PEAT FUEL.

The difficulties in utilizing peat as fuel have been very widely discussed, but the operations at La Pigéonnière, Canada, have, by ten yeara' practical operation, proved the practicability of converting the sabstance into a clean and cheap fuel, the supply of material for which is, in many localities, practically anlimited.
The Irish peat, the formation of which is due to the moist atmosphere, when cut and dried in the air, is ready for use in furnaces, etc.; and the considerable formations in Somer setshire, England, and in the valley of the Somme, in France, are utilized in a similar manner. In Canada and this coun try, where the atmosphere is drier, a supply of surface wa ter is required to produce the substance. It is fibrous in texture, and somewhat red in color; in drying, it loses 40 per cent of its balk and about 90 per cent of its weight. Thus 10 tuns of the material must be dug out to obtain one tun of fuel; and its economical working is, therefore, a point of great importance. When dry, its heating capacity is about three fifths that of coal.
To render its combustion practicable, it must be pulped and disintegrated before drying, otherwise it is too loose in condition to form a good fuel. The pulping operation destroys a certain hygroscopic character that the dried raw peat assumes, and causes it to resist moistare and to be indestructible by frost.
Mr. James Hodges, C. E., is the engineer of the La Pigeonnière operations, and the process is described as follows: A center level line is traced out, and for ten feet on each side of it the surface is cleared of vegetation, the débris be. ing piled up on each side to form two banks 20 feet apart. This arrangement is the preliminary work for a canal, and at one end of it a kind of dock is formed, for launching the apparatus shown in our first engraving. It being ascertained that the peat bog contains sufficient water to fiow in behind the machine and fill the excavation, the cutting vessel is started. It consists of a boat of 80 feet length, 16 feet beam, and 5 feet depth, with two screws, of 11 feet diameter, in front, fitted with cutting blades and driven by an engine in the stern of the vessel. The blades cut their way through the bog; and as the waterflowsin as fast as the peat is takenoat, the vessel moves forward, generally at the rate of about 15 feet per hour. Two men are required to clear the peat from pieces of wood, roots of trees, etc. When cut, the peat is lifted by an elevator and discharged into a hopper, and thencepasses into a palping apparatus, and flows off by a distribating trough. The two men occasionally add water to keep the pulp of a proper consistence, but no other hand labor is required. The distributing trough lies at right angles to the length of the boat, and may be lengthened to deposit the material at the required spot. The peat is left on theground to dry, to the depth of about 9 inches; and when consolida. ted, it is ready for cutting into blocks. Ttio is done with curved knives, placed 6 inches apart and mounted on a frame, and worked by two men. In a fortnight of favorable weather, the blocks are ready for stacking, whith a gang of a man and three boys can perform at the rate of 4,000 blocks a day. They required to be tarned and resteciked to insure thorough dryness. Our second illuatration shows this process.

Mr. Hodges states that, in 10 hours, frem 800 to 400 tans of pue, can be excavated by this machlse. Thio will yield about 50 tuns of dried fuel, and will leave a canal 150 feet long, 19 feet wide. and $5 \frac{1}{2}$ feet deep, in the peat bed. For this quantity, an ε-erage of 38 men for the day of 10 hours will be required. Fu 31 thas made has been barned in the locomotives of the Grand Trunk of Canada Railway, with a saving, it is said, of 45 per cent of the expense of coal, and a rather larger economy over that of wood.

The engravinga were originally pablished in Engineering.

Wrave motion.

Mr. Deverell, of Englaind has devieed an apparatue by Ahich the movement of a ship at see is registered. From the reealts of a recent vojege, Mr. Deverell deduced the followlog: The duration of the vosage was 2,026 hours. During that time the ship made $1,764,088$ beam oscillations or rolls, and $1,041,137$ fore-and-aft oscillations or pitches. The averagenamber of oscillations in both directions per minate was 14. The aggregate arc of pendulum registering beam movements was over $15,000,000$ degrees, while that of the fore-and-aft movements was nearly $5,000,000$ degrees." Mr. Deverell also considered that he had definitely established from these obeervations the following propositions: 1. That between ocean limits, the swell of the ocean is unceasing. 2. That the motion of an independent body within a ship on the ocean is unceasing. Here then was represented an immense amount of conservable energy, and the question remained : Could a practicable method be found for conserving it for use on board ship? Mr. Deverell believed that it could, and to a safficient extent to be useful in auxiliary propulaion. He expects to be in a position in a few monthe to detail his method of putting his propositions into practice.

The Bicycle.

A remarkable instance of what can be done with the bicycle was recently exemplified in England. A match had been made between Mr. Stanton and Keen, the champion rider, to ran 106 miles, the former to receive a start of half an hour. Stanton's machine had a driving wheel of 58 inches in diameter, that of Keen's being 4 inches less. Keen accomplished 50 miles in the extraordinary time of 3 hours 14 minutes 18 seconds, bat was compelled to retirein the 91st mile, leaving Stanton to finish the 106 miles alone, which he did in 1 minate $5 \frac{1}{2}$ seconds less than 8 hours-an average of over 13 miles an hour, inclusive of a few short stoppages for refreshmenta, etc.

ABTRONOMICAL NOTES.

 Obserfatory of Vabsar College.For the computations of the following notes (which ar approximate only) and for most of the observations, I am ndebted to students.

Positions of Planets for December, 1874. Mercury.
Mercury should be looked for in the morning. On the 1st of December, it rises at 5 h . 22 m . A.M., and sets at 3 h .32 m P.M. At this time it is well situated. On the 31st, it is not as easily seen, as it rises at 6 h .59 m . A.M., and sets at 3 h . 51m. P.M.

Venus.
Venus rises on the 1 st of December at 8 h .17 m . A. M. and sets at 5 h .3 m . P.M.
On the 8th of December, Venus makes a transit across he sun's disk, affording an opportunity to astronomers to determine, by the best methods now known, the distance of the sun from the earth. To observe this phenomonon, expeditions have been sent to northern and southern stations by the United States, Great Britain, Russia, and other countries.
The transits of Venus which have been olserved occurred in 1639, 1761, and 1769. The next after this of 1874 will be in 1882, and will be visible in this country. The transit of 1769 was observed in this country, and a curious pamph let describing it was published at that time in Providence, R. I. The writer says: "The transit of 1761 was observed at S^{\prime}. John's, in Newfoundland, by John Winthrop, at the expence of the Massachusetts colony."
"To observe the transit of Venus in 1769, several obser vators were sent into the South Seas by the Royal Society in London; the Empress of Russia sent several companies into those parts of her empire where the visible duration was of the greatest length, and the King of France did likewise send observers into foreign parts."
On Dec. 31 st , Venus rises at 4 b . 59 m A.M., and sets at 2h. 49 m . P.M.

Mare.

Mars is not well situated for observers. It rises at 2b. 46 m. A.M., and sets at 2 b .4 m. P.M. on the 1 st of December. On the 31st, it rises at 2 h .20 m . A.M., and sets at 0 h .50 m . P.M.

Jupiter.

Jupiter is also unfavorably situated for observations, rie ng on the 1st at 3 h .18 m . in the morning, and setting at 2 h 20 m . P.M. On the 31st, Jupiter rises at 1h. 43 m . A.M., and sets at 0 h .33 m. P.M.
saturn,
Saturn is not as well situated as it has been through the ummer. It comes to the meridian before dusk, and sets on the 1 st at 8 h .57 m . in the evening. On the 31 st , it rises at 9 h .28 m . A.M., and sets at 7 h .14 m . P.M., so that it is carcely possible to get a good vlew.

Uranus.

Uranus can sometimes be seen with the eye; and as i_{7} ises on the evening of the 1st, among the small stars of Cancer, at 9 h .24 m ., it could perhaps be seen at midnight. It rises on the 31 st at 7 h .23 m . P.M., and passes the meri dian at about 2 h .30 m . in the morning, at which time it has an altitude, in this latitude, of nearly 59°.

Neptune.
Neptune rises at 2 h .32 m . P.M. on the 1st, and sets at 3 h . 38 m . the next morning. On the 31 st , Neptane rises at 34 m after noon, and sets at 1 h .39 m . the next morning.

Sun Spots.
The record is from Oct. 20 to Nov. 14, inclusive. The pho tograph of the 20 th shows the three large spots of the 19 th with another of good aize, very near the center, which was not seen on the 19th. The 21st was not clear; and on the 22d, this spot had disappeared, together with the most westerly of the other three. On the 23d, the two remaining spots were seen, the more westerly having perceptibly decreased in size, and on the 24th it had disappeared without reaching the edge. From the 26th to the 29th inclusive, the spots were few and very minate, the facalx being very marked on the 27th. On the 30th, a large spot appeared on the eastern edge of the sun's disk, which proved to be the precursor of a fine groap. Photographic pictures of Oct. 31st and Nov. 2d show two large, well defined spots. Owing to cloads and fog, no pictares were taken from Nov. 2d to Nov. 10th; bat the group was watched with a small teleacope, and the two large spots were seen to divide into several smaller ones,
the pictare of Nov. 10th showing a groap of six small spots within the western limb. On the 11th, the group was near within the western limb. On the 11th, the groap was near
the edge of the disk, and on the 12th it had disappeared, and the sun's axial motion had brought a small spot into view within the eastern limb. On the 14th, three groaps of very
small spots were seen within the eastern limb, and nearly in a line with the sun's equator.

Is describing a recent balloon ascent to the French Acad emy, M. Tiseandier mentions having entered a bank of gray clouds at a hight of only 485 feet, this being lower than in any previous ascent. At one time, cariously, while the ground was completely hid from the voyagers, they ascertained, from the voices they heard, that they were distinotly seen from the ground. The clouds were transparent from below upwards, opaque from above downwards. M. de Fonvielle took spectroscopic observations of the sun at various hights, from 4,850 to 3,250 feet. The blue was observed to invade the space occupied by the indigo and violet rays, while the red was mach the same as on the ground. On nearing the upper surface of the oloads again, the Fiolet and indigo resumed their former extent.

Cotrespondence.

ENTOMOLOGICAL NOTEB.

To the Exditor of the Bcientific American.

I send you a few notes on entomological paragraphs which have lately appeared in the columns of your journal.

beech blight.

Under this head, you published several communications last apring, one of which, from Mr. Jacob Stauffer, of Lancaster, Pa. , contained the following words: "It would seem that this blight is not so very new after all. Westwood fig. ures the larva of the psylla betulce." * * "I would simply ures the larva of the psylla betulce." ** "I would simply add that neither from Mr. Riley, Mr. Walsh, nor Mr. Haris
could I learn anything further about the species, or if it could I learn anything fur
The insect is not the psylla referred to, and does not belong to the flea lice (psylluder), but to the plant lice (aphider). It was briefly described by Dr. Aea Fitch, in 1851, under the name of eviosoma imbricator, though it in reality belongs to the genus pempligus. I have referred to it in the American Entomologist, vol. I., p. 58 .

vebicatory potato bugb.

The Colorado potato beetle posersses no vesicatory pro perties; but the so called old-fashioned potato beetles, belonging to the very same family as the Spanish fly (cantlurris vesicatoria) all possess it in a high degree, and the fact was nown and made uss of not only nineteen years ago, but half century ago. Kirby and Spence, in their invaluable "Introduction to Entomology," speak of these insects being used in place of the green European species, and Harris and most ubsequent aathors who treat of the lytte refer to the fact. Some years ago I caused large quantities of the striped blister beetle (lytta vittata) to be collected and properly dried, and from them Mallinckrodt Brothera, of this city, made an excellent cerate, which bas-been used with satisfaction by our local phyaiciass. I would also state to Mr. E. S. Wicklin that these blister beetles have not become great strangers. Lyttavittata may be got in almost any year, by the cartload in his latitude, and theyoften ruin a potato field in a fow days; while cinerea, marginata, and atrata frequently swarm on particular plants. The European vesicatoria abounds most on ash trees, and is collected principally from these trees, and with far more labor than is required to collecs the cittata in this country. But such is the force of habit and the difficalty of diverting the coarse that trade has once taken, that our pharmaceatists still send to Southern Europe for their cantharides. Bat I presume they make as much profit on the one as they woald on the other, and there is no particular indacement for them to encourage home industry. THE PHYLLOXERA PREMIOM.
An item in one of your late numbers makes mention of the fact that one of your correspondents has discovered that the liberal use of cow dang is a sure cure for the phylloxera on vines, and-whether jokingly or not, I cannot pretend to say-calls upon the French Government to remit the amount of the reward, in case the proposed remedy prove effectual. It is a pity that your correspondent is so modest as to keep back his name, and a still greater pity, for him, that cow manare and cow urine were among the earliest supposed remedies thoroughly tried in France. The fact that be will not be able to prove priority of suggestion is all the more to be deplored, for the reward for a remedy has been increased from sixty thousand to three hundred thousand dollara. Cow manure is an excellent invigorator of the vine, and ite use, as that of all other invigorators, is beneficial in counter working the effects of phylloxera, but it is no sure remedy for the disease.

Charles V. Riley.
St. Louis, Mo.
Charles V. Riley.

What Temperature Kills
 To the Exditor of the Bcientifio American:

I notice in your iesue of November 7, 1874, an editorial rticle entitled: '• What Temperature KIlls?" In the third paragraph you say that " not one seed germinated after ex. hosure to boiling water." I wish to state that the seed of the common locust tree will not only stand the temperature of boiling water, but will always fail to grow unless boiled or 8 to 10 minates.
My father planted about 15,000 seeds of the common lo. cust on four acres of land, and only about 50 seeds germi. nated. We now boil them for 10 minates, or place them in cold water and allow it to come to a boil, and remove them three minutes afterwards. These seeds will grow finely fter a large brash pile has been barned over them.
These are facte, occurring every year, to my personal knowledge.

Hiram Van Meter.
Macomb, Ill

The Crystallization of Carbon.

To the Editor of the Boiontific American:
I would like to add my testimony to what you have already pablished to the world on the crystalization of carbon, espe cially as at last we seem to be on the high road to succers.
Twenty years ago, while conducting experiments for ano ther parpose, I was accidentally led to the conclusion that the diamond is a crystal of slow growth, from carbon, first reduced either to a liquid or gaseous state. I inferred this, partly, from the growth of large crystals of other substances, whose fall size was not attained in less than from five to eight years time. This theory is less complex than that of Mr. Thiese, of Rochester, and it consists in confining car bonic aoid gas in a large atrong receiver, and in sabmitting bonic aoid gas in a large atrong receiver, and in submitting
it to a moderate heat and great pressure for a considerable

PEAT FUEL MANUFACTURE IN CANADA.-CUT'JING AND PULPING APPARATUS. (See page 356.)

PEAT FUEL MANUFACTURE IN CANADA.-DRYING AND STACKING. (Ree page 356.)

