A FEW HOT AIR BALIOON.

The possibility of ascending in a balloon filled with hot air was long since demonstrated, but the death of one of the earliest experimenters, followed by the manufacture of coal gas, led to the abandonment of the system. A Frenchman named Ménier has recently revived the idea, and has made experiments on a scale of considerable extent. His scheme is to employ a balloon filled with hot air, in a captive condition only, as a means for obtaining observations from a considerable altitude for an army upon the line of march; and experiments have been instituted at the Woolwich Arsenal, England, with a balloon of gigantic size, which hasbeen constructed under the supervision of the well known aeronaut, Mr. Simmons, for this purpose, a paraffin lamp being used for parafin lamp being used for heating, whic
of M. Ménier.
The accompanying plan engra ving will give the reader an idea of the proportions of this bal loon, and of the apparatus employed for heating it. The balloon is nearly circular, 70 feet in diameter, the aperture at the neck being almost closed by a tin diaphragm which separates the balloon from the car, sus. pended 4 feet beneath by cords pended 4 feet beneath by cords
surrounding the balloon. A mansurrounding the balloon. A man-
hole is contrived in the diahole is contrived in the diaphragm, so that observations can
be taken of the interior of the balloon during an ascent. The car is of wirework, with a wooden hoop round the top and bottom, and runs upon three light carriage wheels, by means of which it can be transported from one place to another, with the whole of the balloon and its at tendant gear packed upon the top. The wheels remain attached to the car during an ascent. The beating apparatus, which consists of a huge parafin lamp with a copper climney, the whole being 25 feethigh from the ground, rests upon the tin diaphragm, being supported by light girders of wrought Tiron, crossing the ring round the dia phragm (see the section, at the upper part of the illustration, for the girders). The furnace for the lamp, the details of which will be described presently, rests within a tin cylinder projecting beneath the diaphragm, being supported by bent rods of iron crossing the cylinder. It has crossing the cylinder. It has four feed pipes, leading into it and communicating with two oil cisterns suspended from the diaphragm ring, two to each cistern. The cisterns are filled from cans of oil, by means of
 also atached to each, leading away into an empty can. The yond its original bulk. Assuming then the average tempera- tion, just as do the particles of steel when strain is removed furnace is immediately beneath the chimney, which is con- ture of the surrounding atmosphere up to a short distance structed of thin sheet copper, having a bulb at the bottom 6 from the earth's surface, say 300 yards, to be 50°, we should feet in diameter. The chimney is divided into several portions, as may be seen in the engraving, which take to pieces, and are capable of packing into a small space for easy tra
 sit. At the top is a head of open wirework, crowned with an and as Ménier's balloon is very nearly spherical, its contents are adt to risk a catastrophe rather than stop work or wait for asbestos mat or damper, to prevent the heat striking directly upwards and burning the roof of the balloon. The substance of the balloon is French cambric, an excessively fine fabric, with a double crossed woof, so as to be impervious to the air. It is slightly heavier than the silk usually employed for balloons, but requires no prepara tion or dressing of any kind to rende it airtight. The furnace or burner is of annular character, constructed o copper, hollow, with a bulge all round at the bottom, to contain the oil. At the junction of the bulge and the walls of the furnace, on both sides, is a ring of wick (see AA.) At the sum mit of the burner or furnace ar numbers of perforations piercing int its interior A wall or ring of metal its interion. A wall or ping of metal is erected on the top the flam upwards. The action of the appara tus is as follows: Upon filling the bulge with oil and lighting the wicks the walls of the furnace are quickly heated, the surface of the oil inside being rapidly converted into inflamma ble gas as its body becomes hot. The gas escapes at the perforations before alluded to, and very shortly igrites out side the burner with a loud roar, contin

uing to burn fiercelyuntil the cisterns are exhausted. Theseare would weigh, in pounds, $70 \times 70 \times 70 \times \frac{1}{2}$, or $13,720 \mathrm{lbs}$, be of course replenished from the tin cans carried in the car, as cause the contents of spheres are directly proportional to the previously explained. The average heat generated through- cubes of their diameters. Hence, by the above process we cubes of their diameters. Hence, by the above process we lbs. This, then, would be the total lifting power of the ballos. This, then, would be the total lifting power of the balloon, or exactly $23 \frac{1}{2} \mathrm{cwt}$; and deducting 13 cwt . for the
weight of the entire apparatus, we find that $10 \frac{1}{2} \mathrm{cwt}$. is the weight of the entire apparatus, we find that $10 \frac{1}{2}$ cwt. is the
excess of lifting power arrived at. Occupants, freight and excess of lifting power arrived at. Occupants, freight and
ballast to that extent could therefore be carried in M. Ménier's balloon.
ever, experimentally, that a temperature of 22° above the
surrounding atmosphere will actually lift the balloon off the ground.
The actual lifting power of M. Ménier's hot air balloon, nier's balloon.
says the Engineer, from whose pages we select the engraving,

MENIER'S HOT AIR BALLOON.

It is well known that a bar of softiron, surrounded by an in duction coil of wire, becomes magnetized on the passage of a current through the latter Large magnets are frequently thus constructed; and in one ca pable of sustaining 330 lbs ., M Lallemand has noticed a curious condition. He states that, after allowing the above weight to be supported by the magnet, he removed all but 110 lbs ., and then interrupted the current. The weight, however, remained sup ported, as it appeared, by resi dual magnetism inthe iron. On removing the armature and weight, and then trying to replace the armature, it was found that the magnetism in the ba had disappeared and that there was not sufficient to hold the armature alone. La Natur mentions this as a new discovery, and suggests experimenting them. In this view our cotem porary is at fault, as a well known electrical expert informs us that, in using large magnets, he has repeatedly remarked the same phenomenon, and is, be sides, under the impression that even a greater proportion than one third the weight can be sustained by the residual mag. netism left in the bar. The explanation is doubtless to be found in the re-arrangement of the atoms of the iron under the nfluence of the current, a condition which, though of course not visible, can nevertheless be made to demonstrate its pre sence, as Professor Tyndall has hown, by a click at the estab lishment and interruption of the electric flow. The magnet and ts armature and weight thus form a circuit, which may be ikened to a band of steel held in annular form. The atoms re ain their altered places even after the stoppage of the cur rent; but the instant the conti
cently brought into use an appliance which prevents the machine being overtaxed, and makes it impossible to lift a weight heavier than that for which the crane is designed. The end of the lifting chain, instead of being fastened to a fixed link at the end of the jib, is attached to a link hung to a crossbar, at each end of which is a vertical bolt rising through a casting in the head of the jib, and carried by a pair of volute springs. The arrangement is clearly shown in the engraving. These bolts can be adjusted with the greatest nicety, and the strength of the spring is made to correspond with the maximum load that the crane is to lift. Fastened to each of the bolts is a triangular block, with a feather at the back, serving as a guide, and moving in a groove, and with a number of V grooves in the front or inclined side. The sheave, over which the chain passes, is indented to a pitch corresponding to that of the chain itself, and on either side, and being a part of it, it is formed with a number of $\bar{\nabla}$ grooves corresponding to those in the blocks above mentrooed. So long, therefore, as the

