	
Absyrla-ezijorations in...........	
Beozzocased.d.	
Butier, purityling.................:	
Casks, dis leather, washing..................... 910×5	
Patent	
Crayo	
Cyprus, explorations	
Dyppepstu and use of pepsin...... ${ }^{80}$ Platiog	
magnet,	
Electro-tatiog mas.............: 90 Pree	
Emery wheels, turning.	
Epretpelas, trentment of..........:	
Gasometer, almensions of	
Goose culture at Strasbourg	
Granary at Bristol, Enkland.......	
Irls and an orctilian an $8 \%_{2}^{8}$ Tu	
Ealeldoscone, to make a ...i.	
Language of insecta and animals.	
Lightaling, oll fred by	

THE SIMOLTANEOUS PERCEPTION OF SOUNDS

The celebrated German pbysicist Helmholtz has, in hi Physiological Theory of Music, made some modifications in arious points of the hypothesis by which he accounts for the functions of our organs of hearing.
It will be remembered that, in the process of hearing, the sound waves of the air are collected by the outer ear which is peculiarly adapted by its form to concentrate them. The waves then pass along a canal to the tympanum or drum which they vibrate. This vibration is communicated bya chain of bones to the membrane covering the foramen ovale, by which it is passed to the fluid contents of the inner ear and thus reaches the nervous surface which transmits to the brain the sensation of sound. It is not difficult to understand how the liquid in the inner cavities may be thrown into vibrations of which the durations are the same as those in the outer air, while the amplitudes are proportional, if acted pon by sound waves coming from a single source. But when we consider that the vibrations of so small a quantity of air as that contained in the auditory canal, transmitted to the still smaller surface of the inner ear, suffice to convey a perfect perception of the most complicated exterior phe nomena, then the mystery begins. During the passing by of a military band, for example, we hear not only sound emitted by the instruments, bat the rolling of carriages, the voices of the crowde, the rustling of the leaves of trees, and innumerable other noises, all clearly distinguishable.
The eye, it is true, can regard an extended view or a multi plicity of subjects, but its perception is successive; it glances quickly from point to point and thus embraces all, but the ear recognizes a number of sounds simultaneously.
To understand the theory by which Professor Helmholtz explains the phenomenon, it is neceseary to consider the oscillations of a pendulum. It is well known that a sus pended body, even if of considerable weight, may be set in motion, by slight successive impulses, provided the latter be properly timed. These impulses must be repeated at equal intervale, and, in the case of a pendulum, act in the same di
rection as the movement of the body, determined by gravity, which is the motor force. Otherwise their effect will be to stop themotion rather than to accelerate it. Hence the interval of time which separates two consecutive impulses must be equal to the duration of an oscillation of the pendulum or to a maltiple of such duration. Suppose a number of pendulums of different lengths be arranged in regular succession in the same vertical plane, as shown in the accompanying diagram. With a rigid horizontal rod, imagine the experimenter to strike all these pendulums in some particular rhythm. It is evident that such pendulums of which the times of vibration are equal to the interval between two successive blows, or to a submultiple of such interval, will oscillate. To all others the cadence of the rod will be in opposition, and they will hence stop and remain at rest. The same result takes place it sonorous cords, each having its own duration of oscillation, be substituted for the pendulums. Suppose that in the inter nal ear a great number of nervous fibers exiat, the movements of which correspond to a determinate impression for each one. If the liquid vibrates during a certain period all the fibers having a corresponding time of oscillation will be set in motion; and a combination of impressions will result peculiar to a given vibration, and different for any other Such in brief is the theory by which Helmholtz explains the perception of simultaneous sounde, harmonies, the produc tion of beats, and in fact all the phenomena due to audition The probability of the truth of this view is strengthened by the fact that the internal ear does contain a great numbe of organs which appear to be suitably disposed in order t serve as vibrating fibers. In the first edition of his work Helmholtz believed that the nerve prolongations, known a the organs of Corti, fulfilled the purpose, but in subsequen editions he has renounced this idea, since Hasse has proved that the Corti fibers do not exist in amphibious animals. Among the membranes, however, in the interior of the inner ear, is one known as the basilar, which is ruptured with difficulty in a direction longitudinal to its fibers, while it yields readily to force applied in a perpendicular direction to the same. Helmholtz now considers the fibers of this membran to act as a series of juxtaposed corde, and the variation in th length of the fibers (since Hensen has proved that the breadth of the membrane increases from one extremity he other in proportion of one to twelve) tends to confirm th gpothesis.
M. G. Guérolt, the French translator of Helmholtz' work suggests that the Corti fibers may serve the purpose of dampers, but adduces no experiments or other proof in sup port of the idea. An exhaustive comparative examination of the auditory mechanism in various animals, by means of the microscope, would doubtless show which organs are every where necessary to audition. Besides,as and the pitch of th rice having deep voices with the similar organs of others having voices of a high pitch would probably elicit curious and valuable resulte.

THE AQUARIUM.

One of the first principles, in constracting a tank for an aquarium, is to give the water the greatest possible exposure to the air. The simple rectangular form is the beat. This is generally constructed of iron and glass; the iron should
be japanned, and the glass be French plate, to insure brilliancy and strength. The breadth and hight of the tank should be about one half of the length. Cheap tanks can be made of wood and glass, the frame and bottom being of wood, and the eides of glass. In order to make the joints watertight, care must be taken to get a proper aquarium putty or cement. The following is a good recipe. Put a le fire. Test it to see if it has the proper consistency when cooled; if it has not, heat longer or add more resin and tar. Pour the cement into the angles in a heated state, but not boiling hot, as it would crack the glass. The cement will b frm in a few minutes. Then tip the aquarium in a differen position, and treat a second angle likewise, and so on. The
cement does not poison the water. It is not advisable to cement does not poison the water. It is not advisable to
make the aquarium of great depth; about eight inches of water is sufficient. In regard to the light, great care mus be taken. Too much often causes blinduess, aud is a com mon source of disease. The light fish receive in rivers comes rom above; and an aquarium should be constructed so as to form no exception to this rule. All cross lights should be carefully avoided, at least if the light is very atrong. Never place the aquarium in front of a window so that the light pasees through it ; for, when viewing an aquarium, the source of light should come from behind us. Not enougn light is injurious as too much, and causes decay of the vegetation trewn constructed a watertight aquarium, the bottom this a little gravel is spread ; then a few stones or rockwork. Heavy large rocks should be avoided; they displace a larg mount of water and increase the danger of breaking th glass sides. Pumicestone, well washed, is the best kind being light and with a rough surface suitable for the rooting of plants, etc. ; and if fancy forms are desired (bridge work,
etc.), the pumicestone can be cut quice easily to the deaired hapes. The plants are rooted in the sand and the vessel left at reat for a week for the plants to vegetate. The fol lowing plants will be fond useful: Utricularia inflata acricularia vulgaris, myriophyllum spicatum, anarcharis Can adensis, and hottonia inflata.

In obtaining plants, procure all the roots and see that they re well rooted. If fungus should form, sdd snails (planorbis rivolvis); they will completely destroy it. After the plants are well started, add the shells and amphibious animals. The following shells will be found desirable: Planorbis tri volvis, physa heterostrapha, unio complanatus. Many shells are not needed. Snails act the part of scavengers; and where the different elements of an aquarium are rightly balanced, two or more snails will be found sufficient.

If amphibious animals are introduced, the rock work must oxtend above the surface of the water, or a float of nome kind must be substituted. It is impossible for them to live under water all the time, and they would die without some such arrangement.
The turtles claim first rank. The enys punctata, or spotted water turtle, and the chrysemys picta, or painted water turtle, will be found to be the best for the aquarium, and should be procured when very young, as they are very destructive when old. The tritons (triton tigrinus, triton niger), the red salamander, the cray fish (astacus Bavtoni), are all suitable and present a very odd and yet a very natural look to the aquarium.
In selecting the fishes, there is no boundary to the num ber to be obtained, but experience has proved that compara tively a few only thrive in confinement. Among these, and the first, is the gold fish. He can live for months withou introduced food, and is, without comparison, the most hardy standing remarkable changes in the temperature; and he is the most gaudy and attractive. A large number of the fishes prey upon each other, and will only do for the aquarium when in the young state. Among these may be mentioned pomotis vulgaris, or sun fish, esox reticulatus, or common pickerel, and perca florcscens, or yellow perch. The leucis cus pygmaus, or rock fish, is a great addition, and is found very plentifully in our streams. The pimelodus atrarius or common black catfish, is ancther worthy of a place. S also is the hydrargia diaphana, or transparent minnow. But few fish can live in an aquarium; and the needless crowding together, so often seen, is very hurtful to health and causes sound, strong fish in a short time to become weak and poor. The great difficulty in keeping an aquarium is to secure enough oxygen for the fish. To a slight degree, it is the duty of the plants to supply this; but if too much vegetation be present, decomposition takes place and ruin follows. It has been demonstrated that only a small amount is neces sary to absorb the carbonic acid given off by the fisb and amphibians; consequently, if the water be daily aerated with a syringe, it will absorb an abundant supply of oxyge for the animal life, and the trouble arising from the decay of nuch vegetable matter will be lessened or altogethe much ver

the practical man

Hesat beside us in a street car. He looked over ou shoulder at the new copy of the Scientific American which, fresh from the prese, was receiving our final scrutiny and requested the loan of the paper for a moment when w had 6nished. He glanced at the first page, skimmed over the middle, and peeped into the inside.

I suppose that paper intereste a great many people," he remarked.
We modestly signified our assent, and murmured some " Wing about forty odd thousand.
"Wa'll, it does'nt me," he interrupted sharply. "It does'nt take no books or papers to learn me my business, you know. Never learnednuthin from books in my life. Did'nt have but a quarter's schoolin, and then I went into the shop Served my time with old Pete Reynolds, of Boston. You now'd him, mobbe; dead now. Was his foreman; now 'm boss of my own works in the city. I'm a practical man I am. All yer hollergeys and hosserphys may do well nough to wrile about; but they ain't no sort'er use in the shop. They just git inter mens' heads, and set'em a thinkin bout other things than their work, and then they git inven in', and that's the last of 'em. Why, I had a likely young fller, who used ter buy that paper, and read ou it, dinne hour. Sometimes he'd stick it up on his lathe, until I stop ped that, mighty sudden. Wall,one day I caught him scrib blin' with a piece of chalk on a bit of board; then I know' he invention fit had got hold of him, and that he was a goner. A few weeks after he comes to the office, and say e: ' Boss, I've got a little arrangement bere that'll mak he old lathe do better work,' and he out with one of them eg'lar printed paytente, and showed me a new attachmen or making gearins, and sich. 'W all,' says I, to humor him, likg, ' sonny,' says I, ' you can go make yer masheen and se it up on the lathe, if yer wanter.' But the ungrateful villin began to say something adout royalty and shop rights, and I told the book-keeper to pay bim right off and jat him clear out. Blow me if he did'nt go over to Smith's, acrost the treet, and rig his affair there ; and the first thing I know'd Smith was turnin' out work at half my prices. Then I ha to go find that feller, and pay him his blamed royalty, and a heap it was too
' Now, there was a good hand just spiled by a-readin'; if he'd a let that ere paper of your'n alone, he might ha' been good, atiddy man, gittin his three dollare a day comfortable and reg'lar. Now they say he's makin stamps by thousands but he's spiled. Wont be worth nuthin ever fer work agin Where'ud I have been if I'd pegged away at books and nooze papers-eh?'
Our practical friend did not wait for an answer ; for while we were cogitating a suitable response, he suddenly made a bol out of the car and rushed down a side street toward a dilapi dated looking edifice, which, we conjectured, was none other than the " worke."

