openings to the air, and through which carrents could be maintained by artificial means. Such a plan is still more to be recommended on hygienic grounds, since it has been shown, by Pettenkoffer, that infiltration of coal gas, through the soil, takes place even into houses not supplied with gas.

Srixutific emmerian.

MUNN \& CO., Editors and Proprietors. published weenly at
NO. 37 PARK ROW, NEW YORK.
O. D. MUNN. A.E. BEACH.

MEIRME
Onc copy, one jesz...
One copy, siy months
5.300
1504
2500
2500

Czus rates $\left\{\begin{array}{l}\text { Ten coppese, one year, each } 82 \text { so. } \\ \text { Over ten copies, same rate, each. }\end{array}\right.$
2500
250
VOLUME XXXI, No. 4. [NEW SERIEs.] Twenty-ninth Year.
NEW YORE, SATURDAY, JULY 25, 1874

\qquad	
Rasion ase	
B.ene, mer saloon steamer, the.....:	
a	
819088	
Car ventilailon	
Chemical eente	
Cocosnut trepa	
Englie from boiller. istance of..:	
Fire enf prepe proportions of........:	
Snace, asafe	
Fer ${ }^{\text {Fen }}$	
Gem ntones, ma du facture of	
Hallatorn, a remarkable	
lron rail products, our............. 50	
8t. the seventeen year....... s8 Zinc for batteries..........	

MORBID MENTAL CONDITIONS.

There is an old saying that 'every man has a bee in his bonnet." which, being translated, means that we are each, on some one topic, slightly insane. Somewhere in the marvelous organism of the brain there is a weak spot; some place in the connection between mind and body is at fault; and in the oxercise of certain faculties, as a consequence, our actions are less governed according to the dictates of a sound reason We are not prepared to vouch for the accuracy of such a the ory, or to adduce scientific proof in its support; but in the daily life of every one, instances apparently substantiating the notion may be constantly encountered. Take, for exam ple, the search for perpetual motion, which in some reaches a mania, or, indeed, the efforts made for solving any of the problems which Science demonstrates to be beyond peradven ture insoluble. This is not confined to the ignorant, though perhaps such a class are in excess; for there are men, score of them now living, some we have ourselves encountered, who, while well versed in philosophy, and who will follow the mathematical demonstration that a circle cannot be squared or a perpetual motion constructed, point by point admitting the truth of every step, will yet, after all, eevertheless find it impossible to divest themselves of th idea that, by some hook or crook, the wished-for result may
be obtained. Or, conversely, they may see results reached be obtained. Or, conversely, they may see results reached
which their reason and knowledge must teach them are im possible, either in 'principle or from the means employed, without the addition of hidden or extraneous circumstances and yet they will grasp at the apparent proof, and even hold it out to the world as genuine, simply because it goes to con firm their secret and cherished ideas which their very reason prevents them openly avowing. Such cases, mere ignorance being eliminated from consideration, we may term the mildest form of the "bee in the bonnet," and starting from them, as it appears, may be traced a whole series of mental defect reaching perhaps up to actual monomania.
We mention the above as a common and harmless instanc of the triumph of will or desire over reason and judgment As the beginning of a special category of human actions, Which, did we believe in the doctrine used by some, that ppi ritual beings unseen govern men's every doing, we should say were directed by a demon of perversity. Passing througg all intermediate graden, considered in their arcending order in proportion to their hurtful effects upon society, the end seems to be found in morbid impulse, in that strange condi tion which Professor Hammond, in his recent able lecture on the subject, defines as a state "in which the affected in-
dividual is impelled consciously to commit an ast which i contrary to his natural reason and to his normal inclinations. We would not have confounded the feelings which impgl an educated man to seek the perpetual motion, and those, which perhaps all of us have felt, when on the verge of some high eminence, to cast ourselves down; but while they differ in point of time, one extending over years and the other over seconds, there appears, in certain cases, in both a morbid element which, in its result of overcoming reason, lends to them a similarity sufficient to class them as extremes of a like mental action.
At the present time, however, when the plea of insanity i so frequently interposed in courts of law to shield the criminal from the consequences of his guilt, too great care cannot be exercised in approaching or admitting the existence of a mental state which tends to destroy the responsibility of a peravo for his own actions. How fine a distinction may be d:awn, showing the existence or non-existence of morbid impulse, Professor Hammond indicates by pointing out that, in the case of a person committing murder while delirious, who acts in accordance with reason, though it may be perverted at the time, and inthat of another who, suppossig to avoid it, neither acts from morbid impulse; but if a delirium acts so over the mind as to convince a man that some one is going to murder him, and hence he lies in wait for and kills that individual, that is true morbid impulse. The person suffering is perfectly aware of his wrongdoing, but cannot help performing the action. Dr. Hammond mentions re peated cases of such impulses impelling men to murder and instances especially that of Jesse Pomeroy, the child who recently killed his playfellow in Boston. The boy, on being questioned, asked to be put where he could not do such things.
In other cases people have been impelled to throw vitrio on handsome dresses, and we are aware of an instance of a lady, for some time known in society, who could not resis the temptation of stealing small articles from shop coun
ters.
What to do with such people is a question which the com munity sooner or later must solve, and Dr. Hammond's answers, as the result of his experience, may be summarized as follows: A person a ware of the influence of the disorder and knowing that he cannot resiet it, is bound to put him self under suitable physical restraint, so as to render it im possible to yield. If he does not, then, when shown to have committed acts thus impelled, it is the duty of society to prevent his being at liberty. Morbidly constituted persons
who commit crime because it is pleasant for them should be who commit crime because it is pleasant for them should be
dealt with according to law. The apparent absence of mo dealt with according to law. The apparent absence of motive is apparent only. The fact that a murder has been com mitted in order that the perpetrator might secure his own execution is not a palliating circumstance; the desire to be hanged is the evidence of a morbid mind, not of an insane one. A morbid impulse to crime experienced by a really insane person demands continued sequestration; but th plea "I could not help it," when standing alone in an ot
wise sane individual, should be absolutely disregarded.

CHEAP TRANSIT FOR OIL.

We have heretofore described the extensive ramifications of the pipes, used in the oil regions, for conveying the leaginous products of the neighboring wells to the railway tations. Many miles of such pipes are now in use. A new and extensive work of this kind, which is rapidly progress ing, is the oil pipe of the Pittsburgh Pipe Company, now be ing laid from the heart of the oil regions, at Millerstown Butler county, Pa., to the Baltimore and Ohio Railroad, near Pittsburgh, Pa., a distance of about forty miles. The pipe has a diameter of three inches, and will have a delivering capacity of four thousand barrels a day. Relay station will be placed every five miles. The pipe company expect to charge thirty cents a barrel for pipage, the present charge by railway being fifty-five cents. This will, doubtless, prove to be a profitable investment. The first cost of pipes is not great, and, if properly laid down, the expenses of working cannot be heavy.
The ordinary railways undoubtedly fursish the cheapes ransportation for most products; but there are some sub tances, as, for example, water, gas and oil, that to a certain extent may be said to possess the power of self-transporta-
tion, whereby they can be moved cheaper than by railway or tion, whereby they can be moved cheaper than by railway or anal.
The facility with which liquids may be made to flow in pipes, between distant places, has often suggested the idea of using similar means for the transportation of grain and rom Chize. Years ago it was proposed to convey grain notion has been lately revived. The idea of transporting merchandize packed in rolling balls, within tubes, the balls o be driven by air pressure, was patented a generation ag ery. Wonderfol things in the way of speed and cheapness of transportation were predicted in favor of these schemes But the predictions were not based upon the mathematics of the subject. After all, whether the project relates to so deal a thing as music, or so practical a matter as the carry ing of goods, the performances of mankind are inexorably confined to the limits of exact numbers. We think that any intelligent person who will take the trouble to figure out the cost of pipes and air machinery, and the expenses incident to the working thereof, will soon become satisfied of the folly of expecting to compete with the ordinary railway over long pneumatic eystem is a good motor for short lines in cities

But it stands no chance with the common railway, econom年y considered, on long lines throngh the open country Oil, water, and gas are exceptional cummodi:ies. Tht se, when placed in pipes, will flow of themselves; and if the apparatus is properly arranged, of the right size, almost any extent of distance can be easily overcome. Thus, the city of New York is supplied with water which flows through an underground tube from Croton Lake, Westchester county, a distance of some forty miles, while the street piping, by which the water is locally distributed, has a total length of some two hundred miles. In view of the cheapness and facility with which liquids may be transported in pipes, it would seem as if this method might beemployed with great advantage to convey oil, from its fountains in Western Pennsylva. dia to Philadelphia and New York. The present cost of transporting oil by rail from Venango and Butler counties to New York is $\$ 1.20$ per barrel. The pipe system would, to New York is $\$ 1.20$ per barrel. The pipe system would, probably, effect a considerable reduction
yield a handsome profit to the projectors.

POWER REQUIRED TO DRIVE COTTON MACHINERY.

The New England Cotton Manufacturers' Association have recently performed a good act in publishing a little "Manual of Power," prepared for them by the well known engineer, Mr. Samuel Webber, of Manchester, N. H. Mr. Webber presents an extended tabular statement of the power absorbed in driving mill machinery in a large number of mills, as de termined by the dynamometer. Some of the machinery was new when tested, some very old, some in good and some in new when tested, some very old, some in good and some in
very bad condition. Special tests were made to determine very bad condition. Special tests were made to determine
the effect of weather changes, of different kinds of oils and the effect of weather changes, of different kinds of oils and
various methods of lubrication, of altering the method of various methods of lubrication, of altering the method of
banding, etc. The information given is derived from the banding, etc. The information given is derived from the
experience of the author, extending over several years, and is of great value to engineers and manufacturers. We have only space for a general rísumé of results.
Cotton openers, delivering cotton loose on the floor, with single beaters revolving from 532 to 820 revolutions per minute, and single fans at 700 to 1,600 revolutions, required, including countershaft, from two to over six horse power with two beaters and two fans, four and a half to six horse power. The cotton delivered ranged from 3,000 to 10,900 lbs. per day.
Cotton pickers, delivering cotton in the lap, at the rate of from 1,000 to $5,000 \mathrm{lbs}$. per day, required from 3 to 13 orse power, averaging about $2 \frac{1}{2}$ horse power per $1,000 \mathrm{lbs}$ Cotton cards absorbed from 2 to 9 horse power, carding from 30 to 76 lbs. per day, averaging about one twentieth horse power per pound for finishers, a third more for break rs, and one fifth for very fine work.
Railway heads required from $1 \frac{1}{4}$ to $2 \frac{1}{2}$ horse power, a usua igure being about a horse power for 9 inch rolls at 10 yard per minute, and half a horse power for $1 \frac{1}{2}$ inch rolls at 300 revolutions per minute.
Drawing frames indicated a resistance of from $\frac{1}{\frac{1}{4} \text { to } 1 \frac{8}{4} \text { horse }}$ power at speeds varying from 200 to 400 revolutions, 3 to 5 rolls, 2 to 4 doublings.
Roving frames ranged from 28 to 276 spindles per horse power, at speeds of from 475 to 1,350 revolutions. A fair performance would seem to give about 150 spindles per horse power, at 1,200 revolutions.
Throstle spinning required a horse power for from 65 to 165 spindles, the latter at 2,685 revolutions of the flier, the former at 5,000 . Ring spinning absorbed very nearly similar power.
Mule spinning gave 200 to 280 spindles per horse power peeds of spindles ranging from 3,000 to 5,000 revolutions.
Cotton looms required usually about one sixth or one ighth horse power, at 120 picks per minute. Looms making 156 picks per minute, on Nos. 15, 16, and 20 warp and weft, ran $5 \cdot 1$ per horse power. Others, at nearly the same speed, on finer goods, ran 9 and 10 par horse power
Cotton spoolers, at 100 revolutions, required 02 to 0.3 of a horse power, twisters abeut three fourths of a horse power, and warpers 0.11 to $0 \cdot 17$; dressers 2 horse power, and slashers $1 \frac{1}{7}$ horse power.
A circular paw. 18 inches in diameter, sawing 3 inch hard lank, gave 1.27 horse power; and a saw, 9 inches in diameter, cutting 1 inch pine board, $1 \cdot 6$, their speeds being 1,300 and 4,000 respectively
A small lathe, turning $\frac{3}{8}$ inch iron, took 0.09 of a horse power, and a larger lathe, turning 1 inch iron,0.21. An upright drill, boring a $\frac{3}{4}$ inch hole, absorbed $0 \cdot 16$. A crank planer, cutting with a two inch stroke, required $0 \cdot 23$, and a planer with a five feet table took, when making 4 feet length of cut, 025 . Three polishing wheels, of 12 inches diameter and $1 \frac{1}{2}$ inches face, absorbed $1 \cdot 15$. A grindstone, 6 feet in diameter and 12 inches face, grinding axes, took 3 horse power, while another, $6 \frac{1}{2}$ feet diameter, grinding axes, in wooden boxes, absorbed 11 ; and a stone, 3 feet 10 inches in diameter and 11 inches face, required $7 \cdot 8$
Wool cards absorbed 0.9 to 1.27 horse power, at 96 to 30 revolutions; jacks, at 2,457 revolutions, 0.65 to 0.78 ; and looms, making 65 to 95 picks, took 0.4 to 06.
Coefficients of friction on shafting ranged from 0.0336 to 759, a good average result being about 005.
Reviewing the whole series of results, we deduce the folowing as fair approximate rules for estimating power
Cotton openers, one horse power per thousand pounds otton delivered.
Cotton pickers, three horse power per thousand pounds cotton delivered.
Cotton cards, one twentieth horse power per pound cotn delivered per day
Cotton cards, best practice, one fortieth horse pnwer per

Railway heads, breakers, one horse power per each ten yaidr per minute.
Railway beads, finishers, 0.001 horse power per revolu tion per minute.
Drawing frames, 0.002 horse power per revolution per minute.
Spindles, 0.008 horse power per spindle per 1,000 revo lutione.
The very great irregularity of the results given in the pamphler indicates how vast are the losses experienced in every mill where machinery, badly made, out of repair, or badly lubricated, is allowed to run. We have litile doubt that there are many mills in the United States where a knowledge of these facts may lead to a reduction of running expenses within their walls, which will go far toward compensating the proprietors for their losses incurred in these dull times outside their mills.

A SWITCH ACCIDENT.

A very unfortunate switch accident recently took place on the Shore Line Railway, near New Haven, Conn. The switch. man shifted the switch just before the last truck of the last car of the train had passed. This threw the truck from the rail, and the truck bumped along over the sleepers for a fell off the trestle, drawing with it the next car abead, then fell off the trestle, drawing with it the next car abead, then the next, and the next, and then the baggage car. The
coupling then broke, leaving the tender and the locomotive on the track. The superintendent of the road, Mr. William Wilcox, was in the baggage car and jumped out, but only to be crushed and killed by ibat car. His was the only life lost, though many passengers were more or less injured. The train was moving quite slowly, or the loss of life might have been serious, as the trestle was some fifteen feet high. The coroner's jury found that the ewitch was in perfect order, both before and after the accident; and there appears to be no other way to account for the catastrophe than as stated, though the switcbman avers that he did not move the switch too soon, as alleged. The switch was of the caboose style the switchman being obliged to enter a round house and
close the door, in order to shift the switch, the switch being close the door, in order to shift the switch, the switch being
connec'ed with the door. The object of this arrangement is connec'ed with the door. The object of thie arrangement is
to compel the switchman to remain at his post so long as the main track is open. A window is so placed in the house that the range of view of the switchman is confined almost entirely to the switch pointe, thus compelling him, as it were, to pay attention to his duty, that is, observe the switck.
This device has been in use for several years on the Connecticut railways, and bas hitherto been an eff ective and valuade auxiliary in the prevention of switch accidents. It is, perbaps, as good a contrivance of the kind as can be provided. cars from one track to another, without subjec ing passen gers to the risk of injury if a switchman is sleepy or careless. Ode plan of this kind was mentioned last week in the ScI entific American, whereby switches are done away with altogether.

It is pleasing to be able to state that the Shore Line Rail way is a comparatively well appointed institution, in respect to the ordinary means of safety. The rails are of steel. To pr -vent a repetition of the telescoping horror which occurred on tbis road a few years ago, the cars have been provided with
the Miller platform and its strong couplings. Had the cars at the Miller platform and its strong couplings. Had the cars at the time of this last accident been coupled with the old style of couplings, it is probable that the coupling of the first car would not have been thrown down. The strong safety couplings appear to have been productive of evil in this case But expe :ience shows that, in the ordinary run of accidente, in nine cases out of ten, this device may be relied upon to prevent iojury.
Superintendent Wilcox was one of the most careful, ex perienced, and able railway officials in this country, highly esteemed in every walk of life. His loss is deepl
deplored. deplored.

THE MANOFACTURE OF GEM STONES

What boxwood is to the wood engraver-the means with out which his finest art would be impossible-that chalce dony is to the engraver of gems. Hard without brittleness, susceptible of a fine and endurable polish, tinted by Nature
with beautiful and at times strongly contrasted hues, or with beautiful and at times strongly contrasted hues, or
capable of taking on such colors at the hand of man, it has capable of taking on such colors at the hand of man, it has
been from the earliest period of art not only the favoriteme dium lut the only possible medium of the gem engraver's most striking effects.
In its simplest state, chalcedony is an unattractive white stone, nearly transparent, and chiefly useful for making spear heads and arrow tips, or their more modern representa tiver, gun flints. Nometimes it has a striped or banded ap pearance, due to alternations of more or less translucen
layers, ranging in color from whey white to the white of skim milk, still not very serviceable for gems or jewelry. skim milk, still not very serviceable for gems or jewelry.
When stained by metallic oxides, however, chiefly those of When stained by metallic oxides, however, chiefly those of
iron, it rises to the dignity of gem stone, as sard, cornelian, iron, it rises to the dignity of gem stone, as sard, cornelian,
cbrysoprase, etc., waen uniform'y tinted brown, yellow, red, cbrysoprase, etc., waen uniform'y tinted brown, yellow, red,
or green: as agate, onyx, sardonyx, etc., when the colore or green : as agate, onyx, sardonyx, etc., when the color
lie in bands or strata,or are separated by layers of white. Tne natural formation of these flowers of the mineral world is recorded in their substance. Though commonly found in lavas and other igneous rocks, or in the dêbris remaining from their disintegration, gem stones are substantially au aqueous product, and require the agency of fire simply to develope their fine colors, a step in their production mor the work of Art than of Nature.

At high temperatures, especially under pressure, silica, the basis of all these stones, is dissolved to a limi:ed extent by water, and thrown down in a more or leas crystaline form when the temperature falls or the pressure is lowered. Il lustrations of this process may be seen on a grand scale in the bot springs of the Yellowstone country and elsewhere in the Great West, where immense masses of siliceous sand and rock, sometimes chalcedonic, have been brought up from the heated depths by the flowing or spouting water,and deposited around the orifices of the fpringe. When water similarly impreguated with silica finds paseage through rocks containing cavities, bubble boles, and the like, a portion of the min eral is deposited in the cavities, gradually filling them from circumference to center, the variable rate of deposit showing in concentric rings or bands of more or less opacity. Frequently the supply of silica bearing water appears to have been prematurely cut off, leaving a crystal lined druse or geode ; and occasionally the cavity remains filled with water hermetically enclosed, forced in possibly under pressure and unable to escape when, by some geologic change, the pressure has been removed. In case the siliceous water is also charged with iron, nickel or other metal, the stone may be more or less impregnated with the foreign material according to the degree of its crystal zation, the more amor veloping the deepest color when subjected by Nature or Art to the action of heat, sunlight, or other agent of chemical change. Or after the deposition of tho stone, the enclosing rock may be -washed by chalyb?ate or other mineral waters supplying the coloring matter necessary to convert the un attractive gray chalcedony ioto the highly prized sard, cornelian, onyx, or other gem stone. It is in these latter pro cesses that Art steps in to complete or improve upon the
work of Nature, either by developing the latent color of naturally impregnated stones or, going further back, by sup plying the coloring material also. Probably the majority of gemstones, thus owe part if not all their beauty of color to Art, as well as their bsauty of engraving and finish.
The simplest process is the development or hightaning of dull or latent color by the action of heat. The celebrated cornelians of India, for example, are largely produced from dull brown stones, by a native process of roasting in a matrix of camel's or cow's dung, which prevents tbe stones from being too highly or too rapidly heated. A temperature suffi in the burning of bricks: the brown oxide of ironis changed in the burning of bricks: the brown oxide of ironis changed
to red oxide, and the color of the stone is correspondingly improved. At Oberstein, the great manufacturing place o gem stones in Germany, carefully regulated ovens are em ployed for the rame purpose. Similarly treated lumps o unimpregnated chalcedony are converted into white cor nelian, the texture of the transluc'ntstone being sufficiently diaturbed by the heat to make it opaque. The snow-white bands of onyy, to which we owe the art of the cameo en graver, are almost alwaysartificially produced in this way, the heat which improves the color of the darker layers, serv ing to develope the white ones at the same time.
But Art, as we have said, goes a step further back, and in troduces as well as developes the colors of these stones, ometimes producing effects which Nature is unable to rival. In all cases the staining process involves, first, the intro duction of a substance capable of producing color on precipi tion, by heat or chemical action, second, the precipitatio of the color. As the stone is too finely grained to absorb any colored solution, the coloring. liquid must itself be colorless To convert gray chalcedony into cornelian, the stone is soaked in a solution of perni ira-e of iron, roughly made by dissolv og old nails in dilute nitric acid; then the colorless perni rate is changed into red peroxide of iron by roasting, the resulting color being faint or dark according to the amount of the solution absorbed. The more translucent the stone the longer the period of steeping r quired; and when layer of unequal translucency exist, unequally colored bands re sult, giving sardonyx or cornelian onyx instead of simple ard or carnelian. Black onyx, that is, black stones crossed by bands of pure white, are always artificial. The coloring matter is carbon introduced in a colorle 38 solution and
blackened by fire or sulphuric acid. By the oriental and blackened by fire or sulphuric acid. By the oriental and
most ancient method, the stones are first boiled in honey or oil, sometimes for weeks, tben heated to a t fmperature which chars the vegetable matter in tha pores of the stone producing black or brown according to the amount absorbed. This method produces the fineat and most permanent black but as the heating is liable to chpek or crack the stones and oo destroy them, the western practice is to darken the car bon by the action of sulphuric acid. Inasmuch as the ori ental black resists the action of nitric acid, while that pro duced by sulpburic acid is readily "drawn" thereby-tha , reduced to the iron mold tint of natural sardonyx-it ba discovered, however, that it is mfrely a questionof time in oaking, a sutficiently protracted bath in nitric acid drawing he oriental as well as the western black color. He ha ound also that any stone made pale by nitric acid, if pro erly heated, will recover its color by the charring of the carbon remaining in its pores, and that the color so pro which in fact it is.
The yellowish brown, orange, and lemon tints of sard are artificially protucible by methods the same in principle as tbose alresdy described, the last being developed by the action of hydrocbloric acid on nearly transparent stone elightly impregnated by Nature with oxide of iroo, the other wo by the protracted aoaking of the stone in the neutra solution of pernitrate of iron, afterwards ex posing them t
the action of sunlight.

The pale green of cbrysoprase is imparted to translucent calcedony by a bath in the saturated eolution of nitrate of ickel, the best effect being produced with the unpurified metal, whichalways contains a trace of cobalt. Tae atone must remain a long time in the bath-three or four wetks or more-as it is nearly crystaline and the process is com paratively slow.
A blue color is more easily produced, but it is not perma nent. The dye is Prussian blue, precipitated in the pores of the stone by the action of ferrccyanide of potassium on the peroxide of iron, introduced as for the production of red A better effect is secured by soaking the stone in the ferrocyanide solution first, then treating it to a bath in the per oxide solution.

bCIENTIFIC AND PRACTICAL INFORMATION

bleaching ivory and bones

The curators of the Anatomical Museum of the Jardin des Plantes in Paris have found tbat epirits of turpentine is very eflicacinus in removing the dieagreeable odor and fatty emanations of bones or ivory, while it leaves them beau'ifully bleached. The articles should be exposed in the fuid for three or four daysin the sun, or a little longer if in the shade. They should rest upon strips of zinc, so as to be a fraction of an inch above the bottom of the glass vessel employed. The turpentine acts as an oxidizing agent, and the product of the combustion is an acid liquor which sinks to the bottom, aod strongly attacks the bones if they be allowed to touch it The action of the turpentive is not confined to bones and ivory, but extends to wood of various varieties, especially beech, maple, elm, and cork.

SOFTENING VIOLIN NOTES.

M. Laborde states, in Les Mondes, that the diragreeable rasping tone peculiar to some violins may be avoided by placing a small strip of wax on the upper portion of the pridge. The notes aro immediately rendered swett and soft, and can be suited to the ear by regulating the size of the piece of wax.

rabies in ants.

Corrosive sublimate, it is said, has the most remarksble ffect upon ants, especially the variety of insect which we ately described as living upon fuggi fouod on leaves of rees. The powder, atrewed in dry wea: ber a rose their path eems to drive every ant which toucbes it crazy. The insec rune wildly about and fiercely attacks its fellows. The news soon travels to the rest, and the fighting members of the community, huge fellows some three quarters of an inch in ength, make their appearance with a ditermined air, as if the obstacle would be speedily over ome by their efforts. As soon, however, as they have touched the sublimate, says the nar rator in the Naturalist in Nicarayua, all the stateliness leaves them; they rush about; their legs are stiz-d bold of by some of the smaller ants alreacy affected by the poison, and they themselves begin to bite, and in a short time become the centers of balls of rabid ants. As these insects are one of the scourges of tropical dmerica, detroying vegeta tion in immense quantities, it is probable that this extra, rdi nary remedy may be of considerable service to agricultu rists.

a remarkable hailstorm

A hailstorm of extraordinary nature recently took place in he northern portion of New Jersey. The bailatoves, it is tated, in some instances, ceeasured as much as 6 ve inches in circumference, and resembled common rock candy, bring of oval form bristling with cubical crystals. The ice was very hard and dificult to break, but when broken presenttd the ppearance of the section of an onion, in its concentric rings The damage done to buildings and crops was excessive, windows being smashed by scores, roofs torn, and fiuit trees completely denuded.

fossils of the departed.

A German inventor, Dr. Von Steinfels, seems to have hit happy medium for disposing of the dead, which is at least free from the objections urged against burial, while it does no violence to the feelings which naturally shrink from destrosing by fire the corpse of a beloved frierd. It is proposed to place the body in a sarcophagus made of stone, and to pack around the corpee artificial stone or cement in a plastic state. The latter being allowed to harder, the remains become like a fossil embedded in tbe solid rock, and, if need be, the deceased finds his grave and his monument in one and the same mass.

cocoa not trepanning.

There is a well known trick perfo:med by the clowns in pantomimes, to the mystification of the juvenile portion of the audience, which consists in shooting a hole in a man' head, and then artistically plugging up the orifise with a carrot, thus completely curing the apparently aseaseinated individual. While this is, of course, very ridiculous, it is not more so than a somewhat similar operation practiced by he inhabitants of Uvea, an island in the Loyalty group These queer people have a notion that when a per on gets a headache his akull is cracked, or that the bone is presriog down on the brain. Consequently they proceed to cure the trouble by cutting open the scalp, and scraping a bole in the craniam with a bit of glape, and then etoppirg the aperture $w^{\text {th }}$ th a piece of cocoanut shell rubbed amoo'h Som times the surgeon scrapes too far and injurrs the pic mater, when the patient is billed; but ordinarily tbe boring proceeds to the dura mater, leaving a hole in the skull. It ceems that few adults are without perforated heads, and that the cocoa nut patch is common.

