openings to the air, and through which carrents could be maintained by artificial means. Such a planis still more to be recommended on hygienic grounds, since it has been shown, by Pettenkoffer, that infiltration of coal gas, through the soil, takes place even into houses not supplied with gas.

Srixutific emmerian.

MUNN \& CO., Editors and Proprietors. published weenly at
NO. 37 PARK ROW, NEW YORK.
O. D. MUNN. A.E. BEACH.

Onc copy, one jesz...
One copy, siy months
8500
1550
2500

2500
280
VOLOME XXXI, No. 4. [New Series.] Twenty-ninth Year.
NEW YORE, SATURDAY, JULY 25, 1874

MORBID MENTAL CONDITIONS.

There is an old saying that "every man has a bee in his bonnet." which, being translated, means that we are each, on some one topic, slightly insane. Somewhere in the marvelous organism of the brain there is a weak spot; some place in the connection between mind and body is at fault; and in the oxercise of certain faculties, as a consequence, our actions are less governed according to the dictates of a sound reason. We are not prepared to vouch for the accuracy of such a the ory, or to adduce scientific proof in its support; but in the daily life of every one, instances apparently substantiating the notion may be constantly encountered. Take, for exam ple, the search for perpetual motion, which in some reaches a mania, or, indeed, the efforts made for solving any of the problems which Science demonstrates to be beyond peradven ture insoluble. This is not confined to the ignorant, though perhaps such a class are in excess; for there are men, score of them now living, some we have ourselves encountered, who, while well versed in philosophy, and who will follow the mathematical demonstration that a circle cannot b squared or a perpetual motion constructed, point by point
admitting the truth of every step, will yet, after all, admitting the truth of every step, will yet, after all, nevertheless find it impossible to divest themselves of the
idea that, by some hook or crook, the wished-for result may be obtained. Or, conversely, they may see results reached which their reason and knowledge must teach them are im possible, either in principle or from the means employed, without the addition of hidden or extraneous circumstances, and yet they will grasp at the apparent proof, and even hold it out to the world as genuine, simply because it goes to con firm their secret and cherished ideas which their very reason prevents them openly avowing. Such cases, mere ignorance being eliminated from consideration, we may term the mildest form of the "bee in the bonnet," and starting from them, as it appears, may be traced a whole series of mental defects, reaching perhaps up to actual monomania.
We mention the above as a common and harmless instanc of the triumph of will or desire over reason and judgment As the beginning of a special category of human actions Which, did we believe in the doctrine used by some, that ppi ritual beings unseen govern men's every doing, we should say were directed by a demon of perversity. Passing through all intermediate graden, considered in their arcending order in proportion to their hurtful effects upon society, the end seems to be found in morbid impulse, in that strange condi tion which Professor Hammond, in his recent able lecture on the subject, defines as a state "in which the affected in-
dividual is impelled consciously to commit an ast which i contrary to his natural reason and to his normal inclinations.' We would not have confounded the feelings which impgl an educated man to seek the perpetual motion, and those, which perhaps all of us have felt, when on the verge of some high eminence, to cast ourselves down; but while they differ in point of time, one extending over years and the other over seconds, there appears, in certain cases, in both a morbid element which, in its result of overcoming reason, lends to them a similarity sufficient to class them as extremes of a like mental action.
At the present time, however, when the plea of insanity i so frequently interposed in courts of law to shield the criminal from the consequences of his guilt, too great care cannot be exercised in approaching or admitting the existence of a mental state which tends to destroy the responsibility of a peravo for his own actions. How fine a distinction may be d:awn, showing the existence or non-existence of morbid impulse, Professor Hammond indicates by pointing out that, in the case of a person committing murder while delirious, who acts in accordance with reason, though it may be perverted at the time, and inthat of another who, supposing himself to be imminent to a great danger, commits suicide to avoid it, neither acts from morbid impulse; but in a going to murder him, and hence he lies in wait for and bills that individual, that is true morbid impulse. The person suffering is perfectly aware of his wrongdoing, but cannot help performing the action. Dr. Hammond mentions re peated cases of such impulses impelling men to murder and instances especially that of Jesse Pomeroy, the child who recently killed his playfellow in Boston. The boy, on being questioned, asked to be put where he could not do such things.
In other cases people have been impelled to throw vitrio on handsome dresses, and we are aware of an instance of a lady, for some time known in society, who could not resis the temptation of stealing small articles from shop coun
ters.
What to do with such people is a question which the com munity sooner or later must solve, and Dr. Hammond's answers, as the result of his experience, may be summarized as follows: A person a ware of the influence of the disorder and knowing that he cannot resiet it, is bound to put him self under suitable physical restraint, so as to render it im possible to yield. If he does not, then, when shown to have committed acts thus impelled, it is the duty of society to prevent his being at liberty. Morbidly constituted persons who commit crime because it is pleasant for them should be
dealt with according to law. The apparent absence of modealt with according to law. The apparent absence of motive is apparent only. The fact that a murder has been com mitted in order that the perpetrator might secure his own execution is not a palliating circumstance; the desire to be hanged is the evidence of a morbid mind, not of an insane one. A morbid impulse to crime experienced by a really insane person demands continued sequestration; but the plea "I could not help it," when standing alone in an ot
wise sane individual, should be absolutely disregarded.

CHEAP TRANBIT FOR OIL.

We have heretofore describod the extensive ramifications of the pipes, used in the oil regions, for conveying the leaginous products of the neighboring wells to the railway tations. Many miles of such pipes are now in use. A new and extensive work of this kind, which is rapidly progressing, is the oil pipe of the Pittsburgh Pipe Company, now beng laid from the heart of the oil regions, at Millerstown Butler county, Pa., to the Baltimore and Ohio Railroad, near Pittsburgh, Pa., a distance of about forty miles. The pipe has a diameter of three inches, and will have a delivering capacity of four thousand barrels a day. Relay stations will be placed every five miles. The pipe company expect to charge thirty cents a barrel for pipage, the present charge by railway being fifty-five cents. This will, doubtless, prov to be a profitable investment. The first cost of pipes is no great, and, if properly laid down, the expenses of working cannot be heavy.
The ordinary railways undoubtedly fursish the cheapes ransportation for most products; but there are some sub stances, as, for example, water, gas and oil, that to a certai extent may be said to possess the power of self-transporta-
tion, whereby they can be moved cheaper than by railway or tion, whereby they can be moved cheaper than by railway or anal.
The facility with which liquids may be made to flow in pipes, between distant places, has often suggested the idea of using similar means for the transportation of grain and rom Chize. Years ago it was proposed to convey grain notion has been lately revived. The idea of transporting merchandize packed in rolling balls, within tubes, the balls o be driven by air pressure, was patented a generation ag ery. Wonderfol things in the way of speed and cheapness of transportation were predicted in favor of these schemes But the predictions were not based upon the mathematics of he subject. After all, whether the project relates to so deal a thing as music, or so practical a matter as the carry ing of goods, the performances of mankind are inexorably confined to the limits of exact numbers. We think that any intelligent person who will take the trouble to figure out the cost of pipes and air machinery, and the expenses incident to the working thereof, will soon become satisfied of the folly of expecting to compete with the ordinary railway over long pneumatic eystem is a good motor for short lines in cities

But it stands no chance with the common railway, econom cally considered, on long lines throngh the open country. Oil, water, and gas are exceptional cummodi:ies. The se, when placed in pipes, will flow of themselves; and if the apparatus is properly arranged, of the right size, almost any extent of distance can be easily overcome. Thus, the city of New York is supplied with water which flows through an underground tube from Croton Lake, Westchester county, a distance of some forty miles, while the street piping, by which the water is locally distributed, has a total length of some two hundred miles. In view of the cheapness and facility with which liquids may be transported in pipes, it would seem as if this method might be employed with great advan tage to convey oil, from its fountains in Western Pennsylva. dia to Philadelphia and New York. The present cost of transporting oil by rail from Venango and Butler counties to New York is $\$ 1.20$ per barrel. The pipe system would, to New York is $\$ 1.20$ per barrel. The pipe system would, probably, effect a considerable reduction
yield a handsome profit to the projectors.

POWER REQUIRED TO DRIVE COTTON MACHINERY.

The New England Cotton Manufacturers' Association have recently performed a good act in publishing a little "Manual of Power," prepared for them by the well known engineer, Mr. Samuel Webber, of Manchester, N. H. Mr. Webber pre sents an extended tabular statement of the power absorbed in driving mill machinery in a large number of mills, as de termined by the dynamometer. Some of the machinery was new when tested, some very old, some in good and some in new when tested, some very old, some in good and some in
very bad condition. Special tests were made to determine very bad condition. Special tests were made to determine the effect of weather changes, of different kinds of oils and
various methods of lubrication, of altering the method of various methods of lubrication, of altering the method of
banding, etc. The information given is derived from the banding, etc. The information given is derived from the
experience of the author, extending over several years, and is of great value to engineers and manufacturers. We have only space for a general résumé of results.
Cotton openers, delivering cotton loose on the floor, with single beaters revolving from 532 to 820 revolutions per minute, and single fans at 700 to 1,600 revolutions, required, including countershaft, from two to over six horse power with two beaters and two fans, four and a half to six horse power. The cotton delivered ranged from 3,000 to $10,900 \mathrm{lbs}$ per day.
Cotton pickers, delivering cotton in the lap, at the rate of from 1,000 to $5,000 \mathrm{lbs}$. per day, required from 3 to 13 orse power, averaging about $2 \frac{1}{2}$ horse power per $1,000 \mathrm{lbs}$ Cotton cards absorbed from 2 to 9 horse power, carding from 30 to 76 lbs. per day, averaging about one twentieth horse power per pound for finishers, a third more for break rs, and one fifth for very fine work.
Railway heads required from $1 \frac{1}{4}$ to $2 \frac{1}{2}$ horse power, a usua figure being about a horse power for 9 inch rolls at 10 yards per minute, and half a horse power for $1 \frac{1}{2}$ inch rolls at 300 revolutions per minute.
Drawing frames indicated a resistance of from $\frac{1}{\frac{1}{2}}$ to $1 \frac{8}{4}$ horse power at speeds varying from 200 to 400 revolutions, 3 to 5 rolls, 2 to 4 doublings.
Roving frames ranged from 28 to 276 spindles per horse power, at speeds of from 475 to 1,350 revolutions. A fair performance would seem to give about 150 spindles per horse power, at 1,200 revolutions.
Throstle spinning required a horse power for from 65 to 165 spindles, the latter at 2,685 revolutions of the flier, the former at 5,000 . Ring spinning absorbed very nearly simiar power.
Mule spinning gave 200 to 280 spindles per horse power speeds of spindles ranging from 3,000 to 5,000 revolutions.
Cotton looms required usually about one sixth or one ighth horse power, at 120 picks per minute. Looms making 156 picks per minute, on Nos. 15, 16, and 20 warp and weft, ran $5 \cdot 1$ per horse power. Others, at nearly the same speed, on finer goods, ran 9 and 10 par horse power
Cotton spoolers, at 100 revolutions, required 02 to 0.3 of a horse power, twisters abeut three fourths of a horse power, and warpers 0.11 to $0 \cdot 17$; dressers 2 horse power, and slashers $1 \frac{1}{2}$ horse power.
A circular paw. 18 inches in diameter, sawing 3 inch hard plank, gave 1.27 horse power; and a saw, 9 inches in diameter, cutting 1 inch pine board, $1 \cdot 6$, their speeds being 1,300 and 4,000 respectively
A small lathe, turning $\frac{3}{8}$ inch iron, took 0.09 of a horse power, and a larger lathe, turning 1 inch iron, $0 \cdot 21$. An upright drill, boring a $\frac{3}{4}$ inch hole, absorbed $0 \cdot 16$. A crank planer, cutting with a two inch stroke, required $0 \cdot 23$, and a planer with a five feet table took, when making 4 feet length of cut, 025 . Three polishing wheels, of 12 inches diameter and $1 \frac{1}{2}$ inches face, absorbed $1 \cdot 15$. A grindstone, 6 feet in diameter and 12 inches face, grinding axes, took 3 horse power, while another, $6 \frac{1}{2}$ feet diameter, grinding axes, in wooden boxes, absorbed 11 ; and a stone, 3 feet 10 inches in diameter and 11 inches face, required $7 \cdot 8$
Wool cards absorbed 0.9 to 1.27 horse power, at 96 to 30 revolutions; jacks, at 2,457 revolutions, 0.65 to 0.78 ; and looms, making 65 to 95 picks, took 0.4 to 06.
Coefficients of friction on shafting ranged from 0.0336 to 759, a good average result being about 005 .
Reviewing the whole series of results, we deduce the folowing as fair approximate rules for estimating power
Cotton openers, one horse power per thousand pounds otton delivered.
Cotton pickers, three horse power per thousand pounds cotton delivered.
Cotton cards, one twentieth horse power per pound cotn delivered per day
Cotton cards, best practice, one fortieth horse pnwer per

