ased, is because the vibration of the used rails tends to shake
off the rust formed, so an to prevent its prolonged contact Whth the metallic iron from accelerating the corroaion of the latter.

THE MECHANIC OF THE FUTURE

An esteemed correspondent desires us to call attention to the difficulty in finding mechanics able to fill situations where special knowledge is required, and to the hindrances thrown in the way of capable men by trade rules and custome, prescribed and enforced in the interest of the worthless and incompetent.
This country is almost overstocked with professional men and whenever education and ability are united in a young man, he is almost sure to quit the practical part of his trade and become a consalting engineer and an expert, living by fees instead of by wages, and selling his knowledge and not his okill. Thus, men of brains are taken out of the really working class; and many manafacturers look in vain, in the rank and file of their establishmente, for men capable of being master mechanics. The question as to where our
leaders and foremen are to come from is deserving of our best consideration; for there are many influences at wor which are retarding the progress of the American working man. Boys and young men should especially bear in mind the value of acquiring a thorough knowledge of all branches of the trade by which they intend to earn their bread, so as to become capable leaders and instractors of othera, les gifted and fortunate than themselves. The gentleman above referred to recently needed a first class machinist to saper intend a certain branch of business, the specialties of which
wonld require a few months of attentive stady and practice. wonld require a few months of attentive study and practice.
It is difficult to believe that the rules of a trade society, ostensibly organized for the protection of the rights of work ing men, prevented a skilled artisan from leaving an in ferior position to be a superintendent; but it is nevertheless a fact. He stated that the union to which he belonged would not allow him to work for an hour at less than a cer tain rate, even though his to tainly lead him to permanent employment of great responsi employer, naturally averse to having his liberal offer thus employer, naturally averse to having his liberal offer thus
treated, at once declined to promote the man on any terms whatever, as no one who would thus debar himself from getting on in the world was fit to be pat over others, who would naturally follow his erample and imbibe his ideas.
So many qualifications are wanted in a manager and su-
perintendent of a machine business that fitness for the post perintendent of a machine business that fitness for the post late our workmen to study and improvement.

CHARAOTERIETICS OF A BUAINESS RING

During his career as a great contractor, the late Thomas Brassey was engaged in the construction of railways in England, France, Spain, Italy, Belgium, Saxony, Bohemia, Austria,Hungary, Moldavia, Syria, Persia,'India, Australia, Canada,and South America, aggregating something like six thousand five hundred miles, besides water works, drainage schemes, docks, bridges, and other important andertakings. In the execution of these great works, he had, at various times, twenig-seven different partners; four handred million dollars of other people's money passed through his hands; and at times the army of workmen to which his contracts gave employment numbered as many as eighty thonsand men.

Sucha record, to say the least, entitles Mr. Brassey to a high placeamong the great captains of industry to which the age of railway construction has given birth and occupation and as one of the pioneers of a new order of men, his charac ter is peculiarly worthy of study, more especially as he re presents a type of man which the world is likely to have more and more need of with the spread of the industrial civilization which distinguishes our modern times.
Abundant materials for the study of Mr. Brassey's qualif cations for an industrial leader are furnishel in the volume on his "Life and Labors," prepared by Sir Arthar Helps: and though it is never safe to assume that all the character-
istics of a successful man were essential or helpful to his career, and therefore worthy of imitation by those who would aspire to similar success, we may nevertheless easily detect those which were strikingly helpful; while the doabt. ful ones, even those most widely at variance with the popu. lar ideal, may possibly have been factors worthy of recognition.

Before entering upon any analysis of Mr. Brassey's character, it is proper to notice, first, an important condition of his success in the great business of his life, a condition without which every other qualification would have been wasted. Jis business training was such as to give him a practical knowledge of nearly every kind of labor necessary to be understood for the accomplishment of great works of construction. This we put before any personal characteristic, since no man, however well fitted by Natare for the rank of master, can command to good purpose without a minate personal knowledge of the work to be done, a fact which ambitious youngsters are very apt to overlook. Mr. Brassey was fortunate in not being sent to school until he was twelve
years old. At sixteen, he was apprenticed to a surveyor and years old. At sixteen,he was apprenticed to a sarveyor and
resl estate agent,-something different, by the way, from what the term implies with us-who subsequently took him into partnership. His first work of consequence was in connection with the laying.ont of the once celebrated Holyhead road, of which all England was very proud. At the death of his instructor, Mr. Brassey became sole agent and representative of the owner of a large estate, in the care of which he had brickyards and limekilns to saperintend. Later he
had the management of a quarry, from which stone was
taken for a viaduct on the Liverpool and Manchester Rail way, the first for passenger trafic ever constructed. It wa in connection with this quarry that Mr. Brassey made the acquaintance of George Stephenson, under whose advice he made his first (unsuccessful) tender for a railway contract. His next attempt was to better purpose; and at the age of twenty nine, Mr. Brassey entered upon his life work as a
railway contractor. His first undertakings received his per sonal supervision to their minutest details, thus laying the foundation for the higher and more valuable art for which he became celebrated in after years, the art of dealing with details in masses.
Thus Mr. Brassey was prepared by education for dealing with the great problems of railway construction. Let us consider briefly the personal qualities which he brought to the work. In the first place, he had the energy needful for reat accomplishment. Said one who worked under him or many years: "If he'd been a parson, he'd have been a bishop; if a prize fighter, he would have had the belt." The physical basis was sound and enduring, and his activity untiring. With great capacity for hard work, he keenly en
joyed working hard, not so much for the profit it would joyed working hard, not so much for the profit it would bring as for the pleasare of doing. He could not bear to undone or half done. Even when the pushing forward of work, arrested by accident or otherwise, involved the taking upon himself responsibility for expense which belonged elsewhere. he did not hesitate to go forward.
A striking illustration of this spirit occurred in eonnection with the Paris and Rouen Railway, his first great foreign with the Paris and Rouen Railway, his first great foreign
contract. In the carrying out of this work, he was restricted in his choice of certain materials to French products; and in consequence of inferior lime for mortar, a rapidly built via. duct-a huge brick construction, a hundred feet high and a a third of a mile long, costing $\$ 250,000$-fell down in utte: ruin. It was suggested that, on representing the facts of the case to the directors of the company, some alleviation of his loss might be obtained. His reply was: "No: I have contracted to make and maintain the road, and nothing ehall prevent Thomas Brassey from being as good as his word.' Withoat stopping to discuss the question of responsibility in the matter, new materials were secured, and the work was reconstructed with a rapidity that was accounted marvelous. It is a satisfaction to record that the company voluntarily assumed the cost of the new structure.
With all his anxiety to have work done rapidly and well, Mr. Brassey never wasted his energy in worry. Having given his best efforts to ensure success, he was content to await the result and abide by it with perfect equanimity. Thie, as Sir Arthur justly remarks,is a great felicity of tem. perament. It gives a man of mach work the staying quality known as " bottom" in a racer, and enables him to meet inevitable reverses withoat being crushed or disconcerted. It is the basis of the two-o'clock-of the-morning courage, which the first Napoleon used to rejoice in, a quality which Mr Brassey had to an eminent degree. If called up suddenly in the middle of the night, upon some argent peril or difficulty, he met the alarm with perfect coolness; sat down to consider and calculate what was the best mode of obviating the dan ger; and before break of day, when he had to proceed to the scene of action, he was ready with his plan. Like mas ter, like man. His example could not but be felt by his as their fullest confidence to a leader who always seemed ready
for any emergency. In addition to this imperturable pre sence of mind, Mr. Brassey evidently possessed singularly quick and eomprehensive powers to take in the essential conditions of a problem at a glance, uncommon power of rapid calculation, and great ability for organization-qualitios which not only inspired his staff with confidence in times of difficulty or danger, but enabled him to administer compli cated affairs with a royal ease and facility.
It was in dealings with his agente, however, that his most striking characteristics were displayed. In the course of his career, he carried into execation nearly two hundred contracts, many of them involving handreds of miles of rail. way. The works for which he made unsuccessfal tenders amounted to upwards of seven hundred million dollars. It is obvious that no man could examine the details of works
of such variety and magnitude. He mast necessarily trust of such variety and magnitude. He must necessarily trus largely to his agents; andit was in the choice of these, and ness sagacity came into full play. He chose his agents with great care and with consummate judgment. After that, he placed implicit trust in them; and though capable of exer cising the most minate supervision and criticism, he never judged by details, but looked to results. His system of
keepingaccounts was what most men would consider loose, and his agents were entrusted with vast sums of money to be expended almost at their discretion; yet his financial secretary and confidential adviser upon all monetary matters testifies that not one of his representatives was ever known to deceive or rob him. When asked if this was to be taken as a proof of the general honesty of mankind, Mr. Tapp re plied: " Not exactly that. I think it rather more shows that he placed so mach confidence in those whom he em ployed, and put them, as it were, so mach upon their bonor, that they would not deceive him; and that people, who
might not have acted uprightly with other masters, did so with him because they felt responsible to him, and also certain amount of pride in being confided in by him to such an extent that they really carried on the basiness as if it that the 日ystem of trust which Mr. Brassey adopted uniformly, in respect to all those who worked under him, wat
such as would be generally successfal if carried out with that perfect faith and completeness which he always manifeated in these transactions-a belief which might be con sidered Utopian had it not auch a sabstantial backing in $\mathbf{M r}$ Brassey's large experience.
In another connection, Sir Arthar observes that where mostmen fail in governing is in not entrusting enough to those who have to act under them. Most men intend well and try to do their best as agents and subordinates; and he is the great man who succeeds, with the least change of agents and subordinates, in making the most of the ability which he has to direct and supervise. Besides, men must act according to their characters; and he who is prone to confide largely in others will mostly gain an advantage in the general result of this confidence, which will far more than counteract any evil arising from that part of the con fidence which is misplaced.
That a man whose ruling passion was the execution of great works in a way which should win him renown for faithfulnees, punctuality, and completeness in theexecation of his undertakings should succeed, as Mr. Brassey did, by such a mode of dealing, with those on whose faithfulness and integrity his reputation depended, is cogent evidence that his plan of action was not far from correct. Not only did Mr. Brassey trust his subordinates, but they trasted him as implicitly. In the earlier part of his career, when each contract had his personal supervision, he allotted to each nominal sub-contractor his portion of the work, and fixed the price for it. Says one of them: "They did not ask him any questions. He said: 'There is a piece of work for you. Will you go into it? You will haveso much for it.' And then they accepted it, and went to work." Their invariable willingness to take the work at his valuation was accounted for by the conviction, which each of them had, that if any mistake had been made, to their injury, Mr. Brassey always stood ready tomakegood the loss. In case a job turned out more difficult than had been anticipated, no appeal would be made; the work would go on according to contract until Mr Braesey made his customary tour of inspection, when he never failed to recognize the contractor's position, and voluntarily set it right. When his undertakings became too ex tensive to be thus minately inspected, the same policy was carried out through resident agents. To many this course may seem very unbusiness-like, but the result uniformly proved the wisdom of it. By treating his agents generously he secured generous service in return, and was able to with draw his attention more and more from matters of detail He never wasted his time in doing work that an agent or sab contractor could do just as well. As to mere money grub bing, one of his principal agents testifies that he had not any of that in his composition, but he knew the value of money as fyell as any one, and how far a pound would go: nevertheless he had no greediness to acquire wealth, and he was always ready to give away a portion of his profits to anyone who was instrumental in making them,and that to a remarkable extent
For illustrations of Mr. Brassey's hatred of contention, his uniform courtesy, his large-hearted unselfishness, his frank appreciation of merit of all kinds in others, and other quali ties which pertain to the man rather than the contractor, we have no space. At the basiest period of his life, he would travel hundreds of miles to be at the bedside of a sick or dying friend or associate, to give what aid or consolation he could: a spirit whish his staff rewarded as it deserved. The regard and affection which Mr. Brassey won from all those who served under him were most atrikingly manifested during his last fatal illness. Men of all classes, humble navvies as well as trusted agents, came from great distances solely for the chance of seeing once more the old master they loved so well.

At a time when there seems to be a growing belief that a masterly man must be a stern discıplinarian, rough rather than gentle, brusque rather than courteous, exacting, watchful, a believer in the vile theory that every man must (in business) be treated as a rascal antil he proves himself something better, it is singularly pleasing to review an exceedingly successfal career, throughout the whole of which the opposite qualities are conspicuous. At a time, too, when financial treachery and eye service are supposed to be predominant, when the most minute and exacting checks upon the free conduct of agents fail to prevent "irregularities," it gives one fresh confidence in the general honesty of human nature to see the spirit of trustfulness made the basis of a great business, and to see it justified by service honorable to the higheat degree.

That Special Edition.

The issue of a Special Editic of ONE HUNDRED THOUGAND copies of the Scientific Arierican will come off soon after the first of December.
The names of parties to whom this large number of pa pers will be sent have been selected with care, and the pub lishers gaarantee the issue to be fully 100,000 , and it will probably reach 160,000 copies. The probability of this excess over the one handred thousand is predicated on last year's experience. We then guaranteed 60,000 , but actually printed and mailed 120,000 copies.
The papers will be mailed in separate wrappers, and the postage prepaid to every post office in the United States, Canada, and the adjoining Provinces.
The space allotted for illustrating new machinery and inventions is nearly all taken; bat a few more good engrarial pages, if immediate application is made. There is also a very little more space left for advertisers. See pese 365 of this paper for particulars.

The following on the subject of aniline colors, from the pen of Mr. P. Kuntz, of Paris, may be useful as a concise resume: The first colors employed were the violets; it was only in 18.59 that aniline red was discovered, and by whom first is sot clear. Aniline red, rosaniline, or fuchsin is uow usually prepared by the mixture of aniline with arsenical acid and water, or aniline and arsenical acid found in commerce in the state of sirup, and which contains sufficient water for the purpose. Pure rosaniline has scarcely any colur. iscording to the opinion of Hoffmann, generally ac-cepi-1, the coloring matters produced by the various reagetis t.om aniline are all salts of one and the same basis, the rosaniline. The colors of the salte of rosaniline are not permanent, they will neither withatand ley, soap, nor the effort of light; but their base serves in the preparation of other wioring matters which are of great interest. The resinous residue of the preparation of fuchsin, treated with different solvents, gives the chrysaniline, violaniline, mauvaniline, etc. The color recently introduced into commerce under the name of cerise, and the tint of which, less scarlet than that of fuchsin, approaches rather to poppy color, is also obtained from the residue of fuchsin. By treating fuchsin by means of various agents, and in various methods, the most varied tints of red are obtained. One of the colors most employed in the dyeing of ailk, saffranine, the magnif cent color of which approaches scarlet, is obtained by a method the details of which are but little known. The blue colors derived from aniline are produced by numerous methods, the great part of which remain laboratory curiosi ies. The number of processes which have entered into actual pracice are relatively very few. The most advantageous are those first indicated by M. (xirard and M. Laire, in which the aalts of rosaniline are heated with aniline. It is believed that the production of these blues is based on the introduction of phenol into the composition of rosaniline. They are classed under the generic appellation of Lyons blue. Different phases of the manufacture yield different producte, some of which are insoluble in water, and are called bleve direct, weu purifié, or bleu lumiére, the last being entirely exempt from any tinge of violet; the others, which are soluble in water, constitute the industrial coloring matters.

The blcu de Paris is obtained by the action of the bichloride of tin on the aniline of commerce. Other blues have been successively added to the list, some discovered accidentally, others by scientific experiments.

The violets likewise are the results of the action of various agents. They seem to be produced by the mixture of blues and red in very different proportions; in many of the procerses, it is very difficult to obtain the precise tint re quired. Accordisy to the intensity of the preponderating tiot, the violetis too blue or toored. The violet of Hoffamann, dablia, is obtained by the mixture of rosaniline or of a salt of rosaniiine with the iodide of ethyl and concentrated alcohol in different proportions. The violet of Paris resulte from the mixture of methylated spirit, chloride of ammonia, and aniline, by the method of MM. Poirier and Chappart. Perkin's violet, which was the starting point in an industrialsense, is prepared by bringing bichromate of potash into contact with sulphate of aniline, and treating the precipitate with wood spirit, which absorbs the coloring matter. The spirit is then evaporated and the residuum mixed with water with the addition of soda, which precipitates the coloring matter.

The most important green pigments derived from tar are those of Usebe and Hoffmann. The former was discovered acsidentally, by a workman named Cherpin, who, not being able to fix aldehyde blue in a tissue, applied to a photo. grapher, who recommended him to try hyposulphite of soda, the result was the production of a magnificent green color. Auiline browns are but little employed. Aniline yellows are numerous; most of them, however, have an orange or brown tint. Aniline black may be said to be almost excluwively for cotton.
The employment of these colors is very simple. Silk, whether in hanks or woven, is dyed by simple immersion, and wool in the same manner. The same colors also serve for printing on silk and woolen fabrics. For cotton, the colors must first be mixed with albumen and then submitted to the action of steam ; or they are printed on cloth prepared with tannin, which forms with the pigments insoluble products. Aniline is not the only substance derived from tar which gields coloring matter. Naphthaline, which distils at 428° Fah., yields among others the yellow of Marius, one of the most br:lliant and purest yellows known, which dyes woolen and silk without mordant, from light citron to gold of the purest tint with true yellow reflections, differing from the greenish yellow shade of picric acid, another sub. stance derived from tar. Naphthaline red is superior to the aniline reds, and possesses greater solidity; but it can only he employed for light tints, as it loses its brilliancy in the datiker shades. These two are the only colors which naptha? line supplies at present to industry; the others have not sufficieut purity, brilliancy, or freshness, and are too much affected by light and atmospheric influences; their price is also at present, too high.
Anthracene, which distils (at a temperature above 360°) with the last products of tar, has, on the contrary, a brilliant future, eince the important discovery of its transformation into alizarine. Anthracene is still too dear to come into dangerous competition with madder; but itsproduction and the apparatus used are being reduced to greater simplicity. It is a carburet of hydrogen. Artificial alizarine is prepared by means of bromine and potash. According to the calculations of M. Kopp, in order to replace completely the aliza-
rine of madder and purpurine by artificial alizarine, 704 tuns of the latter would be required in the dry state, which is equal to 7,044 tuns of the raw color. It would require 2,720 tuns of the raw artifcial alizarine to replace the true alizarine
moss, for packing grafte. It is needful, however, to keep an occasional eye to them, to see that the proper de gree of moisture is maintained-which should be just onough to keep them from shriveling, and no more.

the docks at portsmodth, england.

The well known town of Portsmouth, in England, is not of the steamers, running between Liverpool and New York, only a thriving business place and a commercial port of considerable estent, but it is the chief station of the British navy, and has, on this account, been so strongly fortified that it is deemed by many high authorities to be absolutely impregnable. The fortifcations are bastioned ram. parts faced with masonry, and inclose the whole town, to which entrance is permitted by four carriage whys; and outworks, in the form of trenches, are arranged to protect the inner line of walls. The harbor is only 220 yards wide at the entrance, but broadens to a width of about six miles ; and on the waters of this naturally secure bay, the whole British navy can safely find anchorage.
The dockyards of this immense naval station, large as they are, are not sufficient for the accommodation of the ships under repair, and some very important additions are now being made. We publish herewith a view of the works now under construction, from which a good idea of their nature and magnitude may be formed. The immense blocks in the foreground sbow how concrete is coming ints use not only in ordinary work, but in eituations where strength and permanency are points to which expense is not to be compared. The large repairing and refit ting basin, from which nu merous dry docky of great size branch off, is nearly ready for the inlet of the waters, on which ride the ships whose masts are eeen in the distance, towering above the buildings.

Cutting and Storing Grafts.

There is no better time to cut grafte, says the London Garden, than at the commencement of winter. In cutting and packing them away, there are some pracautions to be observed. In the Girst place, let them be amply and distinctly la beled, as it is very annoy ing to find the names gone at the moment of using them. For this purpose they should be tied up in bunches, not over two or three inches in diameter, with three bands around each bunch-at the ends and middle. The names may be written on a strip of pine board or lath, half an inch wide, a tenth of an inch thick, and nearly as long as the scions. This, if tied up with the bunch, will keep the same secure. For convenience in quickly determining the name, there should be anothe strip of $1 \times t h$, slarp at one end, and with the name distinct. ly writien on the other, thrust into the bundle with the
name projecting from it. If these bunches or bundles are now placed on end in a box, with plenty of damp moss between them and over the top, they will keep in a cellar in good condition, and any sort may be selected, and withdrawn withoat disturbing the rest, by reading the projecting label, We have never found sand, earth, sawdust, or any other
one of the American aquarium cars, a newly invented con trivance for traneporting live fish, which has succeeded very oped to overland journeys, and by means of which it is tinds between England and America. There are many American fish which might with benefit be idtroduced into England, and we at the same time might transport to the other side of the Atlantic some varieties of fish which are not found there. - Nature.

