THE COSETISUTIOR OF TEE SOS. ay raonnasoz: C. L rooze Number II
 THE PHOTOSPHERE.

As to the natare of the photosphere, or visible surface o the sun, all the observable phenomena, with hardly an ex ception, concur in representing it as a sheet of luminous cloud : its pecullar granulated structure, the swift mobility of its constituent flaments, and the remarkable appearances presented by the spots and faculæ, are all consistent with this idea and readily explained by it. And if, as is most likely, according to what has been said, the main body of the sun is in fact a huge globe of mingled vapors and gases at such a temperature that even the enormous force of solar gravity can only reduce them to a density a little greater than that of water, it is perfectly easy to account for the existence o such a cloud sheet: it is simply a necessary consequence of the cooling of these vapors at the outer surface of the globe, where they come in contact with the cold of space. Under such circumstances condensation must result, for just the same reasons and in the same manner as that which produces the water and snow clouds of our own atmosphere: minute drops or Hakes must be formed, not of water and ice indeed, but of the materials which we know to exist upon the sun, and must descend in fiery rain and hail into the central depths to be again reëvaporated. And as the descending matter is continually replaced by fresh supplies from below, there must result a vertical circulation of ascending streams and jets of vapor contesting the supremacy with down-pouring cataracts and sheets of the products of condensation; and in consequence the upper surface of the cloud layer must be in a state of continual and intense disturbance, as observation directly shows.

For it is found that the solar surface, when eramined with a powerful telescope, is by no means uniformly bright, but mottled with a peculiar texture which has been very variously described, but may well enough be accounted for by supposing it to be formed of columnar clouds, fiosting vertically in the atmosphere of vapors out of which they are formed. Here and there the surface is marked by brilliant streaks known as the facule, most conspicuous near the edge of the sun's disk, which on account of the absorption of the solar atmosphere is much less brilliant than the center. They are simply pliotospheric clouds, whose summits rise above the general level of the s̀urface, and sometimes form visible projections on the limb. But the most singular objects, and the most interesting, are the spote, whose origin and phenomena have as ret, we think, failed to receive any completely satisfactory explanation. They are dark hlotches of exceedingly irregular form, and cōnsisi éweentlaly öl two parts, a cential "umbra," as it is called, surrounded by a lighter fringe known as the "penumbra." The umbra contains usually one or more rounded spots much darker than the rest, and known us " nuclei;" even the darkest nucleus, however, is dark only by contrast with the intenser light around ; for when, by means of a peculiar eyepiece, invented by Mr. Dawes, who first discovered these nuclei, we examine the umbra, excluding all light from the surrounding regions, it is found that even the darkest pointe are far too bright for the unprotected eye; and by the help of Professor Langley's polarizing eyepiece the color is seen to be a purple tint, closely matching that portion of the spectrum near the fixed line, H.
That the spots are hollows, having a depth varying in different cases from two to ten thousand miles, may be considered as an established fact, admitted now almost withour dissent. The spectrum of the umbra of a spot is found to differ from that of the neighboring. portions of the solar surface, first, in a general darkening of the whole; second, in a widening and deepening of many of the dark lines, with, on the other hand, a thinning and sometimes even an actnal reversal of others; and third, in'the presence of certain dark hands, sharply terminated on one edge, but shading gradaally on the other. Now all these phenomena are just what might be expected in a cavity alled to a great depth by the nearly transparent gases which elfowhere form a thin layer over the sun's surface.

Spectroocopic observations on the chromosphere also show that around the spot there is an unusual and violent up-rush of hydragen and other materials from the central depths.
There is a well marked periodicity in the frequency and violence of our magnetic storms and their accompanying au roras, which exactly corresponds to that of the solar spots.

FENDULUI GOVRRNORS.

Number II
A governor in which the hight of the balls is always the same, whatever their position, is saicl to be isochronous. In such a governor, the balls can only maintain the middle position, corresponding to the ordinary load on the engine, when the latter is at its proper speed, any change of speed causing the governor to act upon the regulator in such a manner as to correct the variation at once, if sufficiently powerful. In order to fulfil this condition, the centers of the balls, as they change their positions, must describe arcs of parabolas, as illustrated in Fig. 4, the curve, it in n op A, being a parabola. It will be seen that, as the 'ball changes its position, so does the point at which the center of the hall rol cote the center of the spindle, so that the vertical hights from center of ball to these points are always the same. In this form of parabolic governor, the end of the governor rod is mede of flexible steel, and is hung to the end of a curved check, L G H I ble steel, and is hung to the end of a curved check, L G H I
K , which is called the evolute of the parabola. The con.
atraction of the parabola and fts evolute are ahown in Fig. 4. The weight of balls, length of arms, and resistance to be overcome are first ascertained; and from these, the hight of the balls can be calculated when the engine is at speed. Then draw toro llnes, B F, D E, at sight angles to each other.

Make B C equal to the calculated hights. From C, draw any number of lines, C e, C d, etc., to D E, and, at each point of intereaction, ereot a lierpendicular to D E. From the middle polnt, k, of $C \cdot e$, draw a perpendicular to $\mathbf{C e} e$ the point, p, in which it ments the perpendicular through e, is one point of the paralola. Bisect eaoh of the other lines, $\mathrm{C} d$, (: c, etc., by perpendiculars, and the points in which these perpendiculars out the perpendiculars drawn through d, c, etc., will be other polnts of the parabola. From each point so determined, as from l, draw a line, as $l a$, parallel to the line drawn through $(C$, to determine the given point. From each polut, as 8 , in which this lise cuts B F, erect a perpen-
dicular, as s q, and from the point in which it cuts the perpendicular, as a q through the draw a Tine, as $L \mathcal{L}$, parallel to $D \mathrm{E}$, till it meets the line as $l \mathrm{~s}$, first drawn. In this way, points L, G, H, I, K, of the evolute of the parabola, are determined.
Another manner of making the lialis move in parabolic

arce is shown in Fig. 5, the balls sliding up flong paic bolic guides, as they change their position.
It has been shown that the weight of the bally does nut affect their position, if the governor has no resistance to over come beyond the weight of its own parts. In practiee, however, a governor acts upon the controlling mechanism, and ehould have its balls proportioned so as to exert the requisite force. The necessary weight is thus calculated: Measure the distance of the point of suspension of each ball from its center. If there is a sliding weight, measure also the distance from its center to each point from which it is suspended. Ascertain the resistance of the controlling mechanism in pounds, and messure the length of the connections ly which the governor overcomes this resistance, from their points of suspension to their points of attachment with the controlling mechanism

1. Multiply each weight or resistance by the length of its connection, and divide by the length of the ball rod; add these quantities together, and divide them by 2.
2. Assume the greatest speed of governor that will occur under variation of load on the engine, subtract the prope speed of goveraor from this number, and divide by proper peod.
3. Divide the quantity obtained by the firat part of the rule by the second quantity
This rule is somewhat complex, and it may be aimplified by applying it to an exemple.

The ball rods of a governor are each 12 inches in length; there is a weight of 80 pounds connected to the spindle by a lever 9 inches in length; the resistance of the controlling wechanism is 20 poupds, and the rods connecting this mechanism with the governor are each $1 \frac{1}{j}$ inches long. The governor is connected with the engine so as to make 300 revolutions per minute when the engine is at speed, and the greatest number of revolutions per minute under variations of speed is to be 350. What is the proper weight for each ball?

1. Multiplying the weight on the spindle of 30 pounds by 9 and dividing by 12 , we oltain $22 \cdot 5$ pounds as the equivalent weight, if its connection were of the same length as those of the balls. Similarly, the equivalent resistance of the controlling mechanism is 15 multiplied by $1 \frac{1}{\$}$ and divided bj 12 , or $2 \cdot 5$ pounds. The sum of these weights is 25 pounds; and dividing by 2 , we obtain 12.5 .
2. The difference between the greatest number of revolittions of the governor per minute and the proper number is 50 , and this, divided by 300 , is $0 \cdot 167$, nearly.
3. Dividing $12 \cdot 5$ by $0 \cdot 167$, we oltain $74 \cdot 85+$ pounds, so that the weight of each hall should be about $37 \cdot 5$ pounds.
It will be evident, from what has preceded, that a pendu lum governor which is very sensitive cannot be very powerful, nor one which is very powerful be very sensitive; and that, in order to obtain great power, it will be necessary to use very heavy balls. Our readers have, doubtless, observed that those governors which give the best satisfaction are arranged with a view to sensitiveness, the controlling mechanism being actuated by the application of a very slight force. It is probable that governors of any design will be subject to similar conditions, since a great resistance in general requires considerable force to overcome it.
We have been at great pains to simplify the rules con tained in this article, and we think our readers, by applying them to a few examples, will readily understand them. The principles stated are of interest and value to all who are engaged in the construction of governors.

Cortespondence.

The Patent Ofilce Tea sot.

To tho Eiditor of the Seientific American

In answer to your inquiry as to what has been done in ref orence to the illegal presentation to C'ommissioner Leggett I would say that it was stated on good authority that the Assist ant Becretary sulomitted the question to the Attorney General for his opinion, and that it was finally concluded to drop the matter, and do nothing about it.
That it was a plain, open violation of the law is clear, and is admitted by the more honest of those who participated in it. The Teaftitg bnesurtionembo: hooded the aubroription and gave the most, some of whom are soon to come before the Benate for confirmation-fearing the effect of their ille. gal act, now seek to evade it by denying that they gave aus thing. The ground on which they do this is that, although they subecribed, they did not pay their subscriptions until after the 1st of November, which was some time after the plate was purchased and presented: Possibly, in order to avoid the effect, they may not have paid it yet; but that the present Commissioner heeded the list with 850 , and the Assistant Commissioner followed with . 225, or more, is not de niëd, and cannot be, truthfully. This, to say the least, is a mort cowerdly and mean attempt to crawl ont and leave blawe to fall on the subordinates, nearly all of whom subscribed uider compulsion: merely to retain the goodwill of thooe in authority, or to come in, and thereby to retain their placee or socare protiotion.
Agaty, they urge that they did not violate the law, becanse the stbearlption, although made early in October, wes dated November 1, so as to have it appear that it took place-after the Commissioner was out of office. This only makes the matter wrorse, because It ahows on its face a knowledge of the law, and a deliberate attempt to evade its plain provisions.
Again: they urge that it was at best but a technical viola tion, because, although legally Leggett's reelgaation did not take effect until the 1st of November, still practically he was already out of office. The trouble with this is that it is not true, for not only did he remain until after the presentation (October 19, I think it was), but the Offie records show that he acted as Commissioner and made decisions after that-a least so I am informed and believe. It has also beon stated that this matter of the presentation originated with the lady employees. This is not true, and it is all the more unmanly for these parties to seek to shift the responsibility from their own shoulders to those of the women. A certain woman did originate, or at least carry out, the plan of presenting the cane; but the tea set presentation originated with and was carried out by the male employees. A certain ex aminer, who hoped and expected to be mede Assistant Commissioner, was the main mover in the matter, and personally circulated the subscription paper.
Not only was the whole proceeding a palpable and wilfu violation of the law, but they were so told at the time, by some who refused to siubscribe, for that among other reasons. The whole matter, both in the transaction itself aid in the neglect to enforce the penalty of the law by the Secretary, is but a fair illustration of the contempt for the law manifested of late by the Patent Office officials.

James.

Great Britars has formally accepted the invitation of the United States to contribute to the Centennial.

There is no modeso effectual to imprese ideas on the mind as that of erperiment aided by reflection.

