THE LATE JOHN LAIRD

One by one the founders of modern engineering science pass a way. We chronicled the week before last (page 309 of our current volume) the death of Mr. John Laird, ove of the originatore and, for many years, the head of one of the largest iron shipbuilding works in the world, and a prominent figure in the industrial arts at a time when iron vessele were merely matters of theory; and we publieh herewith an excellent likeners of this well known man. Birkenhead, the scone of the labqre and prosperity of the Laird family lies on the loft bank of the estuary of the Mersey, immedi ately opposite Liverpool, and is renowned for its many im portant industries and its magnificent inclosed docke, cut ou of the solid rock, which there forms a surface stratum o immense thickness. In 1841, Wil iam Laird, father of the lately deceased, commenced the shipbuilding and iron work and lent his aid to establish many of the important steam hip lides which have their headquarters in Liverpool and Birkenhead. In the year 1829, John Laird constructed an iron ship, which there is good reason to believe was the first everbailt. She was a 60 tunvessel, built for inland navigation; and although mavy dif ficulities, owing to the novelty of the taek, beset the builders, she wa framed and plated very similarly to the largest and best ocean stean sbipe of the present day. In 1834 Mr. Laird built a paddle steamehip for the late . B. Lamar, who re cently died in this city; she was called the John Randolph, and the Practical Magnzine asserts tbat she was the firet iron verael ever sesn on American waters. She was shipped plecemeal from Liverpool, and set up on the Sávannah River.
In the limits of a newepaper ar ticle, it is hardly possible to detail the development of the great indus try of Birkenbead; suftice it to say that the firm of John Laird \& Co bave. to this date, possersed one of the largest establishments for the special purpose ever organized. Be twern the years 1829 and 1873, they turned out 429 steamers, of 229,662 tuns builders' measurement, driven by engines amounting to 39,790 horse power. Half these engines were manufactured by Mesars. Laird \& CJ., as well as engines to the amount of 25,143 horse power, fit ted in vessels constructed by othe builders.
Mr. John Laird's administration of these large operations is noticea ble in many ways. He was, as early as the year 1839, and previously urging the Britioh Admiralty to baild iron ships only; and bis iron steamers of that date became re nowned for apeed and durability He built a vessel of 446 tuns bur then, which drew only two feet of water, and $h \in$ obiained an advan tage over many rivals by building, in three weeks, a gunboat for use in the Russian war. Tbe splendid fast steamers plying between Holyhead and Dublin are his work; and, in deed, there is no quarter of the globe where his handiwork is not represented. The building of the notorious Alabama, for a Liverpool firm of merchants who were the financial agente of the South during our late war, and ber depredations upon our commerce during the first few monthe of the rebellion (for which the English Government has already paid ovtr fifteen million dollars for damages to our shipping), have given the Laird establishment great notoriety in this country. The Alabama was built af tor Mr. John Laird's retirement from business.
The works of this firm cover 20 acres of ground, and have held the chief position in Birkenhead since 1824. In 1831, the population numbered only 2,569 ; it is now over 70,000. Three thousand skilled artisans are employed by Laird \& Co., and, to their credit may it be said, the firm have made many liberal arrangements for the moral and social wellbeing of their employees.
John Laird retired from busidess in 1861, when B!rkenhead became a Parliamentary borougb, and was elected member for the town, retaining the seat to the day of his death. Since his withdrawal, the works have been carried on by his three sons.

Several years since a mpontaneous explosion took place in a rock quarry near Nicholasville, Ky. The Lexington Greette says that recently these explosions have begun agaid, two very violent ones having occurred, rending the rock in ali directions and throwing up a vast amount of débris. The people of the neighborhood are very much exercised in reference to these unaccountable proceedinge. The explosions are described as so violent that, if one should occur under a house, it would hoist it and its contents like a veritable torperio.

The Great Suspension Bridge between New York and Brooklyn.

The engineers of the Brooklyn Bridge have prepared plans and specifications of the massiveiron saddles upon which the cables are to rest, and bids for their construction will soon becalled for. The saddles, four in number, will each have for a foundation a solid plate of iron, 16 feet long, 8 feet wide, and $1 \frac{1}{2}$ inches thick. The plates are to be provided with two flanges, which will be imbedded in the solid masonry of the tower. But in order to provide for the contraction and expansion of the enormous mass of metal in the cables, fortythree iron rollers, $3 \frac{1}{d}$ inches in diameter, will be inserted in a groove between the saddles and the saddle plates. The saddles will then bs enabled to move backward and forward and accommodate themrelves to the strain of the cables which is liable to differ in intensity according to changes of the temperature. Eash saddle will weigh about $25,000 \mathrm{lbs}$. and will contain at ita apex a rounded groove $19 \frac{1}{2}$ inches wide,

THE LATE JOHN LAIRD.

througa which the cable will find an exit. Each cable will be composed of more than 6,000 wires, and will sustain nearly 1,000 tuns. The stay cables will bear a portion of the weight, and it is computed that the entire structure be tween the spans will weigh about 5,000 tuns. It is predicted that the bridge will be completed in four years.

Car Brakes

A series of experiments were recently made by the Baltimore and Ohio Railroad Company to test an improvement made by Mr. Loughridge in car brakes. The objgct was to determine in what time and distance a single car cou'd be stopped at high speed in comparison with the old aystem where the hand brakes are used, which was determined by drawing the coupling pin and separating two cars from the train. The resulte were that, when the pin was pulled and the brakeman signaled to apply the brakes, the car with the now system was stopped when running at a speed of forty eight miles an hour within a distance of 550 feet, and within 13 $\frac{1}{\frac{1}{2}}$ kecondstime, while with the other car it required 1,255 feet distance. Several stops were made, which showed great power and a remarkable uniformity of action in the new brake. Mr. Loughridge claims this as the shortest distance in which a car has ever been stopped with hand power, as some two hundred feet were required to fully apply the power with a brakeman, and that with this improvementthe effec tiveness of the air brake will be proportionately increased.

Mediæval Superstition.

The increased longevity of later times is less owing to im proved therapeutics than improved hygiene. Dr. Lyon Play fair says, in a late paper read at Glasgow: When the Egyp-
tian, Greek, and Roman civilizations expirad, with their baths and divine maxims about ablutions and purifcations, dirt reigned for a thousand years. Not a man or woman in Europe ever took a bath; hence the spotted plaguea, the black deaths, the sweating sicknesses, the dancing manias, the mewing manias, and biting manias that ravaged the people, and cut off, in the middle ages, one fourth of the ontire population. Religion came to the aid of dirt ; the more filthy a saint was, the more paintly he was considered. S ome of the bermite never changed their clother, and only combed their hair once a year. St. Anthony never washed his feet, and St. Thomas à Bocket's under garments acquired an additional sanctity from the vermin they contained. Nervous diseases, the result of superstition, were frequent, and often attributed to demons.

The Camacho Electro-Motor
Several acientific men, at Havana, have been appointed to exymine the electro magnetic engine inventad by J. S Camacho, and to report on its advantages for industrial purposes in general, and eapecially as motive power. So esys the Revista de Telégrafos. In the Camacho elec-tro-magret each limb is formed of four hollow concentric iron cylin. ders, the inner one half an inch in thickness, and the tbree remaioing one quarter inch. The interior diameters of the tubes are, respec tively, 2, 3, 4, and 5 inches. Each of them is surrounded with a coil of copper wire, covered with cotton, and is one eighth inch in section forming, on the three inrer tubes, two complete layers with 180 turns, and on the outer tube seven layer with 630 turns.
The copper wire on each tube is coiled in thesame direction, passing at its ends across the armature of the magnet, and uniting them, therefore, in the natural order, so as to form a single conductor tbrough which the current from the battery may travel, magnetizing each tube, and endowing them all with magnetism of an equal nature The length of the limbs of the mag. net is 8 inches, the weight 77 ibs ., and that of thecopper wire 47 lbs. with a total length of 2.600 feet. Repeated experiments have shown that this magnet requires the cur rent produced by eeven bichromate of po:assa elemente, and its power of attraction at a distance of on twelfth of an inch is more tha twollt of an more than the ordinary construction, of equal exterior diameter and placad in the same conditions, is only able to sup port 25 lbs., a weight 50 times smaller.
Repeated experiments of physi cista, as ϵ minent and well versed in electro-magnetism as De la Rive, have shown that the main diff. culty which has opposed the induftrial application of the electro magnetic force has been that bith erto it has proved from 25 to 30 times dearer than that of stsam. If therefore, M. Camacho has succeed ed in obtaining electro-magnets so powerful, the following proposition cannot be probounced too venturesome: "The new electro-magnets offer to indue trs a source of power much cheaper than animal labor, a a capable of immediate application to urban railways. Th same power is further destined, at no remote epoch, to re place advantageouely that of stcam."
The report is signed by D Francisco Clerch, Professor of Physics and Chemistry at the College of uanabscoa;D. Eu de Aranlave, Inspector General of Telegraphs for Cuba; D Antonio de Molina, Engineer in Chief on the ataff of the roads, canals, and harbors, and of public works ; and D. Al berto de Castro, Civil Engineer.

Red Wall Paper Dangers

To the dangers due to the arsenic entering into the pig ment used in staining green wall paper, must now be added others produced by coralline dye employed in the coloring of red hangings. It appears that the poisonous symptoms (extending to acute eruptions of the body, when under garments thus dyed are worn, and to eye diseases in papered rooms) are owing not directly to the coralline, sirca recent experiments have proved the substance to be harmless, but to an arsenical mordant used to fix it. This last acts as a poison, both topically upon the skin, through contact with garmente, and also by its dust and vapors, disengaged from the staffes which it colors.
Professor Schimper has discovered a fossil plant in protogine, a rock hitherto considered as of igneous origin and found in the form of erratic blocks in the sides of Mon B'anc. The plant is of aquatic nature, and hence the aque ous origin of the rock is rendered probable.

