a WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY AND MANUFACTURES.

Vol. XXXI.-NO. 22.

THE SHAPLEY ENGINE

A new portable engice, which is claimed to possers the advantages of cheapness and economy, in addition to those of simplicity and compactness, is the subject of the annexed illustrations. The principal features of the invention, which render it an improvement of value, lie mainly in the construction of the boiler, since the engine properis, as will be seen from the large perspec'ive view, a single upright cylinder with the ordinary slide valve me chacism. There are some mi nor arrangements in connec tion with the eogine, notably improved stuffing boxes and a nea'ly contrived feed water heater, which add to the gene ral efficiency; but these, as Woll as the build of the ma chine as a whole-except, perhaps, to note that this last is substantial in all respectsmay be passed over, in order to direct attention at once to the noveltics in construction of the sterm generator.
The idea is to build the builer to generate the greatest amount of steam, and, at the same time, to have a sufficient reservoir for the same. From the sectional view, Fig. 2, it will be seen that the fire box is conical in sbape. The hea thus concentrated in the up per portion pasees through the horizontal cross tubes, A thence, following the course of the arrows, down the vertica tubes, B, and finally into the hollow base, at the r .ar of which it escapes up the flue This arrangement gives an unusually large amount of healing surface in compara tively small space, the resul of which is an economy in consumption of fael. From actaal tests, we are informed that the fuel used does not exceed two and one half lbs, per horse power per hour, and in some cases leas than two 1bs. has sutficed.

In order to provide for cleaning the tubse, a detachable jacket is placed between the two sections of the boiler, at C . This can be very easily removed by taking out the bolts, since it is made in two parts. The tubes are then clesned with a short flue brush, the jacket replaced, and the joints filled with wet c'ay.
So far as material is concerned, we are informed that none but the best is ust d. The boiler is thoroughly stayed over the crown sheet of the fire bux; and since all the heating surface is below the water line, there is very little chance of its burning out. Sixty pounds of steam is the calculated pressure, bat one hundred pounds may be safely carried, since all the boilers are tested to a cold water pressure of one hund red and thirty pounds. They ars inspected and provided with certificates by the State Inspector of New York,
The spark trouble-a matter of considerable moment where a boiler is fired in the neighborhood of ioflammable material or buildinga-is effectually done away with. The sparks are drawn down through the upright tubes and dropped in water on the bace ; and, as an additional preventive, the exhaust steam passes through the heater into the smoke stack, also giving aid to the draft.
Nothing in the shape of gages, oil cups, fittings, etc, is omitted to render the machine complete. All parte are made in duplicate. The various portions of the engine may be easily adjusted, even when steam is on, thus avoiding de lay. The sizes made are 5, 8, and 12 horse power.
Patented February 10, 1874. For further particulare, ad dress Mrsars. Tully \& Wilde, General Agents, 20 Platt street, Now York city.

NEW YORK, NOVEMBER 28, 1874.

THE SHAPLEY PORTABLE ENGINE:

Chinese or Indian Ink.
Although the Chinese pre, pare their ink from the kernel of some amygdalaceous fruit, yet, by the aid of our presen chemical appliances, we are able to produce a composition in no way inferior to the best Chinese ink, by the adoption of a formula which is given in R:ffoults treatis on "Man R Hayt lowing is the formula:

Calcined lampblack, 10 parts; boghead ehale blact, in impalpable powder, 50 parts indigo carmine, in cakes, 10 parts; carmine lake, 5 parts gum arabic (first quality) 10 parts; purified oxgalls, 20 parts alcoholic extract of mus parts.
The gum is dissolved in 50 to 60 parts of pure water, and the solution filtered through a cloth. The indigo carmine lake, lampblack, and shale bla:k are incorporated with this liquor, and the whole ground upon a slab, with a muller, in the same manner oddinary colora; but in thi case the grinding takes much caso W thoroughly homogeneous, the oxgall is gradually added, and then the alcoholic extract of musk. The more the black is ground, the finer it is. The black is then allowed to dry in the air, until it has acquired sufficient consistency to b molded into cakes, which in their turn are still furthe dried in the oir out of the reach of dust. When quite firm, there cakes are compressed in brorze molds, hav ing appropriate designs engraved upon them. The molded ink is then wrapped in tinfoil, with a second envelope of gilt paper. The ink which has been prepared in this man ner poseseses all the proper ties of the real Chine prtil Its grain is smooth; it flows very well, mixes perfectly with many other colors, and becomes so firmly fixed to the paper that other colors may be spread over it without washing it out.

Cultivation of Castor Beans in California

The method of gathering and preparing for market is as follows: Every day the ripe spikes are gathered by hand, put in sacks, and hauled to the "popping ground," which is a apace of aboth and hard, like an old fashioned buckwheat threshing ground. Here the spikes are spread ; and during the day they pop open, from the heat of the sun, throwing out the beans. Each morning the straw is raked off, the beans shoveled up, cleaned in a fanning mill, and aacked, ready for market. By the time the field is once picked over, it is ready for another picking, like cotton, and the season, commencing in August, is not yet over. The yield is estimated at fifteen hundred pounds per acre, worth four cents per pound, or a gross yield of $\$ 60$ per ace. The expense of cultivation etc is estimated this year at one half this amount, but is greater than it probably will be another season, owing to inexperience and preparing new land. There is probably no crop so easily raised that will yield so large a return

The American Electrical Society.-An arsociaion to be known under the above name was recently organized at Chicago, Ill. The onjects are an interchange of knowledge, professional improvement of members, the advance of electrical and telegraphic science, and the establishment of a central point of reference. General Anson Stager, of Chicago, was elected president, and Mr. C. H. Hasking, o Milwaukee, vice president.

Frimutifir Ammitan.

MUNN \& CO., Editors and Proprietors. PUBLISHED WEEKLY AT NO. 37 PARK ROW, NEW YORK.
o. D. MUNN.
A. E. BEACH.

TERMS.

One copy, one year, postage included.......
.8320
Ten coples, one year, each $\$ 270$, postage included..
Ten coples, one year, each $\$ 2$ 70, postage included.
Over ten coptes, same rate each, postage included.
By the new law, postage is payable in advance by
VOLOME XXXI, No 22. [New Series.] Twenty-ninth Year.
NEW YORK, SATURDAY, NOVEMBER 28, 1874.

EXHAUST STEAM FOR HEATING PURPOSES.

In a previous article, reference was made to the gain to be derived from the use of a feed water heater, in connection with a non-condensing engine. It must be evident, however, from the figures given in that article, that the heater is far from utilizing all the heat that escapes into the exhaust. When water is converted into steam, a large amoint of heat is required, which does not raise its temperature, and, not being shown by the thermometer, is commonly called latent heat. Thus, if a pound of water at the tem. perature of 60° Fah. is heated until it is evaporated under the pressure of one atmosphere, the temperature of the steam will be 212°; but the heat which has been imparted to it is as much as would have sufficed to raise the tempera. ture of more than $7 \frac{1}{8}$ pounds of water from 60° to 212°. On the other hand, to convert this steam into water, a similar amount of heat must be abstracted, from which it will be seen that the exhaust steam-which only heats about an equal weight of feed water-parts with but a fraction of its heat. But, as before remarked, if the steam can be cooled sufficiently to convert it into water, or condense it, it gives up to the cooling medium all the heat that became latent when it was changed from water into steam. These facts have suggested to some the idea of turning the exhaust steam into places where it wauld be cooled and condensed, giving up its heat where it was wanted, as, for instance, in warming a building. The ordinary manner of effecting this is to turn the exhaust steam into heater pipes that are fitted up throughout the building to be warmed, and draw off the water of condensation, to be used for supplying the boiler. Under such circumatances, the exhaust steam encounters an increased resistance, in passing through the heating coils, and this has the effect of increasing the back pressure on the pressure, it is usual to attach a loaded valve, opening into the atmosphere, to the pipe leading from the exbaust to the heating coils, so that, when the limit of back pressure is reached, the valve will rise and the exhaust steam will escape into the air. In order to diminish, as much as possible, the back pressure created by the passage of the exhaust steam through the heating coils, they require to be fitted up
with the greatest care. Neglect of this precaution has in duced many persons to abandon the use of exhaust steam for warming rurposes. In the construction of the heating coils, the principal points to be observed are: First, to have sufficient area of pipe to permit the free passage of the exhaust steam ; and secondly, to arrange the pipes in such a manner, with suitable traps, that the condensed water or air canno accumulate in them, but will be continually drawn off. If these provisions are attended to, the heating pipes can be extended over a considerable distance, with but little increase of the back pressure. An example, representing the result more fully
A non condensing engine of 60 horse power, exhausting into the atmosphere, had a back pressure on the piston of 1 pound per square inch. The feed water was pumped into the boiler at a temperature of 65°, and the average pressure of steam in the boiler was 75 pounds per square inch. A this pressure, the boiler evaporated $6 \frac{9}{4}$ pounds of water per
pound of coal, the price of the coal being $\$ 6.50$ per tun of pound of coal, the price of the coal being $\$ 6.50$ per tun of 2,000 pounds. The consumption of coal was at the rate of
4,450 pounds per day, costing about $\$ 1446$. The factory in which the engine was located was heated with steam supplied by the same boiler, requiring a consumption of 1,000 pounds of coal per day, costing $\$ 325$, so that the total cost pouns of coal per day, costing $\$ 325$, so that the total cost
of
$\$ 17.71$ per day. These facts having been ascertained by careful experiment, the heating arrangements were changed, in the manner described below.
A few of the connections about the heater pipes were al tered, for the purpose of obtaining more direct circulation, a trap of improved form was attached, a back pressure valve was put on the exhaust pipe, arranged to open at a pressure of 3 pounds per square inch above the atmosphere; and this pipe was connected with the heating apparatus, and a damper regulator was put in. It was found that, on account of the increased back pressure, the cut-off of the engine had to be acjusted so as to admit steam for a greater portion of the stroke, so that the engine required about 12 per cent more steam. If this had been the total result of the change, the
effect would have been to increase the coal consumption 12 per cent, in addition to the expense of the alterations. I was found, however, that the exhaust steam from the engine heated the building quite as well as, if not better than, this was formerly effected by live steam from the boiler; and the water of condensation was led into a tank, from which it was used to feed the boiler, being taken by the pump at temperature of about 200°. The boiler, being no longer re quired to furnish steam for heating purposes, and being fed with hot water, gave much better results than before, th damper being generally partially closed-so that the con sumption of coal was only 4,100 pounds per day, costing $\$ 13.33$, the saving in the coal bill per day being $\$ 438$.
Such extensive alterations are not often required as were necessary in this case, where all the arrangements seemed to be made with the intention of wasting fuel. The gain, of course, after making the change, was proportionately large the exhaust steam can be used for heating purposes, with very little outlay for alterations. Many heating coils, how ever, are put up in such a manner as to have very little cir culation, and require a high pressure of steam to make them
effective. Cases of this kind require extensive alterations effective. Cases of this kind require extensive alteration
bsfore the exhaust steam can be turned into them. Bu there are numerous owners of small engines and boilers who have small shops which they can easily heat in the manner described. Our hints will probably be sufficient for such for every case

PRISON REFORM.

As evidence of the urgent need of the reform in prison management suggested in our article on "The Scientific Treatment of Criminals,"'a friend in St. Louis sends us a printed account of recent doings in the State Penitentiary of Missouri, the horrid details of which remind one of cer tain parts of Charles Reade's " Never Too Late to Mend." For the credit of humanity, we should be glad to believe the story a gross exaggeration. If the half is true, the officer of the institution (and its management as well) would be benefited by a personal experience of the foul food, flog. gings, blind cells, and other abuses which have driven the convicts into rebellion, to be administered, not vindictively, for that would be contrary to the scientific method, but educatively, so that they might understand what manner of motives they are employing for the discipline of the prisoners and the probable moral effect of them.
Knowing the brutal and brutalizing practices that prevai even in institutions which have the name of being well con ducted, we can understand how keepers such as our corre spondent describes may, through ignorance, fear, and pas sion, aided by a thoroughly perverse system of prison em ployment, gradually convert a penitentiary into a school of vice and vengeance, rather than a place for penitence and reformation. We appreciate, too, the crying need of a radica change in the management of all such institutions: but that the prison system of the country can be made what it should be, by any burst of individual enthusiasm, we very much doubt. It may be true enough that that there is a 'noble band of Howards" ready to undertake the reform "at the call of the A merican people": the hitch lies in the indisposition of the people to make the call. Not until the masses -upper as well as lower-have been educated up to the sci entific level, and have learned to consider social problems will they be able to treat this question scientific principle
wisely. When that time comes, there will be little need of Howards to stir the sensibilities of prison keepers.
To the question: "Can you not set some means at work o release these thousands of mismanaged criminals from the pernicious system which thwarts their reformation?" we can only reply that we have already, to the best of our ability, set such a means at work, and that is the Scienti FIC American. It does not set itself up as a mouthpiece of social or moral reform ; yet, by spreading abroad the results of scientific research, by familiarizing the reading public with the spirit and methods of scientific thinking, it is doing its share toward educating the community up to the level required for the scientific consideration of all questions of social policy-the prevention and cure of crime with the est. The process is necessarily slow ; but the appreciative responses that have been made to our bare suggestion of a cientific treatment of criminals-an idea that could not have been entertained a few years ago-are proofs that progress is being made in the right direction

A POSSIBLE IMPROVEMENT IN HOUSE HEATING.

At this delightful season of genial sunshine and crisp cool air, we have a daily illustration of perfect, because healthful and intensely enjoyable, heating. While the lungs are regaled with an atmosphere which seems to stimulate every pleasurable sense and activity of the body, the sunshine warms without oppressing, and bightens our enjoyment of he aparkling air by force of contrast. If we could imitate -much more if we could reproduce-the same conditions ndoors, it is obvious that the perfection of house heating would be attained. Can either be done
First, let us notice what the conditions are, on a sunshiny day of fall or early winter, that is, the conditions which combine to make such weather so refreshing. Pure air is practically transparent to radiant heat. In summer time, he high temperature of the air comes as an indirect effect of the heat of the sun. The sun rays heat the earth and he objects on its surface, and these, by contact or otherwise heat the air. In the fall, the period of daily sunshine is brifer and the sun rays fall more obliquely. The ground is heated less, and the nightly periods of radiation are proportionally longer. The air in consequence remains cool hroughout the day. Nevertheless, when the sun rays strike our bodies and are absorbed, their heating power is almost as reat as in summer, giving us the simultaneous sensation of vivifying warmth, with delicious coolness in the air we breathe. Pass indoors from such an atmosphere to that of furnace-heated house. How great the change! The air seems stifling, and though the temperature of the room, as ecorded by the thermometer, is much higher than that outdoors, the pleasant glow which was felt in the sunshine soon gives place to an extreme sensitiveness to chill. Sit near a wall or a window, and an unpleasant coolness creeps up the back, as though a cold wind were blowing across it, and we look for a draft, though the air is motionless.
The conditions of perfect heating have been reversed. The air is at dog days heat. The walls and furniture are cold. The bodily heat is depressed by breathing the hot air, yet streams of heat mustflow out from us in all directions to make up the deficiencies of surrounding objects. The thermometer may declare that such a room is warm, but every nerve declares that it is not comfortable. Substitute for the furnace an open fireplace with a blazing fire. An approach is made toward perfect heating. The radiant heat passes like sunshine through the air without heating it ; and if the fire is so placed that its radiations impinge on a considerable area of the enclosing walls, the walls will be warmed as they cannot be by hot air; the furniture will be warmed in like manner, and the occupants of the room will enjoy the cheerful influence of live heat while having sufficiently cool air to breathe. The great expense and inconvenience attending open fires must ever greatly restrict heir general use. Only about one tenth of the heating power of fuel is developed by its combustion in an ordinary ireplace, and much of that escapes unused. Besides, to eat a room of considerable size uniformly, it would be necessary to have an open fire at each side, or better, at each corner; an arrangement not to be tolerated as a matter of conomy.
To burn fuel economically, it is necessary to burn it centrally and in mass. The coal that would supply a number of separate fires would furnish an immensely greater amount of heat if barned in a single furnace, a fact more or less recognized in every contrivance for heating houses by hot air, ot water, or steam. But in all such arrangements it is deemed essential to distribute, not heat directly, but matter more or less highly heated. In other words, we first heat our air or water, and trust to the cooling of that to furnish the heat required, overlooking the well known fact tbat heat will travel alone quite as well as in company, and that it can e much more easily controlled than air or water.
Radiant heat, the sort required for perfect heating, obeys the same laws as light. By proper arrangements of reflec ors and lenses, heat radiations can be massed into beams of parallel rays and sent where we will, with little or no wastng. It is not until the radiations are arrested that they become manifest as heat ; a fact put to practical use two thousand years ago, when Archimedes burnt the fleet off Syrause with mirrors. A stream of heat vibrations, intense nough to fuse gold, would pass through a tube of ice with out affecting it, provided the air in the tube be sufficiently pure and dry. There appears to be no good reason, there ore, why we should not warm our houses by the direct disribution of pure heat, and so gain all the benefits of an open in each room, with none of its disad vantage
Briefly described, the plan would involve (1) a central fur.
nace, constructed of course with a view to the development of the greatest amount of heat from a given amount of fuel. (2) A system of tabes leading to the different rooms, terminated by radiators in each room. (3) A system of reflectors to throw the heat of the furnace into the conducting tubes in beams of parallel rays, with other reflectors at the bends and angles of the tubes to direct the course of the radiations properly. The radiators in the rooms might be placed so that every portion of the room would be flooded with heat rays, yet no part bs heated beyond what would be enjoyable. As nothing would enter the rooms from the furnace save pure heat, the effect would be like that of a room warmed by direct sunshine. The surplus heat of the furnace might be utilized in warming, say to 50° or 60° Fah., and an abundant supply of fresh air led in from out doors; a steady circulation bsing kept up,from the ventilating chamber,through the rooms, by the draft of the furnace. We should have then (theoretically) perfect heating combined with perfect then (theoretically) perfect heating combined with perfect
ventilation, and at the same time the most economical comventilation, and at
bustion of our fuel.
Possibly there may be mechanical difficulties to prevent the successful carrying out of a plan of house heating of this sort. We do not anticipate any, and the advantages it promises, on the score of health, comfort, and economy, certainly justify its trial by any one possessing the requisite means. The plan could be easily tested in the laboratory of any institution having a few lenses and reflectors.

MECHANICAL AESTHETICS AND PRACTICAL MEN.

We met our practical man, him of the street car, who " never learned nuthin' from books", at the American Institute Fair the other night. He was slowly trudging through the machinery department, apparently devoting his attention to the steam engines. We noticed that, as he scrutinized the large driving engine, his brow clouded: by the time he had reached the nickel plated Baxter, the cloud deepened into a frown; and when he arrived opposite the Myers rotary a fierce scowl overspread his features. Suddenly turning on his heel, he recognized us, and, without further preamble, burst out with: " Now, look here, boss,I wanter know if this is'nt cussed nonsense,all this 'ere frippery, nickel piate and red paint,and gildin', and stuff,about a masheen! What for, anyhow ? Do'nt make the thing run no better, does it? What's the use er shinin' that Baxter like a lookin' glass? do'nt fuss over my engine that way; much as I can do to keep the green off the brass. Have'nt had no paint near for ten years. Do'nt see that it works any wuss, either.
We remarked that we supposed the exhibitors desired to attract public attention by uniting artistic beauty with mechanical excellence, and thatthe certainly augmenting tendency toward æsthetic refinement was- "Which? Oh, keep them big words for yer paper; I never was no shakes on the dictionary. Just yoa tell me what's got inter people, that they waste stamps on what ai'nt no use? Look at this, now." And here he fished from his overcoat pocket a dilapidated copy of the Scientific American of a few weeks back, containing the engraving of the new mold-ramming machine on the front page. "What's that feller in that picter for? Or that heap er dirt and the shovel? Could'nt any practical man understand that masheen without that chap a pullin' the handle? S'pose a mee-chanic wants all that shadin' and prospectiv' and figgers? When I see a masheen, I wanter see drawins', nice plans and things drawed out. Why do'nt yer print them, not picters, only fit ter hang in the parlor?"

Advantageous advertisement," we insinuated. "No t'aint, nuther," he rejoined; "no more than these ere circu lars and books with fancy covers that these fellers is givin' away so loose for nuthin.' Nor them blue signs, nor that shiny engine. I do'nt do no advertisin'. Do'nt believe in it. Did'nt I tryit? Did'nt I pay a dollar for puttin' my name in a pious paper printed out in Milwaukee, or Oregon, or somewheres? The chap that wheedled me in said he'd throw in a ten dollar chromo and a book about saint's rest by a man named Baxter (that engine feller', I s'pose). Did'nt get nary an answer. Catch me gettin' fooled by any noozepaper agin!'

No, I ai'nt got nuthin showin' in this Fair. Anybody that wants ter see my work can come to my shop. There aint no gold and silver and red paint there, nor patent invenshuns, nuther. Feller wanted me to buy one er them new fangled emery wheels t'other day. Bat I said: 'No, sonny, I used this old grindston' and others like it goin' on thirty year; and I guess I can make it do a little longer. No sir, when I git any money to waste on advertisin' or fancy paint or blamed invenshuns, then I'll shut up shop. Good night. Come see us, sometime. Aint got no cards; shop's night. Come see us, sometime. Aint got no cards; shop's
in the alley, fourth door back on - street. There aint no sign. Just stand in the entry and yell; and if one of the sign. Just stand in the entry
boys hears yer, he'll let yer in."

Our meditations, as we watched our friend elbow his way out of the crowd, took about the following shape: Anything akin to beauty or taste, when brought in connection with the mechanical, is, by theself-called practical individual,re. aented as an unwarrantable encroachment. Whenthe purpose of ornamentation is (besides gratifying the eye) thus to draw attention to the merits of an object, both end and means maet his wholesale condemnation. Strictly and purely utilitarian, he fails to see any benefit in a measure which does not instantly bringin pecuniary returns, or to perceive that increased gains are or can be due to the keeping of certain facts constantly before the world, or to presenting the same in some manner so unique as at once to attract the popular
gaze. Since he cannot appreciate matters so clear to every gaze. Since he cannot appreciate matters so clear to every
rightly thinking observer, it is manifestly impossible for
others more refined to impress him. He and his kind see nothing to praise in the fact that our American mechanics and manufacturers (though the country is destitute of muWorld) industrial art, those great educators of the old the useful, with a delicacy and true art feeling elsewhere almost unrivaled. The visitor at any of our great fairs will find this æsthetic selfculture making itself everywhere felt. It a ppears in the graceful figures and neat proportioning of the ordinary implements of labor, in the exquisite finish of the metal and wood work, in the thousand tasty forms of the commonest minor appliances, in the dainty traceries which embellish the safes, the carriages, and the massive portions of the engines, in a bit of carving here, a dot of bright color there: and thus through all the different pro ductions, gathered as representatives of the varied indus tries.
We may here be pardoned theapparent egotism of a word as to the artistic merit of the pages now under the reader's eye,and this with reference to the "pretty picters" objected to
by our practical friend : not merely as to their intrinsic beauty but to suggest the influence which they must exert in ele vating the standard of popular taste. A diagram of mere lines may be intelligible to the professional engineer; but the man whe proposes to buy a machine asks and needs a representation, showing it as it will appear when set up in the shop. True, a rough sketch would convey an idea, but we prefer to call in the aid of artists (to whom in their spe cialty there are no superiors), to employ the highest skill at tainable in the engraving of their works, and thus to main tain a standard of artistic excellence, of the public appre ciation of which we have abundant evidence
If alittle nickel plating or a neat coat of paint will render a machine (without detriment)more pleasing to the eye, it is not false economy to add such embellishment. A bright bit of glass will take the attention when a rough diamond may be a hundred times passed unnoticed; and even if ornamentation be deemed unnecessary for its attractive power, let the beautiful, where possible, be cultivated for itself alone True art is both refining and ennobling; and it may be found in the harmony of tints in the decoration of an en gine, as well as on the canvas colored by a master hand: in the molding of a tool, as well as in the forms which assume all but life under the sculptor's chisel.

SCIENTIFIC AND PRACTICAL INFORMATION.

PAINTING ON zinc without paint

M. Puscher, of Nuremberg, has lately invented a simple process for coloring sheet zinc, based on the employment of acetate of lead. On applying this substance, mixed with a minium preparation, a reddish brown tinge is obtained. The cupola of the synagogueat Nuremberg was thus colored as an experiment over a y ear ago, and, to all appaarance, is yet unaffected by the weather. By adding other bases, lighter or darker tints of gray and yellow may be obtained, giving
the zinc work the appearance of carved stone. With a solution of chlorate of copper, the preparation turns the sheets of zinc black.

FISH bONES AS FERTILIZERS,
The Moniteur Industriel Belge states that German manufacturers are purchasing the fish bones gathered along the Norwegian shores, which result from the extensive fishcuring stations there located. These bones make a fine fer tilizer, and, when pulverized by suitable machinery at the points of collection, are readily transported. The same journal suggests the more extended utilization of the bones from the establishments in Newfoundland, and estimates the product from American fisheries at twenty million pounds year.
the hourly death rate.
Dr. Lawson, an English physician, has recently published some curious observations regarding the time of the day when the greatest and least number of deaths occur. He finds, from the study of the statisticst of several hospitals, asylums, and other institutions that deaths from chronic dis eases are most numerous between the hours of eight and ten in the morning, and fewest between like hours in the even
ing. Acute deaths from continued fevers and pneumonia take place in the greatest ratio either in the early morning when the powers of life are at their lowest, or in the after noon, when acute disease is most active. The occurrence of these definite daily variations in the hourly death rate is shown, in the case of chronic diseases, to be dependent on recurring variations in the energies of organic life; and in the case of acute diseases, the cause is ascribed either to the existence of a well marked daily extreme of bodily depres sion, or a daily maximum of intensity of acute disease

PEAT PAPER.
M. Bertmeyer has recently exhibited, in the Polytechnic Society of Berlin, specimens of paper and pasteboard obtained from the products of the peat beds about Könaigsberg the quality of which is said to be excellent. The pasteboar was $2 \cdot 4$ inchesthick, and sufficiently hard and solid to admit of planing and polishing. The paper made from peat alone
was brittle, like that manufactured from straw; but the addition of fifteen per cent of rags produced the requisite toughness.

artificial ebony

This material is made of sawdust mixed with other sub tances and powerfully compressed in molds. The following is the process of manufacture, as now largely carried on by Messrs. Latry \& Co., of Paris: The sawdust, reduced to a
fine powder, is mingled with a suitable quantity of water and blood, and dried at about 112° Fah. The albumen of the blood is thus agglomerated with the powder. The compound is then packed in heated molds, into all the crevices of which it is forced by strong hydraulic pressure.

a New russian canal

The Russian Government, says the Revue Industrielle, has recently completed negotiations with a Russo-English company for the construction of a canal from Cronstadt to St Petersburg. The work is to occupy six years in accomplish. ment and will cost $\$ 5,530,000$. This will render St. Petersburg the finest port on the Baltic, and besides greatly benefit the city as a commercial center, since the railways to Moscow, Warsaw, and all parts of Russia will be in direct communication with the docks.
A CURIOUS PROPERTY OF SAND AND ITS APPLICATIONS.
If a quantity of dry silicious sand be placed in a bag of canvas or thin box of sheet iron, the mass, after slight com pression, forms a conglomerate, capable of resisting press. ures of over 60 tuns. So far as the envelope is concerned he sand withinacts as if it were an enclosed solid, producing no effect on the covering except a trivial amount where the contact occurs with the load. The sand, however, remains perfectly divisible, and, no matter what may be the superincumbent weight, escapes freely though slowly out of a small aperture made in the bag or box. A simple piece of paper, however, placed over the orifice, is sufficient to stop the flow, even under the load above noted.
M. Beaudemoulin, who discovered this peculiar property everal years ago, has lately published in France a work suggesting various modes of its application. For building walls it is well adapted, since the filled bags or boxes need merely be held in place by a framework; while, being very thick, they would form a protection, in case of being used for dwellings, against variations of temperature. Such walls, beside, would be fireproof. It is also suggested that for lowering heavy weights or even entire buildings, which, by a change of street level, have become located too high above the roadway, the cand bags could be placed beneath and their contents allowed gradually to escape, thus letting the load slowly settle down.
natural antiscorburics.
General Sherman says that the agava Americana, or Span ish bayonet, the fruit of the common prickly pear, and the succulent leaves of some of the varieties of the cactus that abounds on the deserts of Texas, New Mexico, and Arizona, furnish excellent specifics for that horrible disease, the seurry.

BROMHYDRIC ACID.

M. Melliés states that a much simpler way of making this acid than that now employed, and which besides ensures a more copious supply, consists in passing a current of sulpby dric acid into a small flask containing bromine. Bromide of sulphur is formed and bromhydric acid disengaged.

Wales.

We have received from M. Jules Joubert, Secretary of he Agricultural Society of New South Wales,the first num ber of the society's Journal, in which are published full par ticulars of an exhibition to be held at Sydney in April, 1875 There is a long list of premiums, to be awarded for merit in all branches of agriculture and manufactures, the prizes for wines, sugar, and silk indicating the growth of three im portant industries in the Australian colonies. Agricultura mplements are much required in Australia, and competition by American manufacturers is especially invited, communi ation via San Francisco being rapid and convenient.
The Secretary writes us that the Agricultural Society and he Chamber of Commerce of Sydney are, together, making liberal arrangements for an adequate representation of Australian products at our Centennial Exhibition of 1876.

An Early Opinion of Railroads.
An old copy of the English Quarterly Review of the year 1819 contains an account of a scheme for a railroad, on which it is proposed to make carriages run twice as fast as stage
coaches. The editor evidently failed to appreciate the idea, coaches. The editor evidently failed to appreciate the idea, or to believe in its possibility, for he comments upon it thus wise:
" We are not partisans of the fantastic projects relative to established institutions, and we cannot but laugh at an idea so impracticable as that of a road of iron upon which travel may be conducted by steam. Can anything be more utterly absurd or more laughable than a steam propelled wagon moving twice as fast as our mail coaches? It is much mor possible to travel from Woolwich to the arsenal by the aid of a Congreve rocket.'
M. De Lesseps' plan of changing the Algerian shotts or lakes into an inland sea is shown, by a French engineer, to be little value. He has recently visited the country, and reports that the lakes are higher than the Mediterranean, and that a canal would merely drain them. Beside, the project would cost $\$ 60,000,000$, and it is difficult to see, even were the scheme feasible, any prospect of substantial returns.

Professor Purser believes that the moon, in revolving around the earth and drawing the tides behind her, causes the latter to act as a brakeon the revolution of the globe, and he considers that it may be mathematically shown that this action is slowly but surely checking the earth's speed of rotation, so that the days and nights are gradually lengthening. In a thousand
each a month long.
the dnderground railway, new york city. NUMBER III.

$$
\text { [Continued from page } 323 .]
$$

In our paper for November 14, page 307, we began our description of this grest engineering work, giving a diagram of New York city and the adjacent territory, showing the position of the Underground Railway, now nearly completed through the northerly portion of the city, 44 milep, and the route of its authorized extension down town, under Broad way to the Battery, $4 \frac{1}{2}$ miles. We also gave a profile of the

59th street to 76th atreet, and shows the appearance of th surface of the street, under which these tunnels pass, and th ventilating openings of the tunnels. Fig. 7 is a cross sectiona elevation of the same, showing the mode of construction. This iron boam tunve'ing is only resorted to where suff cient headway could not be obtained for the arcbed brick tunnels. By again referring to the profile (page 308), it will be seen that it bas been found expedient to use this latter kind of tunnel only where the difference of railroad and avenue grades is greater than 19 feet, while the beam tun nel is uszd, with a slight alteration of the strest grade, at points where this difference is as small as 11 feet, and, as a

Abstract

the wall, which, in general, is fifteen feet abovegrade. The top curse of this masonry is composed of stones fourteen inches thick, two feet wide, and three feet long, with painted beds and joints. Betwesn the two outer walls and thirteen feet distant from them in the clear, are pleced the two inner walls of brick, resting on a stone or gneiss rubblefoundation, thres eet thick and three feet wide below railroad grade. The walls which rise from these foundations are built of brick without batter, are t wenty inches thitk and high enough to roceive the roof beamg, and are tied with fine courses of North River blue stone, five inches thick and well dressed.

Fig. 6.-THE UNDERGROUND RAILWAY. NEW YORK CITY.-BEAM TUNNRL OPENINGS ON FOURTH AVENUE, 59th TO 76th STS.
railway, showing its grades, depths below surface, street grades, character of the work, etc.; also the contract prices paid for the work, outline of the law for construction, names of the official supervising engineers, names of the engineers in charge, contractors, etc. We also gave a view of the first bridge over the railway, at 45 th street. In our followin sumber, November 21, page 323, we gave a cross sectional elevation of the open cut of the railway on Fourth avenue, with a view of the bridge over the open cut between 52d and 53 d atreets, with a description of this open portion of the line, dimensions, etc. We now come to that section of the railway passing entirely under the surface of the ground, where the construction of what are known as the beam tunnels begins.
Fig. 6 is a view on Fourth avenue, looking north, from
onsequence, more than five thousand feet, of what would
therwise have been open cut, has been covered in with beam tunnels.
Like most of the other tunnels used on the work, the beam tunnels are divided into three separate tunnels, contained within four walle two outer and two inner up holding the roof, which is composed of wrought iron beams with turned brick arches between them; the roof, in its turn. sustains the earth and paving of the street. The two outside walls are a continuation of the retaining walls of the open cut, described in our last paper, and are built of gneiss rubble masonry of the same class as that used in the before described retaining walls, seven feet thick at railroad grade, and sloping off thence with a batter, on the inside face, of one inch to the foot, to a thickness of three feet at top of

Along the top of each of these two inner walls rup, side by side, the flanges touching, two H-shaped wrought iron girders, twelve inches deep and bound together by half inch bolts, in the manner shown in Figs.10, 11, which illustrate the mathod of binding togather the girders, and of fastening the roof beams to the girders. These longitudiral girders are of the best wrought iron, weighing one hundred and twenty. five pounds to the linear yard, and are joined longitudinally in such wise that, should any portion of the brick wall sup. porting them be by any accident thrown down, the longitudinal girders will offer a rigid support to the roof beams and the earth resting upon them. On top of the longitudinal 12 inch girders and bound to them by half, in bolts passing through the flanges, as shown in Figs. 10, 11, rest the iron beams composing the roof. These are also H-shaped

fig. 7.-THE UNDERGROUND RAILWAY IN NEW YORK CITY.-CROSS SECTIONAL ELEVATION OF THE BEAM TUNNELS AND VENTILATORS 59Th TO TGif STREETS
but very much heavier and deeper than the girders on which on the outer wall and the other projesting over the inner they rest, bairg fifceen inches deep and weighing two hundred pounds to the linear yard, and varying in length from sixteen to twenty-seren feet. They are placed upon the walle, at right angles to the length of the tunnel, and three feet five inches apart from center to center, strapped and anchored, and tied together wish une inch iron tie rods, cast iron thimbles baing placed between the beams at each tie
on the outer wall and the other projeasing over
brick wall into the contral tunnol. Sэe Fig 7.
Around these openings are placed brick retaining walls, which rise to the levol of the street and are then coped with a coping of first class pene-hammered granite coping, six teen inches by ten inches, which supports a light iron railing. The brick facs of the opening is faced with cast iron ing. Traced with cast iron basms placed about seventeen feet

rod and at the ends. This manner of tying the beam is il- apart, two feet three inches high, twenty-five feet long, is over, and that the-possibly mythical-homely habits of iustrated in Fig. 11, which represents a crosssection through bound to the roof beams by bolts, and anchored in the brick the ancient settlers must be revived before there is again
two of the bzams placed over the larga central tunnel, as aleo the horizontal projection of a longitudinal section through the center, showing the thimble at the tie rods. The strapping consists of two iron bands or straps, one of which passes from the top flange of one beam under the bottom flange of the second, and to the top flanga of flange of the second, and to the top flange of
the third; the other, from the bottom flange of the third; the other, from the bottom flange of
the firsi beam to the top flange of the second, the firsi beam to the top flange of the second,
and thence to the buttom of the third, the straps being fastened at each flange.
Orer the small side tunnels, whose span is but 14 feet 3 inches, the roof beams are placed singly; but over the central tunnel, which has a spau of 25 feet, they are placed in pairs, that is to say, two beams are placed side by side so that their flanges touch, each pair being 3 feet 5 inches apart from center to center. See Fig. 9.

Batween the beams are placed the turned brick arches, 8 inches thick. The whole is then covered, to a depth of 4 inches above ine tops of the beams and arches, with concrete, composed of one part Ulster county hydraulic cement and two parts sand and gravel, or stone, broken so as to paes every way through a two inch ring ;over this is placed a coating of thieeply roofing felt and cement, and then the earth and paving.
Tbe main central tunnel is lighted and ventilated through openings, twen'y feet wide and one hundred and fifty feet lang, plased one in each block.

We wentioned that the roof bsams varied in length from sixtesn to twenty.five and twentyseven feet. The reason for this variation will now bequite apparent. The sixteen feet beans are used to span the amall or side tunnels, which have a width at top of 14 feet 3 incbes; the twenty-seven feet beame span the large central tunnel, whose breadth at top is twenty five f et, wbile the twenty five feet beams are used where the openings occur in the large tunnel, one end resting

American Iron.
It is proverbial, at least among the Americans themselves that they, of all nations, possess in its greatest plenitude the faculty of recuperation. From time to time the American world of business is distracted by financial typhoons; the vessel of state is laid on her beam ends; hotels, and even theaters, reduce their prices; and stern admonitions issue from press and pulpit that the period of piping and dancing

FIG. 9.-THE UNDERGROUND RAILWAY, NEW YORK CITY.-LONGITUDINAL, SECTIONAL ELEVATION OF THE BEAM TUNNELS.- $9^{9} \mathrm{TH}$ TO 76 TH STREETS
part of the wall for the entire length of the central opening, |iron and are four by eight feet.

The Temperature of the Snn.

M. Violle considers that the emissive power of the sun at a given point on its surface will be the relation between the intensity of the radiation emitted at such point and the intensity of radiation which a body, having an emiasive power equal to unity and carried to the temperature of the sun at the considered point would possess. So that he defines the true temperature of the sun as the temperatura which a body of the same apparent diameter as the sun should possess in order that this body having an emissive power equal to the average of the solar surface, may emit,in the same period, the same quantity of heat as the sun. From experiments made at different altitudes, M. Viclle determines the intensity of the solar radiation, as weakened by passage through the atmosphere, and finds, for the effective temperature of the sun, 2, $822^{\circ} \mathrm{Fah}$.
Investigations conducted with an actinometer by the dyInvestigations conducted with an actinometer by the dy-
namic method lead the investigator to conclude that steel, as it emerges from a Siemens Martin furnace, has a temperature of $2,732^{\circ} \mathrm{Fah}$. If it be admitted that the average emis. sive power of the sin is sensibly equal to that of steel in a state of fusion, determined under like conditions, it appears tbat the mean true temperature of the solar surface is about $3,632^{\circ}$ Fah.

The Patent Office has granted a patent for a dummy, for dry goods merchants, to enable them to make a large show on a small stock. It consists of a block of wood, neatly done up in a cover of c'oth, labeled and ribboned to represept, in exterior appearance, a full package of real goods. wall. Inmediately beneath these openings there occur, in health in the land. These lessons are received with very the brick walls which separate the central from the two side different feslings in various parts of the country. Boston unnels, a series of arched openings, which give light and ventilation to the small side tunnels (see Fig. 9). T'asse openings in the brick walls are placed all along the upper

The Americans have a splenoid "forest primeval," bu the blast furnace is a great devourer, and will thin the surthe blast furnace is a great devourer, and will thin the sur-
rounding country in an alarmingly short space of time. rounding country in an alarmingly short space of time.
Posibly improved railway communication will more than Peep pace with the rapid destruction of timber, but the sig. nificant fact yet remains that, out of 630 furnaces in blast in 1873,265 were supplied with charcoal. No charcoal melting of iron can be long lived; and it is, therefore, clea that, unless increased railway communication be provided, a certain rection of the iron industry of the United States will

IG. 11.-THE UNDERGROUND RAILWAY, NEW YORK CITY. JOINTS AND COUPLINGS OF THE IRON BEAMS.
§rientific Ammetrau.
be soon " played out." Vigorous efforts will undoubtedly be made to put other iron producing centers on a level with Pittsburgh, by improving the communication between coal and iron regions; but the truth will always remain constant, that,however rich iron ore may be, it will not pay to carry it too far.
For a long while the American makers had a heavy uphil journey, as, although they were protected by an enormous tariff, and were supplied with a huge home demand, English makers of railway material swept the market. An unprecedented advance in the price of English coal, and consequently of iron, during the last three years, deprived English makers for a while of their advantage, and, despite dear labor, the American ironworks rose last year to a high pitch of prosperity. The delicate conditions of business in the United States failed, however, last autumn to withstand the tension of the financial world, and the American iron and steel trade suffered a paralysis which it communicated in no small degree to the trade of Great Britain. With a keen eye to the wants of the future, the American makers apparently foresaw that the wants of the railway world would be confined to Bessemer steel, and have made great efforts to compete-under the ægis of their duties-with Eng. lish makers in the production of this important metal. So long as exaggerated prices for fuel and labor prevailed in England, a chance of success remained; but so soon as the period of inflation in England ceased, it at once became evident that steel rails were wanted for America. Barrow in- Furness is likely to prove for some time a hard nut to crackforall her competitors in Bessemer steel, be the same English or Welsh, Belgian, French, or American. She has the precise kind of ore required under her feet, and in this particular possesses an undoubted advantage over American rivals. That a country may escape ridiculous smallness by being inconveniently large, is proved by the significant fact that Algerian and Bilbao ores cost at the furnace in America $\$ 20$ per tun, when they may be boughtat Barrow or at Car diff for $\$ 6.25$. Without " magnificent distances", the superb supplies of iron ore in "the States" would be speedil utilized; but until increased and cheaper railway communication has brought her coal and iron closer together, America will need all her unquestionable energy and ingenuity to compete with England in the world of iron.-Iron.

C゙かrtespoudeute.

Universal Joints in Screw To the Eaitor of the Scientific American:

I have lately noticed in your valuable paper a number of references to the use of Hooke's universal joint in a screw shaft, but I have seen nothing resembling an invention of my own in that direction, and I would like to call your at tention to it. The engraving, I think, explains itself, and it

is designed to facilitate the handling of small boats, like launches intended for torpedo work.
The propeller and that portion of the shaft beyond the universal joint is hung in a composition frame, which takes the place of the ordinary rudder. A line passing through the axis of motion of the pintles and gudgeons would also pass through the center of the ball of the universal joint; and by means of the frame, the propeller is thrown to the right and left in steering. My invention has been applied to one of our torpedo launches, and has been in operation for several months. The speed of the boat is exactly the same as it was with the same propeller fitted in the ordinary way while the rapidity with which she can turn to starboard or port is very much increased, the diameter of her circle be. ing much decreased. The rudder framehead is fitted with an arc which gears into a rack on the side of a cylinder moving athwart the stern of the boat, so that she can be steered by steam or compressed air. An ordinary wheel is, however, fitted, which answers every purpose in a small launch, as it requires very little force to throw the propeller from one side to the other.
I have no patent on my invention; and perhaps, if you print my sketch, some one may get an idea from it.
F. M. Barber, Lieutenant U. S. N. Torpedo Station, Newport, R. I.

Small Steam Engines

To the Eiditor of the Scientific American:

Several of your correspondents having written somewhat upon the performance of amall engines, I would like them to see what I am doing.
My engine cylinder is 4 inches by 10 inches stroke, and runs at 120 revolutions per minute; it has a common D valve, and cuts off at $\frac{5}{8}$ of the stroke; it has a boiler pressure of 60 or 70 pounds. With this engine I run my machine shop, which has 52 feet of $1 \frac{8}{4}$ inch shafting, running at 200 revolutions, driving two engine lathes of 8 and 6 feet bed respectively, one planer of 6 feet bed, one upright drill (medium
size), one small drilling lathe of 4 feet bed, one drop hammer (hammer weighs 300 pounds), one blower, one grinding machine for grinding rolls, etc., beside a grindstone and an mery wheel. These tools are in my own shop. I run a quarter-turn 4 inch belt into the next building, and drive 32 feet of $1 \frac{8}{4}$ inches shafting, and one large iron blacksmith's or boiler maker's punch and shears combined, and one me-dium-sized upright drill. I also take another quarter-turn 4 inch belt from my shaft, and (by three countershafts and pulleys) reach the second story of the second building, and go thence up into the third story of the same, and there drive 54 feet of one inch shafting, and 30 sewing machines running upon heavy cotton goods. I also take from my main line in my shop a rope belt of $1 \frac{1}{2}$ inches diameter, and drive (in the third store adjoining me on another side, 56 feet distance between shafts) some coffee-roasting and spice mills.
My boiler is of locomotive style, with a 26 inch shell, 6 feet ong, with twenty nine $2 \frac{1}{4}$ inch flues; the fire box or grate urface is 22×28, with a smoke stack 40 feet high and 10 inches in diameter, with a damper. I use no blower; I burn coke and bituminous screenings mixed (about 2 barrels per day). I evaporate about 20 gallons of water per hour, introducing it into the boiler, through a heater of my own onstruction, at about $206^{\circ} \mathrm{Fsb}$.

A, heater of sheet iron ; B B, two sheet iron pans ;C C, points where the pans are turned up a little, and small holes drilled through; D, pipe where steam escapes; E, overflow pipe; F, pipe by which hot water is taken to pump; G, cold water pipe from tank; H, exhaust pipe from engine.
You will see that I introduce the exhaust steam and cold water at a point as near to each other as possible, and that both steam and water travel together over the two pans to their exit, the water falling down upon each pan successivey, and through little holes drilled in the ends of the pans or that purpose, in order to expose as much of the surface f the water to the action of the steam as possible, until it reaches a little well in the bottom of the heater, whence I convey it to the pump. I admit only just enough water to this heater to keep my boiler supplied.
If any of your readers are doing more work with less enine, I would like to hear from them. O. B. Fenner. San Francisco, Cal.

Cribbing in Horses.

To the Eiditor of the Scientific American:
The letter upon cribbing in horses, from D. Cook, Elmira O., is calculated to do a great deal of harm, without any advantage arising therefrom.
He says that the habit is caused by some foreign substance being pressed between the teeth, or by the front teeth grow. ing too close together, thus causing pain. If this were the case, I ask him: Why a great many horses, during the act of cribbing, always apply the under jaw, instead of the teeth, to the manger? His treatment for the same, which no doubt he offers as an entirely new idea, has been known to horse men for years, but is seldom practised by them.
Instead of crib-biting or wind-sucking being caused by pain in the teeth, it is due to a derangement of the stomach. Filing the incisor teeth apart; in the place of relieving pain, very often produces it; and therefore, whenever it is successful in preventing the animals from indulging in the abit-which is but seldom-it is on account of the soreness of the teeth occasioned by the operation.
To enable a horse to swallow wind, it is necessary for the muscles of the neck to contract, and the only object in ap plying the teeth or jaw to the post or manger is to afford a ulcrum for these muscles to act from. J. C. Higgins. Millstene, N. J.

Forming and Tempering Taps.

To the Editor of the Scientific American:
I find that T. I. B.'s tap, a quarter inch in diameter, which has tapped " over two hundred thousand hot forged nuts," was made according to the instructions given by Mr. Rose in his valuable practical essays. It was forged to as near its finished size as possible, so that it would true up. It was passed through a hardened steel gage. It had three half round grooves, the only clearance being to ease off the tops of the threads. It was heated to a cherry red, "red without being hot enough to scale," then dipped endways, and the shank made the softest and tempered on a piece of iron, as given in "Practical Mechanism" for dies. All these opera tions are precisely those recommended by Mr. Rose: and it is curious that it broke from being applied to a hole that was too small, giving it, as Mr . Rose puts it, "more duty than it should be required to perform."
As a mechanic, I agree with T. I. B. as to his method of
giving to the world, through your columns, the method and result of his practice, which is truly remarkable. East New York, L. I. Machinist.
[The above is only one out of many scores of letters which we recsive, constantly testifying to the value of the articles on " Practiowl Mechanism."-Eds.

A New Friction Brake

To the Editor of the Scientific American:
In your issue of October 31, 1874, is an illustration and description of a simple friction brake for testing the power of small engines. Having given some attention to the various kinds of dynamometers for such purposes, I submit for your inspection a modification of a brake somewhat similar The difference between this brake and that referred to con sists in the weights of my brake being suspended from center line horizontally through the shaft. It does not require the piston in oil which forms a part of your brake; and instead of two wooden blocke, I use a metal ring in two pieces or sections, each piece being less than the half circle and lined with wood, leaving an opening between the pieces, and turned on a face plate to the exact diameter of the pulley. Each half ring is provided with a flange, to which the arms are bolted, and which meet in a point at a certain dis tance from the center of the pulley, and form the lever by which the power is measured. There is also a box partly filled with scraps to act as a counterbalance, which, with a common scale and weights, completes the appara'us. As a matter of convenience, in using the brake, a temporary post with two pins is used for securing the lever in an approximately hori zontal position, which tends to simplify the operation.
A is the shaft, revolving at seventy revolutions per minute; B, a pulley fastened on the same, the diameter of which is immaterial, but should neither be very small nor very large; CC, two wooden arms which form the lever; D D, two pieces of a metal ring, each piece being less than the half circle: F, a scale whereon weights are placsd in making a test; G, a box with scrap which counterbalances the lever CC, and scale, F, when hanging loosely on the pulley; H , a temporary post, with two pins, a and b, for securing the lever in nearly a horizontal position. The weight of the lever, with rings, scale, and counterbalance, is 300 pounds, when the said lever is perfectly level and loose on the pulley. The length of lever from center of shaft, A, to point, E, is 5 feet. First find the friction caused by the lever and counterbalance when loose upon the pulley. The coefficient of friction with wood or cast iron, lubricated, is $0.21 ; 300 \times 0.21=63$ pounds.
Tighten up the brake until the speed of the shaft, A, falls a revolution below its usual speed; slack the brake until the speed comes close up to the full number of revolutions; place weights on the scale, F, adding thereto until the lever, C C, falls down to a perfectly horizontal position. This accomp lished, take the number of pounds weight on the scale, F

and multiply this by the circumference of the circle in feet of which the lever, C C, is the radius, measured on the horizontal line, and by the number of revolutions of the shaft, A, per minute; this will give the number of foot pounds (or the number of pounds raised one foot high in one minute), to which product add the friction of the lever as previously found, and divide the whole by the standard horse power, 33,000 lbs. raised one foot per minute, which will give the horse power transmitted ly the shaft, A, which shaft may be either that of a small steam engine or a countershaft in a factory or mill.
Example: A lever is 5 feet long; this gives a circumference of a circle described from the center, A, through the point at $\mathrm{E}, 31 \cdot 4$ feet. Weight in scale when lever is level, 75.05 pounds ; speed of shaft, 70 revolutions per minute; 31.4×70 $=2,198$ feet per minute ; $2,198 \times 75{ }^{\circ} 05=164,959$, and 164,959 $+63=165,022$, and $165,022 \div 33,000=5$ horse power transmitted by the shaft, A
I consider this apparatus better adapted for the purpose of testing power than the one referred to in your journal. The friction brake in this apparatus is more rigidly secured, and will not cause the end of the lever to vibrate when testing, so that it will come to the desired position more readily than that with the two blocks and long bolts, which latter will cause vibration of the lever. Secondly, the center line is the proper line to hang the weights on. Thirdly, the piston in oil will affect to a certain extent the accuracy of the test.
Toronto, Canada.
William Gille

Wear of Grindstones.

To the Editor of the Scientific American:

W. Kapp's idea, on page 228 of your current volume, for arranging grindstone apindles to prevent the uneven wear of the stone, is good. But the difficulty is not wholly removed by his plan, as the greatest cause of uneven woar is attributable to the stone being softer on the lower side, caused by the drip or by standing in the water. A good idea is to remove the crank, and this may apply advantageously to his plan.
Washington C. H., Ohio.
the national academy of science. The second session of this body (the first meeting was held, it will be remembered, at Washington, during the spring) met on November 3, at Philadelphia. The attendance has been large, and includes the names of many of the most distinguished ecientists and scholars in the country. We give below brief abstracts of the papars read.
cause of sudden cold weather.
Professor Elias Loomis has made careful studies of the weather maps of 1872-3, with a view to the discovery of laws governing the relation between the direction and velocity of the wind and barometric pressure. In the center of an area of low barometer, a strong upward movement has been observed, and it now appears certain that a downward movement prevails over areas of high barometer. The result of this downward flow must be a considerable fall of the thermometer. These considerations appear to prove that the extremely low temperatures which occur at irregular intervals in every month,and particularly in the winter months, are due mainly to the descent of cold air in the neighborhood, and that this descent of air results from the outward movement which generally takes place from the center of an area of high barometer. In summer, during a thunderstorm, the temperature often falls 10° in a few minutes, but observations show that there was no current of air from the north. These sudden gusts of cold must descend from the higher atmospheric regions.
In the discussion which followed the reading of this papar, Professor Joseph Henry suggested the possibility of currents from the north in the upper atmospheric regions bringing down the cold air, which is afterward precipitated on the earth's surface in the areas of high barometer where the outward motion of the wind is observed.
Professor Packard detailed some observations on the specific gravity of water in the Gulf of Maine, and stated that the bottom water is considerably denser than the surface. The average specific gravity of bottom water is slightly less than that of surface water; yet, from 50 to 800 fathoms, the specific gravity increases with the depth, from 1.0272 to 1.0277.

Professor Sterry Hunt delivered an extemporaneons address on the
decay of crystaline rock.
In Western Connecticut, the brown hematite iron ores of Salisbury and Kent are associated with what is locally called fuller's earth, but consists, according to Shepard, of nearly vertical strata of crystaline formation decayed in place.
From a comparison of the masses of iron ore thus found with the similar masses observed in the decayed crystaline rocks of the Blae Ridge, which were recognized as the results of the alteration of beds and lodes of iron pyrites, and in some cases of beds of spathic iron ore, found in these rcctss where the decay has not reached them, professor Hunt argued that such had been the source of much of the hematite ore found along the great Appalachian Valley.
The iron oxide in these and similar decayed rocks had, by its solution, furnished the whole of the iron ore which, in various forms, is interstratified in our paleozoic rocks at different horizons. From these decayed strata had also come the materials for all the clay rocks and sand rocks of various ages.

RELICS OF AN ANCIENT RACE
Dr. F. V. Hayden mentioned his discoveries of ruined cities in the cañons leading to the Colorado river. He said that there once existed, in what are now the arid plains and a avage gorges of Southeastern Colorado, a race so far civilized that they built large cities, constracting their houses of well hewn blocks of stone, with timber floors, well formed windows and doorways, and smoothly plastered walls, and that they possessed the art of making glazed pottery
Professor Henry produced a eulogy upon

JOSEPH SAXTON,

the inventor of the magneto-electric machine, who died October 26, 1873. Mr. Saxton also invented the locomotive differential pulley; an apparatus for measuring the velocity of vessels; and a metal ruling machine, a contrivance for tracing lines on metal or glass at a minute distance from each other. Mr. Saxton returned to this city in 1837, and during his connection with the United States Mint constructed ihe large standard balances still used in the annual inspection of the assays and the verification of the standard weights for all the Government assay and coining offices of the United States. Mr. Saxton'sinventive powers were exercised rather for the pleasure their employment gave him than for any gain to himself. Others reaped the profit from many of his most valuable inventions. He rarely sought to bring into use his devices and discoveries. Among a great many valuable inventions, for which he never received proper
credit or any pecuniary return, was that of metallic cartridges.
Professor Packard described the indications of the nervous system of the limulus (king crab) which he succeeded in discovering in a fine transverse section of an embryo in an early stage of development. He also mentioned a bright red gland in the crab,hitherto undescribed, which, he thinks, is renal in Nature, and homologous with the green glands of normal crustacea
measuring minute changes in atmospheric pressure.
Professor Mayer described a machine accurately measuring the most minute variations in the pressure of the at-mosphere-changes so slight as not to affect the barometer. A hollow metallic vessel, with unyielding walls containing air, has adapted to it an open glass tube. In this tube is a short liquid column. The glass tube is in a horizontal po-
sition. The vessel is surrounded with melting ice, which
keeps the air in the vessel at a constant temperature. In this condition the liquid in the tube remains stationary, if the pressure of the air outside the apparatas remains con. cause the any increase of pressure in the atmosphere wil the vessel. The contrary motion takes place when the at mospheric pressure diminishes. These molions of the liquid column are registered continuously by photography. standard mercurial barometer is observed at stated times,so that the values of the motions of the liquid column can be determined. This apparatus, if placed at certain important stations of the United Siates Signal Service, would be o good use in studying the variations in atmospheric tem perature in connection with the development and progress of storms.
Professor Mayer spoke afterward of the change in dimen ions of solid and hollow iron cylinders on their magnetization, and described experiments made on solid and hollow cylinders of iron three feet in length and five or six inches in diameter. He found that solid cylinders elongate on being magnetized, but at the same time so contract in their trans verse dimension that the volume of the cylinder remains constant. In the case of hollow cylinders, however, it was found that their interior capacity increased on their mag. netization.
Professor Henry replied briefly to the criticisms upon our lighthouse service, which appeared in the recent report o Major Elliott, an abstract of which has appeared in these columns. He said that lard oil madea brighter light in large lamps than kerosene ;and that as most lighthouse keepers wer appointed by politicians, they were ignorant of their busi ness, and could not be trusted with gas generating appara tus. There was often trouble in teaching them to manag the simple steam boilers used with fog whistles and sirens An electrical light had been proposed instead of oil, but such light was deficient in the red ray. No light was strong enough to penetrate fog. A mile of cloud shut out the sun's rays, and we could not hope to get a light superior to he sun.
Professor Silliman described a method for the
removal of ammonia from illuminating gas, and obtaining it in the form of a dry salt,adapted to the uses of agriculture. When nitric acid salt cake, a by-product of acid works and of small value, ground to powder, was placed in an apparatus similar to that used for lime purification all the ammoniacal compounds were completely removed from the crude gas, while the salt was enriched by about 13 per cent of sulphate of ammonia, or $3 \frac{1}{4}$ per cent actual salt. It appeared on investigation that all the cyano gen compounds had been decomposed by the salts of iron in the nitric acid salt cake,derived from the action of the acid on the iron retorts,and excited a ferro- and ferri-cyanide of iron action in the mass, staining it distinctly.
The so-called commercial superphosphate of lime also ef fectually witharaws every trace of ammonia from gas. An acid salt of this sort is found in ammonia, which yields a soluble monobasis calcic phosphate of 676 per cent of phos phoricacid; when saturated with ammonia composed from ras, it yields $6 \cdot 11$ per cent of salts.
The ammonia may be completely withdrawn from coal gas in its crude state by acid salts, and presented in a dry and manageable form, without further labor or expense in solu tion, crystalization, or manufacture; and also it is easily deprived of the poisonous effects of cyanogen compounds by a proper use of salts of iron. Analytical chemists will be glad to know that, by using either sodic or potassic bisulphate in a U tube, it is quite easy to withdraw ammonia from a gase ain it in a condition to be weighed
Professor W. B. Rogers, on
newport conglomerate,
said that there is nothing in the structure calling for fur ther agency than the ordinary transporting and wearing actions under which such products have generally been accu matated
Professor Rogers described a
simple method of generating positive electrictity herever a steam boiler exists in the building.
He attached a pipe to an ordinary boiler used for heating arposes, and carried it through the window to the outer air 0 the end of the pipe where the steam escaped he attached hat are known as Faraday's nozzles-15 of them-with applewood apertures. In front of these nozzles he sus-
pended, by a brass rod, a piece of brass foil, cut soas to present a bristle of points to the escaping steam. He had only to provide an insulating support for the rod, and carry a wire through a pane in the window to a long rod held by ribbon silk in the room where he desired to use the elec tricity, to have a strong positive current. A tube inserted in the steam pipe,with a valve opening inwardly,admitted ai sufficient to produce a uniform condensation of the steam. Professor Mayer's paper on the composite nature of elec trical discharges, that of Professor Henry on the effect of wind on sound waves, and Dr. LeConte's address on the use of mineral poisons by farmers, we reserve for fuller consid of miner
eration.
The meeting adjourned on November 5.
A New Source of Coal.-The English engineers sent by the Viceroy of Egypt to examine the carboniferous deposit of Dranesta have recently fo. warded to England 300 tuns of the fuel to be experimented u_{i} 'n. Dranesta is situated 108 miles south of the city of Salonici, in the midst of the moun tains which extend to the southward of Mount Olympus.

Character of Electric Discharges.
A flash of the duration of $\frac{1}{1000 \delta \delta \sigma}$ of a second is instantly recognized by the retina, but the effect on the eye lasts fully $\frac{5}{5}$ of a second. The duration of the flashes recently examined by Professor A. M. Mayer, of the Stevens Institute, varied from 0.124 to 0.0416 of a second. An idea of the length of this last mentioned interval may be obtained by recalling the fact that a rapid involuntary wink takes place in nearly the same time. That the Leyden jar discharge is multiple was discovered by Professor Henry, and this has been subsequently confirmed by Cazin, Tedderson, and Rood. Professor Mayer, however, has sought more definite results, and the object of his investigations has been a permanent record of the character of the discharge, of its duration, and of the intervals separating its constituent flashes and sparks. To this end he prepared dieks of thin printing paper, blackened over burning camphor, and of a diameter of 5.8 inches. When one of these was revolved very rapidy, it became quite flat by centrifugal action, and in this position the discharge between points or balls perforated it, leaving the required record. By presenting momentarily to the rotating disk the delicate point attached to a vibrating tuning fork, the number of vibrations per second of the fork was determined to the last degree of precieion by means of a break-circuit clock;' which at each second sent a spark from an inductorium through the fork. The result was traces on the blackened disk; and by tracing the axis of the sinuous line with a needle point, and then drawing radii through ymmetrical intersections of the axis on the line, the disk was ivided off into known fractions of time. These marks were then rendered permanent, the disk centered on a dividing circle, and the indications read by a low power microscope, determining with accuracy intervals and durations to one 0,000 th of a second.
The results thus far obtained we summarize below, and we understand that others have been reached which the investigator withbolds until he has subjected them to more careful examination
The first discharge was between large inductorium points, 39 inches apart, the striking distance of the coil being $17 \cdot 7$ nches. Thirty-three clear round holes were made in the disk by a portion of the discharge lasting $\frac{1}{23}$ of a second. The average interval between the perforations at the beginhing was $\frac{1}{85}$ of a second; then followed a period of quiescence of $\frac{1}{1500}$ of a second, and then a shower of 30 minute parks, lasting $\frac{1}{33} 0$ of a second. The average interval separating these was $\frac{1}{9900}$ of a second. The second discharge was between platinum points, 0.39 inches apart, of a large nductorium, with a Leyden jar of square inches, connected with the terminals of the secondary coil. The discbarge on its path around the disk dissipated 91 little circles of carbon, each perforated by from 1 to 4 holes. The discharge lasted $0 \cdot 124$ second, and the intervals were $\frac{1}{535}$ of a second up to the tenth flash. For four fifths of the discharge they were eeparated by $\frac{1}{5882}$ of a second, and at. the last by $\frac{10}{100}$ of a second.
We understand that Professor Mayer is examining the discharges of the frictional and Holtz machines, as well as of the Leyden jar and inductorium, so that results of considerable scientific interest and importance may be expected.

Rubber Thermometers,

M. Kohlrausch, having several times noticed that glass asks, closed by stoppers of hard rubber, burst, concluded that this substance must be very dilatable. This hypotheis was fully verified by experiment, for the expansion of his body was found to be about three times that of zinc. From his measures, the coefficient of dilatation for 1° between 167° and $25.3^{\circ}=0.0000770$, and between 25.3° and $35 \cdot 4^{\circ}=0 \cdot 0000842$. Thus, not only has hard rubber a very great coefficient of dilatation, but the latter increases very rapidly with the temperature.
This remarkable property can be applied to the construction of very delicate thermometers. Thus, with a small instrument, consisting of two strips of rubber and ivory, 8 inches long, glued together and fastened at one end, we obain, at the other extremity, a considerable movement for a change of temperature of one degree. The coefficient of hard rubber is equal, at zero, to that of mercury; above, it is greater. We can, then, as a curiosity, construct a mercury thermometer with a reservoir of this substance, whose changes will be the opposite of those of a common thernometer, and which will fall with an increase of tempera. ture.
The Pennsylvania Railway Company's Figures. The Pennsylvania Railway Company owns about 16,000 ight-wheeled freight cars, valued at $\$ 512$ each ; 1,800 fourwheeled freight cars, worth $\$ 170$ each; 521 passenger cars of all grades, worth $\$ 3,550$ each, and 879 locomotive engines, worth $\$ 11,000$ each. Total valuation of the rolling stock, twenty millions of dollars. The length of the company's tracks, or those controlled by the company, is 5,934 miles.

Muscarine is a new alkaloid obtained from poisonous mushrooms, and especially from the agaricus muscarius. Dr. Provost, of Geneva, has shown that, when muscarine is injected into the veins of an animal, the heart is arrested in its diastole. The action of this poison is so much the more remarkable, since in such a case the heart is not dead, nor oven paralyzed, and its contractions can be aroused after everal hours' silence.
According to Képesy, the surgeon to the Austrian Polar Expedition, chocolate, as a beverage, proved most valuable of all; the preserved meat and vegetables in tins being also

IMPROVED PINKING IRON

This is an ingenious and handy substitute for the old fashioned pinking iron, or one under which the cloth is usu ally laid and the cutting done by pounding on the end of the tool with a hammer.

The present invention is nothing more than two cutting blades, of any desired form, attached to levers which are jointed like pincers and are operated like scissors. The upper blade does the cutting, and the lower one is made to correspond to it in shape, hav ing its edge made, however, by beveling one side only. Both are so constructed that when the jaws are closed, the edge of the upper blade sinks slightly below' the surface of the lower tool and just back of the same, so that at each strcke the beveled part of the blades bear against each other, and the cutting edge strikes against nothing but the fabric.
Of course the dies or blades are varied in form for different patterns, but it is considered cheaper to have an entirely separate instrument for every pattern instead of providing detachable blades.
Patented Soptember 1, 1874. For further particulars regarding sale of State rights, etc., address the inventors, Mrs. Eliza P. Welch, Groton, Caledonia county, Vt.

BIDDLE'S HYDRAULIC JACK.

For forcing crossheads out of piston rods, bolts from en gine frames and cylinders, crank pins out of locomotive dri ving wheele, and for perfor aing similar work in which it is necessary to employ a tool of large power in a small space the invention herewith illustratec vill, it is claimed, prove excellently adapted. It is a novel form of hydraulic jack, consisting of a long tube, A, Fig. 2, in which works a pis ton, B. The latter is provided with suitable packing flanged

at the circumference, for expanding and closing tightly the more the pressure is increased, and is connected by a uni versal or similar joint to its screw bolt. The screw nut, C, is affixed at the end of the tube, λ, and through it the bol paeses, terminating in a square end, to which the ratche wrench is applied.
The liquid in tube, A, is forced by the advancing pisto into the ram tube through a amall connecting channel and against the lower end of ram, D, which is packed in the same way as the screw piston. The effect is to push the ram out ward, and so to apply power to whatever may be in contact therewith. It will be seen from the exterior view, Fig. 1 that the device is quite compait, and it can be made of an size. It will doubtless prove a very useful implement fo work in spaces too small for the employment of common tools.
Patented through the Scientific American Patent Agency August 25, 1874; caveat also filed in Canada. For particu lars regarding sale of rights and other information, addres the inventor, Mr. Edward Biddle, Carlin, Eiko county, Ne vada.

Solid Metal Floating on Melted Metal.
It has been alleged that a cast iron cannon ball will float on molten cast iron, and Mr. R. Mallet, in a paper before the Royal Society, on the fusion of metals, explained the fac that some metals, when solid, float on a melted bath of the same metal, by the assumption of a "repellent force." Be fore definitely adopting this rather mysterious explanation Mr. Adolf Schmidt advises all who are yet in doubt in re gard to this subjact to make the following experiment:
" Have a solid ball of cast iron, of $1 \frac{1}{2}$ to 2 inches diameter cast and filed off pretty emoothly. Have a ladle or vessel, of at least cubic foot capacity, filled with molten cast iron. If then you lay the cold cast iron ball on the surface of the molten iron, you will find that the ball, in apite of the re
pellent force assumed by Mr. Mallet, will sink to the bottom of the ladle at once. With an iron rod you can feel the ball at the bottom of the ladle and roll it about. But, after twenty or thirty seconds, the ball will slowly rise to the surface of the bath and remain there. It is thus evident

WELCH'S PINRING IRON

that castiron at ordinary temperatures is both heavier and denser than molten iron; but that, as its remperature rises the solid iron expands, and becomes lighter and finally float on the molten iron. The latter fact shows simply that solid iron, when at a high temperature, approaching its melting point, is less dense and lighter than molten iron, which fact again implies that molten iron must undergo a rapid expan sion in the moment of its solidification. The extent of this expansion is, however, less than that of the subsequent con raction in cooling, so that the cold iron is again denser than the molten iron.
The error of Mr. Mallet and of many preceding observers jonsists in this: Their observation, that the solid meta floats on the molten metal, refers to the former when heated while their determinations of specific gravity of the solid metal are made with the metal, when cold. Bat my experi ment, as above described, shows that this cold nietal, which has the highest specific gravity, do3s not float, and the heated metal which does float has undoubtedly a smaller specific gravity. There is certainly nothing either incongru ous or wonderful in ail this, and nothing that would require or justify the assumption of a repellent furce. None of Mr Mallet's experiments prove anything against the temporal expansion of certain metals in the moment of solidifization nd all the observations I made on this point in founderie verify it.'

The study of Chemistry.

We often hear it said, by way of excuse, that the study o chemistry is so ary, and the time required so great that the student must begin young or not at all. Now this is simply nonsense; there is no branch of Science so interesting, and none more easily acquired. Three or four bours a week fo a few months would so open the eyes and interest the under tanding of any ordinary mortal that, without laying any claim to the prophetic mantle, we may safely assert that h who will make the trial ehall have provided for life a source of pleasure for himeslf, and a power to interest and instruc his fellow men.-Western Photcgraphic Necos.

A NOVEL MILK CAN.

Mr. Marquis D. L. Gaines, of Boonton, N. J., has recently invented an ingenious packing for the caps of milk cads and also a novel arrangement of plug for binding the milk in the receptacle to prevent its churning during transporta tion.
After the can is filled, the cap, A, made in two parts, as shown with the same slightly screwed together, is inserted in the neck of the vessel until the milk fills the plug hole B. The thumbscrew, C, is then turned down, causing the upper plate of the cap to press upon a rubber ring, D (which fits in a rabbet of the lower plate), squeezing the same out

ward against the inner surface of the can, making a rigid airtight joint. The plug, E, is subsequently screwt d down into the milk, forcing it into every interstice of the can, and so preventing its shaking about during carriage. Patented February 24, 1874.

Two thousand millions of dolle s ($\$ 2000,000,000$), in round numbers, was the total existin debt of the United States on November 1, 1874, according to the report of the Socretary f the Treasury. The debt is being steadily reduced.

Air Pressure in Wind instruments.

Dr. W. H. Stone, in a paper bsfore the Pbysical Suciety London, describas some experiments on the wind pres sure in the human lungs during parformanc $\begin{gathered}\text { on wind instra- }\end{gathered}$ ments. About six feet of water or 13 Jbs . pressure per square inch was the ordinary maximum when a emall tube was inserted between the lips. When the lips were supported by a capped mouthpiece, as in brass instrumente, a much greater pressurecould be sustained, and lip muscles invariably gave way long before the expiratory power of the thoracic muscles was exhausted. The following pressures were sufficient to produce an average orchestral tone: The obse requires an air pressure of from 5 to 10 ounces per equare incb, the clarinet 8 to 14 ounces, bsssoon 7 to 14 ounces, horn $2 \frac{1}{2}$ to 5 ounces cornet 5 to 18 ounces, trum pet 7 to 18 onnces euphonium $1 \frac{1}{2}$ to 23 ounces, bombardone $1 \frac{1}{\frac{1}{2}}$ to 20 ounces.
It will be noticed that the clarinet in this, as in some other respects, differs from its kindred instruments, and also that most of the pressures are amall, not exceeding or indeed attaixing the pressure of a fit of sneezing or of coughing. Th y are, therefore, very unlikely to injurethe lunge, or to produce the em physema erroneously attributed to them.

Vanilline.

At a recent meeting of the Paris Academy of Sciences, Dr. W. A. Hofmann announced that his two studente, MM Tiemann and Haarmann, who had ob'ained vanilline (the aromatic principle of the vanilla bean) from pine aap, propose to manufacture this substance on a large scale. The sap of a tree of mediam hight gives vanilline to the value of $\$ 20$, and the wood is not injured by the extraction of the sap This will be the second vegetable product manufactured by purely chemical methods.

IMPROVED HATCHET

We illustrate a new batchet which is provided with a clew ttachment, by the aid of which nails can be witbdrawn from the wood in a perfectly straight condition. To perform this operation, the claw of the tool is placed nsar the head of the nail, while the handle is held perpendicularly.

n pressing down on the later, two doge, A, pivoted, as shown, to the hatchet, enter the wood surface and thereby force the claw uoder the bead of the nail. By further pressure the handle becomes a lever with the fulcrum formed by the projecting piece, B, so that the claw is carried straight pward, thus pulling the nail in that direction.
Patented May 12, 1874. Mr. James A. Wisner, of East Saginaw, Mich., is the inventor.

Watered Butter

In the course of some investigations by Professors Adgell and Hehner, England, out of analyses of fifteen samples of butter which were determined by them, twelve of the samples, which were undoubtedly grod butter, contained 6 to 13 per cent of water; the astonishing quantity of 433 per cent was found in one sample from London,or an excess of about thirty.two per cent of water, for which Londoners pay from 32 to 48 cents per pound. Another butter from the same place had 24 per cent,these high ratios being due to the fact that the butter had been treated with milk. On the other hand, a sample purchased in Ventnor was found to contain under 4 per cent of water, and according to the authors it contained 50 per cent of foreign fat. The authors also found that genuine butter spread out on sheets of paper and expored for a week to the air in the laboratory became, so far as the senses could judge, indistirguishable from tallow. With regard to the microscopic examination of butter, Mersrs. Angell and Hehner think that Dr. Campbell Brown said too much when he declared that with polarized light it was the most reliable means of distinguishing pure butter from that containing other fats.

If the heat which a human being gives off in twenty-four hours could, consistently with life, be retained witbin the body, its temperaiure would, at the end of that time, have reached $185^{\circ} \mathrm{Fah}$., a temperature above the point of coagu lation of albumen, and high enough to cook the tissues.

THE LATE JOHN LAIRD

One by one the founders of modern engineering science pass a way. We chronicled the week before last(page 309 of our current volume) the death of Mr. John Laird, ove of the originatore and, for many years, the head of one of the largest iron shipbuilding works in the world, and a prominent figure in the industrial arts at a time when iron vessels were merely matters of theory; and we publish herewith an excellent likeners of this well known man. Birkenhead, the scone of the labors and prosperity of the Laird family ies on the laft bant of the estuary of the Mersey, immedi ately opposite Liverpool, and is renowned far its many im portant industries and its magnificent inclosed docke, cut out of the solid rock, which there forms a surface stratum o immense thickness. In 1841, Wil iam Laird, father of the lately deceased, commenced the shipbuilding and iron worke and lent his aid to establish many of the important steam bip lines which have their headquarters in Liverpool an Birkenhead. In the year 1829, John Laird constructed an iron ship, which there is good reason to bs lieve was the first ever built. She was a 60 tun vessel, built for inland navigation; and although many dif ficuliea, owing to the novelty of the tark, beset the buildere, she wa framed and plated very similarly to the largest and best ocean stean sbipe of the present day. In 1834 Mr. Laird built a paddle steamship for the late G. B. Lamar, who re cently died in this city; she was called the John Randolph, and the Practical Magazine asserts that she was the firet iron vessel ever seen on American waters. She was shippsd piecemeal from Liverpool, and set up on the Sa vannah River.
In the limits of a newepaper ar ticle, it is hardly possible to detail the development of the great indus try of Birkenhead; suftice it to asy that the firm of John Laird \& Co. have, to this date, possersed one of the largest establiahments for the special purpose ever organized. Be twern the years 1829 and 1873 , they turned out 429 steamers, of 229,662 tuns builders' measurement, driven by evgines amounting to 39,790 horse power. Half these engines were manufactured by Mesera. Laird \& Co., as well as engines to the amount of 25,143 horse power, fit ted in vessels constructed by othe builders.

Mr. John Laird's administration of these large operations is noticea ble in many ways. He was, as early as the year 1839, and previously urging the Britioh Admiralty to baild iron ships only; and his iron eteamers of that date became re nowned for speed and durability He built a vessel of 446 tuns bur then, which drew only two feet of water, and $h \in$ obłained an advan tage over many rivals by building in three weeks, a gunboat for use in the Russian war. The splendid fast steamers plying between Holyhead and Dublin are his work; and, in deed, there is no quarter of the globe where his handiwork is not represented. The building of the notorious Alabama, for a Liverpool firm of merchants who were the financial agents of the South during our late war, and ker depredations upon our commerce during the first few months of the rebellion (for which the English Government has already paid ovtr fifteen million dollars for damages to our shipping), have given the Laird establishment great notoriety in this country. The Alabama was built after Mr. John Laird's retirement from business.

Tie works of this firm cover 20 acres of ground, and have held the chief position in Birkenhead since 1824. In 1831, the population numbered only 2,569 ; it is now over 70,000. Three thousand skilled artisans are employed by Laird \& Co., and, to their credit may it be said, the firm have made many liberal arrangements for the moral and social wellbeing of their employees.
John Laird retired from business in 1861, when B:rkenhead became a Parliamentary borougb, and was elected member for the town, retaining the seat to the day of his death. Since his withdrawal, the works have been carried on by his three sons.

Several years since a epontaneous explosion took place in a rock quarry near Nicholasville, Ky. The Lexington Grzette says that recently these explosions have begun again, two very violent ones having occurred, rending the rock in ali directions and throwing up a vast amount of débris. The people of the neighborhood are very much exercised in reference to these unaccountable proceedings. The explosions are described as so violent that, if one should occur under a house, it would hoist it and its contents like a veritable torpedo.

The Great Suspension Bridge between New York and Brooklyn.
The engineers of the Brooklyn Bridge have prepared plans and specifications of the massive iron saddles upon which the ables are to rest, and bids for their conetruction will soon becalled for. The saddles, four in number, will each have for a foundation a solid plate of iron, 16 feet long, 8 feet wide, and $1 \frac{1}{2}$ inches thick. The plates are to be provided with two flanges, which will be imbedded in the solid masonry of the tower. But in order to provide for the contraction and expansion of the enormous mass of metal in the cables, fortythree iron rollers, $3 \frac{1}{2}$ inches in diameter, will be inserted in a groove between the saddles and the saddle plates. The saddles will then be enabled to move backward and forward, and accommodate themrelves to the strain of the cables which is liable to differ in intensity according to changes of the temperature. Each saddle will weigh about $25,000 \mathrm{lbs}$. and will contain at itz apex a rounded groove $19 \frac{1}{2}$ inches wide,

THE LATE JOHN LAIRD.
througa which the cable will find an exit. Each cable will be composed of more than 6,000 wires, and will sustain nearly 1,000 tuns. The stay cables will bear a portion of the weight, and it is computed that the entire structure be tween the spans will weigh about 5,000 tuns. It is predicted that the bridge will be completed in four years.

Car Brakes.

A series of experiments were recently made by the Bal. timore and Ohio Railroad Company to test an improvement made by Mr. Loughridge in car brakes. The objgct was to determine in what time and distance a single car cou'd be stopped at high spsed in comparison with the old system where the hand brakes are used, which was determined by drawing the coupling pin and separating two cars from the train. The results were that, when the pin was pulled and the brakeman signaled to apply the brakes, the car with the new system was stopped when running at a speed of forty eight miles an hour within a distance of 550 feet, and within $13 \frac{1}{2}$ eeconds time, while with the other car it required 1,255 feet distance. Several stops were made, which showed grea power and a remarkable uniformity of action in the new brake. Mr. Lougbridge claims this as the shortest distance in which a car has ever been stopped with hand power, as some two hundred feet were required to fully apply the power with a brakeman, and that with this improvementthe effec tiveness of the air brake will be proportionately increased

Mediæval Superstition.

The increased longevity of later times is less owing to im proved therapeutics than improved hygiene. Dr. Lyon Play fair says, in a late paper read at Glasgow: When the Egyp
tian, Greek, and Roman civilizations expired, with their baths and divine maxims about ablutions and purifications, dirt reigned for a thousand years. Not a man or woman in Europe ever took a bath; hence the spotted plagues, the black deaths, the sweating sicknesses, the dancing manias, the mewing manias, and biting manias that ravaged the people, and cut off, in the middle ages, one fourth of the entira population. Religion came to the aid of dirt ; the more filthy a saint was, the more saintly he was considered. Sume of the bermits never changed their clothes, and only combed their hair once a year. St. Anthony never washed his feet, and St. Thomas à Bocket's under garments acquired an additional sanctity from the vermin they contained. Nervous diseases, the result of superstition, were frequent, and often attributed to demons.

The Camacho Electro-Motor.
Soveral scientific men, at Hevana, have been appointed to examine the electro-magnetic engine invented by J. S Camacho, and to report on its ad vantages for industrial purposesin general, and especislly as motive power. So says the Revista de Telégrafos. In the Camacho elec tro-magret each limb is formed of four hollow concentric iron cylinders, the inner one half an inch in thickness, and the tbree remaioing on9 quarter inch. The interior diameters of the tubes are, respec tively, $2,3,4$, and 5 inches. Each of them is surrounded with a coil of copper wire, covered with cotton, and is one eighth inch in section, forming, on the three inrer tubes, two complete layers with 180 turns, and on the outer tube seven layer with 630 turns.
The copper wire on each tube is coiled in thesame direction, passing at its ends across the armature of the magnet, and uniting them, therefore, in the natural order, so as to form a single conductor through which the current from the battery may travel, magnetizing each tube, and endowing them all with magnetism of an equal nature. The length of the limbs of the mag. net is 8 inches, the weight 77 ibs. and that of the copper wire 47 lbs. with a total length of $2,600 \mathrm{feet}$. Repeated experiments have shown that this magnet requires the cur rent produced by seven bichromate of po'assa elemente, and its power of attraction at a distance of one twelfth of an inch is more than 1,250 lbs An more than the ordinary construction, of equal exterior diameter and plaçd in the same conditions, is only able to sup port 25 lbs., a weight 50 times smaller.
Repeated experiments of physi cists, as ϵ minent and well versed in electro-magnetism as Do la Rive have shown that the main diff culty which has opposed the induptrial application of the electro magnetic force has been that bith erto it has proved from 25 to 30 times dearer than that of atsam. If therefore, M. Camacho has succeed ed in obtaining electro-magnets so powerful, the following proposition cannot be provounced too venturesome: "The new electro-magnets offer to indus try a source of power much cheaper than animal labor, and capable of immediate application to urban railways. Tbe same power is further destined, at no remote epoch, to replace advantageously that of stcam,"
The report is signed by D Francisco Clerch, Professor of Physice and Chemistry at the College of Guanabacoa; D. En. de Aranlave, Inspector General of Telegraphs for Cuba; D Antonio de Molina, Engineer in Chief on the staff of the roads, canals, and harbors, and of public works; and D. Al berto de Castro, Civil Engineer.

Red Wall Paper Dangers

To the dangers due to the arsenic entering into the pig ment used in staining green wall paper, must now be added others produced by coralline dye employed in the coloring of red hangings. It appears that the poisonous symptoms (extending to acute eruptions of the body, when under garments thus dyed are worn, and to eye diseases in papered rooms) are owing not directly to the coralline, sinco recent experiments have proved the substance to be harmless, but to an arsenical mordant used to fix it. This last acts as a poison, both topically upon the skin, through contact with garments, and also by its dust and vapors, disengaged from the stuffs which it colore.
Professor Schimper has discovered a forsil plant in protogine, a rock hitherto considered as of igneous origin and found in the form of erratic blocks in the sides of Mon B'anc. The plant is of aquatic nature, and hence the aque ous origin of the rock is rendered probable.

THE FAIR OF THE AMERICAN INSTITUTE.
The closing days of the Fair have been marked by still greater throngs of visitors. Indeed, we doubt whether any previous exbibition during late years has met with so large a share of popular appreciation, and certainly none has more richly deserved the same. As a consequence, we hear from exhibitors on all sides self.gratulatory remarks as to the benefits gained. One manufacturer informs us that he has received orders for forty-five of his engines; another traces a large increase in his sales to his representation at the Fair; a company in need of working capital have negotiations well advanced for the same, simply through presenting their products under working conditions; and so on through a number of instances, all tending to show the value of such exhi bitions, when rendered really attractive to the public as bitions, when rendered really attractive to the public
means of bringing together the seller and the buyer.

To the careful student of the gradual growth and establishment of new national industries, there are many evidences of progress which cannot but be gratifying. Two instances occur to us : the fine porcelain and elaborate paper hangings, manufactured respectively by the Union Porcelain Works, of Greenpoint, and Messrs. Beck \& Company, of this city. The porcelain will, in delicacy of make and tasteful ornamentation, compare favorably with the best produced abroad. The wall paper presents a series of embossed, gilded, and colored designs, equal in every respect to those of the finest imported. We notice also fine collections of bronzes and chandeliers, also a variety of philosophical, dental, and medical instruments, the workmanship of which it seems hardly possible to excel.
There is a slight difference between swill or sugarhouse refuse and clear, bright honey, and yet the bees contrive to est of buckwheat fields. A neat hive at the Fair contains the comb, insects and all, and the visitor can see for himself that the neglected sweets of New York produce a by n means inferior article.
The Blake stone crusher, a machine which literally chew stone into fragments with a rapidity exceeding that to be found in the geological investigations of a whole regiment of convicts, is in full operation. It has just gained another medal-this time at Cincinnati. Snow's water wheel governor is also exhibited in motion. This device (which we illustrated on page 182 of our current volume), when the water is drawn down to a given point, automatically closes the gate so as to allow the water to regain the lost head, and when at the available point, of itself resumes its natural ac tion. Hall's universal emery grinder is a tool which will recommend itself to mechanics, on the score of handiness, if of nothing else. It is an emery wheel, arranged at the extremi ty of a long arm and actuated by elastic belts. By means of counterpoises and suitable attachments of the arm, the wheel can be carried to any point within the radius of the latter, turned upside down, carried to the floor or high in the air, and, when let go, remains in convenient position to be eadily grasped.
Messrs. Merrill \& Sons' drop hammer has been in operation,forging small articles, the metal being heated in a small portable forge near by. Phillips' corn husker deserves mention as an excellent machine of its class. The stalks, with the ears adhering, are fed in at one end, meeting toothed rollers and other devices which tear off the ear, husk it, and deliver it clean, on an endless band, while the stalk, thor oughly crushed, is thrown out beneath.
Stiles' patent hydrostatic mercury pressure gage is a nov elty on which we have heard much favorable comment. It principle is simply the counterpoising, weighing, and indicating the steam pressure by means of a low mercury colume. The construction is quite simple, and there are no springs, levers, or other complicated mechanism.

The Value of Fresh Air

Dr. Le Bow, of Paris, in a recent work on hygiene, speak ng of the hygiene respiration, observes that typhoid fever næmia, typhus, and dysentery are the diseases to which hose who breathe an atmosphere insufficiently renewed are predisposed. If these individuals are wounded, they are rapidly decimated by purulent infection. Of all the facts that can be cited to show the danger to human life that results from inspiring air vitiated by the products of our own espiration, especially when debilitated by disease, none is more convincing than the mortality which occurs in our when compared with that of foreign hospitals, where the system, always adopted by us, of immense wards containing many patients, has been completely abandoned. In compar ng the mortality of patients operated on during the wars of the Crimea and of the Secession, we see, from the statistics of Chénu and of Woodward, that, while the French army ost 73 per cent of all operations, the English army only lost 40 per cent, and the Federal only 34 per cent. In this case it might be objected that the English and American wounded were, as has elsewhere in this work been stated, well fed,
while the French were very badly fed. Insufficient food will always increase the bad effects of imperfect aeration and it is difficult, perhaps, to assign to each the exact part that it plays. But in the example which follows, this reaon cannot be invoked, for the patients were well cared for n time of peace, and in the most renowned hospitals.
In some statistics in which M. Lefort compared those who had suffered from the same lesion, amputation of the thigh,
he arrived at the following results, which he communicated n 1868 to the Society of Surgery
In a hospital containing 100 patients, 25 per cent died n one containing 200, 31 per cent died; in one containing

300, 37 per cent died ; in one containing 400, 40
in the hospitals of Paris, there die 74 per cent.
It thus appears that the most dangerous fields of battleare less murderous than for a wounded man to take refuge in one of the hospitals of Paris, and it may well be open to question whether any advantage they afford can counterbal ance a sojourn in these dangerous establishments. - Medica and Surgical Reporter.

co-operation.

We have recently had to call attention to several new phases of the cöoperative movement, which has done so much in many countries to induce the industrial classes to economize their means and invest their savings in mills, mines, factories, and stores. One of the largest of such as sociations (which illustrates the principle admirably, though it can scarcely be considered as a workmen's movement) is the Civil Service Supply Association, of London, England. It was begun by a few government clerks, who united to purchase their own tea by the chest and calicoes by the piece.
In six months just ended, goods to the amount of nearly $\$ 2,000,000$ were purchased by the Association; these goods were retailed at a gross profit of about 10 per cent, showing a nett result of $2 \frac{1}{2}$ per cent on the whole, after payment of expensce. But the remarkable feature about this associated trading is that these large operations sprung from and were ransacted on an original capital of $\$ 10,890$. The profit of $2 \frac{1}{2}$ per cent on $\$ 2,000,000$ is $\$ 50,000$, equivalent to more than 500 per cent on the original stock of the Association. It would be difficult to find a bstter illustration of the value of mall profits, quick returns, and prompt payments than this.

Substitutes for Rubber Insulators

Th. du Moncel examines the manner of rendering wood non-conductive-a question of some practical importance, since the only insulator free from brittleness hitherto known, suitable for the construction of electric insulators, is ebonite a substance both costly and liable, in course of time, to an fflorescence of sulphur.
Ivory and guaiacum wood, which are both relatively good conductors, become nearly non-conductive if stove dried and saturated with csrtain oily and resinous liquids, which close up the pores of the bodies in question, and prevent moisture from penetrating within. Other kinds of wood can be modified in the same manner.
Sawdust of hard wood, agglutinated with blood and submitted to a considerable pressure, so as to mold it into a solid tenacious body, like the hardened woods of M. Latry, is a good insulator for voltaic currents. After remaining six ays in a damp cellar, it showed no galvanometric deviation
Samples of wood baked and soaked in paraffin, and then xposed to moisture, were sensibly conductive.
Wood, stove-dried and soaked in different varnishes, proved lso still capable of re-absorbing moisture, and, consequently of becoming conductive. Compression diminishes the con ductivity of wood for the time being.-Chemical News.

Albumen.
Albumen is an organic compound found both in anima and vegetable substances. Its properties are best studied in he white of an egg, which is a very pure form of albumen It also abounds in the blood and chyle, and more or less in all the serous fluids in the animal body; it also exists in the sap of vegetables and in their seeds, and other edible parts. Albumen forms the starting point of animal tissues. The hief component elements of albumen are carbon, hydrogen, itrogen, and oxygen, with small proportions of sulphur and phosphorus. It is believed to be a definite chemical com pound, though the exact proportions and the rational for mula have not been definitely ascertained. Carbon forms fifty-four per cent of it, nitrogen sixteen, and sulphur two. The disagreeable smell arising from the decomposition ggs is from the generation of sulphuretted hydrogen.
Albumen is capable of existing in two states: in one of which it is soluble, in the other insoluble, in water. As soluble in water, it is found in the egg, the juice of flesh, the erum of blood, and the juice of vegetables. Soluble albumen may be converted into the insoluble form in the following ways:

1. By the application of heat.-A moderately strong soluion of albumen becomes opalescent and coagulates on being heated to about 150° Fah., but a temperature of 212° is required if the liquid is very dilute.
2. By addition of strong acids.-Nitric acid coagulates albumen perfectly, without the aid of heat. Acetic acid, however, acts differently, appearing to enter into combinaion with the albumen
3. By the action of metallic salts.-Many of the salts of the etals coagulate albumen completely. Bichloride of mercury, acetate of lead, sulphate of copper, and nitrate of silver form insoluble compounds, and the egg is therefore used as n antidote to these poisons. The white precipitate formed n mixing albumen with nitrate of silver is a chemical compound of the animal matter with protoxide of silver, and has been termed albuminate of silver. Albumen also combines with lime and baryta. When chloride of barium is used ith albumen, a white precipitate usually forms. By long eeping, albumen loses its alkaline reaction and sour and more limpid than at first. Mucous threads like
cobwebs form in it, which appear to be caused by oxidation. Ammonia added to albumen is said to preserve it for longer time, and a lump of camphor floated in the liquid has good effect. Alcohol, ether, creosote, and tannic acid likewise cause the coagulation of albumen. - Western Photographic News.

FRecent durciram aud foreign edatents.
Adolphus F. Blshop and John H. Alken, Norwalk, Conn.-The bolle contanns two air ehambers near the ends of the cyllinder, the faces of which are concentric rims. Sald chambers are connected by air tubes extending
all the way round, except in front, where the fire doors are. In a central all the way round, except in front, where the fire doors are. In a central
space is placed a furnace, above which is a smoke chamber. The furnace, space is placed a furnace, above which 1s a smoke chamber. The furnace,
air and fire tubes,'air and smoke chambers, are watertight. and the air and ir and fre tubes, arl between, around, and among them.
Frank W. Rowe, Hardwick, Vt.-A frame is placed
the rear of the draw bar, and a bar is connected wilh ittle below and in small longitudinal movement. The forward end of sald bar recelves hnged block. The forward end of the block projects a little in advance of the drawbar, and has a flange, the upper edge of which has two notches ormed in it to recelve the link, so that the link may be raised into a hori ontal position by ralsing the forward end of the block. To a lever is the free end is moved forward, the sald arm may pass in beneath the hinged block, and raise its forward end to ralse the link into a horizonta position. With the lever and frame is connected a spring, which, when the lever is released, forces the sald lever back, withdrawing the arm and Improved Animal Clipping Machine.
Warren S. Burgess, Norristown, Pa., assignor to himself and Charles P Hekings, same place.-The cutter is attached to the end of a vibrating
ever, and vibrated on the cutter plate. An air engine gives the vibrating motion to the lever. The machine is connected with the pump or comressed air reservoir by a flexible tabe, so that it may be conventently moved over the animal. By means of a fly wheel, the cutter is given a teady and regular motion, and the machine is gulded with great ease and ccuracy.

Improved Crosscut Sawing Machine.
Jefrerson Thompson, Mexico, Ind.-The saw is supported on gutdes or he ways. A cord attached to the forward end of the ways extends upward, and passes between pulleys in a stand, consisting of the two in-
clined posts. From this stand the cord extends through a plate, which adjustably attached to a back post, and thence to an adjustable arm he arm is adjusted on a circular plate, so as to arrest the downward plate. The saw is also lifted up and supported by the cord when it is not

Improved Manufacture of Glass.
Haptation of covered pots or coverings to be used in tion consists in the dinary tanks, and also in the adaptation of ordinary tanks to be worked in connection with covered pots or coverings. Sald pots or coverings are instructed with an opening at or near the bottom for the inflow of rened glass, as well as an opening at the upper part, where the glass is aso connected together, and with the tank contaning the pots, by con dults below the surface of the glass.
Oliver H. Trout, Honey Grove, Texas.-The opening plow is attached to the lower end of a standard inserted and pivoted in a slot in the rear end of the tongue. The draft strain upon the standard is sustanned by a brace arwhich 18 curved and passes through a slot in the tongue, and has a number of holes formed through its upper part to recelve a pin which
ests upon the tongue. The lower end of a forked lever recetves the aper part of the brace bar,and can be operated by the driver from his eat to raise the opening plow from the ground in passing.
Improved Cotton Tie.
Alexander A. Szabo, Houston, Texas.-This invention consists in a block arding the ends of bale wire, it having an open cross slot on each side udinally from the latter to the end of a cramping groove running longltudnally from the latter to the end of block. This enables the baling to
be effected very rapidly, while the tie is rellable under all contingencles.

Improved Grain Separator

Hermant Kurth, Milwaukee, Wis.-This invention relates to certain impurtles. It consists in the combination of a perforgted repolving cylin. purities. It consists in the combination of a perforated revolving cylin-
der with an internal oppositely rotating reel, and the relative adjustment of the two, throughfricticn wheels. Also in the combination, with the reel, of an internal and external spiral conveyer, and furthermore in the comination, with the perforate
ing over adjustable rollers.
Gproved Reel or Carriers' Aprons of Threshing Machines. George C. Dodge, Millburn, Ill.-This invention consists of a reel with a hand crank arranged at the rear of a thrashing machine, so that the carost in taking it off and packing it when the machine is to be moved from place to place, orwhen it is necessary to put it under shelter from rain and

Improved Washing Machine.
George D. Berdan, Saddle River, N. J.-Thls invention consists in the application of circular guards to the lower head of a vertical revolving
rubber having futed rollers, which act on the clothes placed between them rubber having fluted rollers, which act on the clothes placed bet ween them
and the corrugated sides of the tub. The guards are of galvanized wire, and the corrugaied sides of the tub. The guards are of galvanized wire,
and keep the clothes away from the pivot of the head, forcing them out against the sides of the tub.

Improved Ironing Table
保ached to the wall for sup porting a knuckle which has a pivot passing through a plate, and secured by a pin which allows it to revolve a quarter of a turn, and arrests its furtical pivot projecting from 1ts under side. The leg is pivoted at the oute end of the table, so as to be folded up and secured by a button. The plate dorns on its plvot to swing the table to.or from the wallw when folding up o
down, and the knuckle turns in sald plate, for shifting the table to a hort zontal or vertical plane.

Improved Grubbing Machine.
George E. Reyner, Clay, Iowa.-Power 1s applied to this device by at taching a horse to the outer end of a beam, which end is supported by a
wheel. The mechanism at the other extremity is adjusted and operates as foilows: The machine is ratsed from the ground, and a loop is droppe over the stump. A ring is then placed upon the stump, asd a wedge is driven into the top of the sald stump, which spreads it sufficiently to
fasten the ring. The ring prevents the loop from slipping off the stump and at the same time serves as a band to prevent the wedge trom spreading the lower part of the stump, so as to tighten sald loop. The knife 1 then forced into the ground five or six inches, more or less, and the hors Is driven around the stump, the knife cutting off the side roots that may be In its path. At each round the knife is forced deeper in to the ground unti all the side roots have been cut off. A hook between the knife and staple
or loop is then dropped to the ground, and is held down with the foot unt1 ir caop is then dropped to the ground, and is held down with the foot unt1 allow the stump to be ralsed from the ground.

Improved Ice Creeper.

George F. Lemon, New York city. - The upper and lower plates are cut
of soft rubber, eorrespondiag to the shape of the shank or hollow of the shoe, the upper plate belng made tapering toward the front part for fitting the curve of the shank, and producing a nearly horizontal postion of the
studded plate, whicn picjects silghtly with the points of its studs below studded plate, which pio jects silghtly with the points of its studs below
the level of the base of the heel. Both plates are riveted to a lateralstrap the level of the base of the heel. Both plates are rivetedto a latcralstrap
which in interposed between them, and applied by a buekle at the ends to the foot.

Improved Key Fastener.
Alfred W. Sperry, Wallingford, Conn.-This invention consists of a polnted shaft or arbor with a hooked-shaped part keyed thereto. A slot ted and pointed cam slides thereon for being opened and attached to the key by a plvoted lever acting on a projecting pin or stud of the cam. The
slotted cam slides in the circumferential groove of the shaft, and resists, by its steady position thereon, any attempts at pushing the shaft inward from the outside.
Willam Lenz and Robert Wittike, Glenwood, Iowa.-This grain binder is William Lenz and Robert Wittke, Glenwood, iowa.- lef at sultable in-
operated by following the reaper, taking up the gratin lefront frame of the
tervals by the same. The attendant is seated on the front tervals by the same. The attendant is seated on the front frame of the
binder, operating with his foot the lever mechanism for throwing the splder frames in and out of gear. He places the serrated clasp with one hand into the grooved jaws of the lock, places with the other hand the end of the
binding cord from the outside below the lock and up the inside over the binding cord from the outside berow she the the the end to the band spring
clasp, wind clasp, winds it around one ja wand secures then the end to the band spring
at the rear of the lock. The turning motion of the tines unwinds a suff. at the rear of the lock. The turning motion of the tines unwinds a suff. the circumference of the tines over the supporting springs of the asme,
till the turning of the thes is nearly completed. The cord has then loosely till the turning of the tines is nearly completed. The cord has then loosely
encircled the gathered grain on the tines. The toothed segments of the encircled the gathered grain on the tines. The toothed segments of the spider framesgear at this point with the spool shatt, and produce the re
winding of the cord on the spool, and the stretching of the same, to such a winding of the cord on the spool, and the stretching of the same, to such a
degree that the supporting tine springs glve way and allow the formation degree that the supporting tine springs give way and allow the formation throws the spool shaft out of gear by means of the tension springs. The
lever of the lock mechanism is engaged almost stmultaneously with the lever of the lock mechanism is engaged almost stmultaneously with the
rear extending spring of the front frame, so as to clamp the clasp into the rear extending spring of the front frame, so as to clamp the clasp into the
cord ends and cut the cord by the shears. The sheaf 18 then dropped and cord ends and cut the cord
taken up by the gatherer.
Improved Folding Seat and Table.
william Tetley, Pana, Ill.-This invention consists of fol William Tetley, Pana, Ill.-This invention consits of folding seats and the surface. The object is to provide public and other halls, market and other bulldings, with seats and tables that can be more readily disposed of

Improved Earth Auger
Don Juan Arnold, Brownville, Neb.- The improvements consist in the
Dostruction of devices for gulding the bit into proper position when lowconstruction of devices for gulding the bit into proper position when low-
ered on the shaft, and in the provision of a socket arm on the sweep which connects with the windlass geartng and causes the bit to be ralsed when a certaln predetermined depth has been ieached, and in improved means for coupling the shaft sections. There is a square lower end on the lower
section of the shaft, and on a square lower end on the bit sleeve, for consection of the shaft, and on a square lower end on the bit sleeve, for con-
necting the bit to the shaft in such a way that the said bit may be operated necting the bit to the shaf
by turning the satd shaft.

Improved Opera Chair.
Bernhard H. Koechling, New York city.-By sultable construction, when the seats are turned up, the seats and backs become vertical and parallel thrown back by angle trons, so as to considerably widen the passage in front of the chalrs, giving more room for a person to stand while another

Edward B. Light,Westfield, Mass.-The Wecter Heater

consists of a hollow hub and hollow ring, are connected with each other by radtal tubes. Any destred number of the sections may be used. Upon the outer sldes of the hollow rings of the sections are formed a number o_{f}
hollow radlal arms, which are flattened toward thetr outer ends to furnieh a large amount of radtating surface. These are provided with a horizonta a large amount of radiating surface. These are provided with a horizontal
diaphragm or parttion, extendng from thetr inner ends nearly to their
outer ends, so that, as the stream rises and enters sald arms above the dia. outer ends, so that, as the stream rises and enter
phragm, it may force the air out beneath them.
Improved Post Driver.
Ira M. Hardy, Oshkosh, Wis..-The upright guidd
hind bolster, and the bolster ts provider hind bolster, and the bolster ts provided with an adjusting brace and connected at the top to uprighte, so that they can shift laterally to the wagon. brace, by which to shift them along it for righting them when the truck stands on uneven ground. The uprights are shifted forward and backward
by an extensible brace, made of two parts, which slde along each other. by an extensible brace, made of two parts, whtch sllde along each other.
One Is toothed, to be worked by a piniton on the other, turned by a hand
crank. The rope for hotsting the hammer crank. The rope for holsting the hammer passes under a gulde pulley at
the hind axle and along to the front of the wagon, where a horse will be hitched to It for holsting the hammer.

Improved Car Coupling.
loop or clevis slides up on a hook, it will ralse the upper loop into an ereat position, so that it will be caught by an outwardly projecting ho
pivoted to the front of the car, so as to be entirely out of the way.

Improved Machine for Transmitting Power. Albert Reed, Oroville, Cal.-This invention consists of sultable wetght

 swinging, and regulating levers, which produce, when set to work, a uniform degree of motive power. By setting the operating handle in motion,the vartous parts are consecutively brought into active operation, until the final rectprocation of a single lever is obtained.

Improved Combined Scrubber and Mop. George Pirrung, Ravenswood, Ill.-This in vention consists of a mopping
contrivance attached to a handle. There is a water-recetving box and a plece of thitk flexible rubber, so contrived that, by plactng the edge of the rubber on the floor and pulling quickly along, tit will spring back from the
water box, forming an opening in to the same, through which $1 t$ will force water box, forming an opening in to the same, through which 1 t will force
the water which it gathers from the floor at its front, and then, being the water which it gathers from the floor at its front, and then, betng it , and confine the water to be removed and poured out.
Improved Wagon Body.
Frank Clemens, Ls Fayette, Ind.-Strap hooks, attached to the side
boards, hook into the eyes of an eyebolt attached to the ends of cross bars. boards, hook into the eyes of an eyebolt attached to the ends of cross bars.
The ends of the two middle cross bars connect with short bars, which serve The ends of the two midale cross bars connect with short bars, which serve end. The braces rest against the side boards, and are secured in place by
hand screws. Other arravgements are provided, so that, by removing a upon the rod as a upon the rod as a hinge, and, by
the whole bed can be taken apart.

Improved Car Coupling.

Alexander Neel, Richwood, Ohio.-The drawhead of one caris provided
with a pin, whtch is connected by an extension rod with the top of the car. A band spring of the caris bent forward and locks into a notch of the pin. when the same is rised, the pin betng readily released from the spring catch on the sliding back of the drawhead. The drawhead of the adjoining
car has the common coupling pin, but is provided with a lever rod, which car has the common coupling pin, but is provided with a lever rod, which
swings on a perforated bracket bar, and supports, by a bottem gulde loop, the coupling link in horizontal position for coupling. The top end of the
lever rod is retained in position for holding the link by a catch plece. When the link is thus held horizontally, and the coupling pin of the other drawhead ralsed, the approach of the cars produces the entering of the
link, and, by the contact of the lever rod with the drawhead, the dropping link, and, by the contact of the lever rod with the drawhead, the dropping
of the same and its swinging back over the other drawhead toward the of the same and 1 ts swinging back over the other drawhead toward the
car. The link enters then the drawhead unt1l the concussion of the draw. heads releases the ralsed pin and causes the dropping of the same.

Improved Fare Register.

Emanuel P. Loveman and Herman H. Loveman, Atlanta,Ga, - This inven. tom relatos to fare-reg'ster boxeses, which not only register, on an instide
dial plate, the number of fares taken by a car conductor, but simultaneously strike an alarm that notifies each passenger that a record of his particular fare has been made. The invention consists in novel means whereby
the conductor can make his register and strike the alarm in a more rapid and convenient manner than heretofore.

Improved Centering Device.
Willam D. Slack, Lewisburg, Pa.-This invention relates to certain im provements in centering tools. It consists in a flanged annular ring, to the ander side of which is pivoted the ends of several gripping arms. Inside
sald ring is a centrally perforated disk, which is attached to the gripping arms by links. This sald disk ts extended above the outer ring in the form of a boss or hub, in which is contalned a pointed punch, usually held up by a spiral spring and provided with a knob. Attached also to the hub ts a
radially moving leve. When sald liver ti moved the radially moving lever. When sald lever is moved, the gripping arms be-
neath clutch the shaft to be centered, and a blow upon the krob of the neath clutch the shaft to be centered, and a blow upon the krob of the
punch taps the same in the center by causing the punch to descend through

Improved Five Shovel and Tongs.

Harvey Maranville, Akron, Obio.-One arm of the tongs has a shovel end short bar. Arrangements are provided by which the shovel arm may be short bar. Arrangements are provided by which the shovel arm may be
thrown in advance of the other. While the latter is closely held thereto, making the implement into a shovel; or both arms may be brought down venly, so converting it into a tongs.

Improved Circular Saw Guide.
Calvin H. Husted and Charles H. McPherson, Southwater, Col. Ter.The guide consists of two arms and a guide plate, which latter is made to
silde transversely on an adjusting plate. A supporting roller, for the purpose of supporting the overhanging portion of the log, having its upper surface on a level with the lower surface of the log, is connected with the adjusting plate, and, by mesns of a slotted flange in which it revolves, , is
made adjustable as to hight, and may be entirely dietached from the adjusting plate and sam guide. This saw guide may be adjusted to the sa with safety when the saw is running as well as when it is at rest.

Improved Fermenting Vat.
John C. G. Hüpiel, New York city.--The object of this invention is to
provide for brewers' ice houses an Improved fermenting vat, in whtch the provide for brewers' ice houses an improved fermenting vat, in which the
beer may be exposed in large quantittes to fermentation, and kept at the eeer may be exposed in large quancties to fermentation, and kept at the
requisite temperature, without the use of fee floats. The device consists of an'open vat with vertical cooling tubes, attached securely to the bottom
for. the free circulation of the air, or the application of ice by means of a

Improved Hat Ironing Machine.

Antoene Giraux, Lonis Drovon, and Claude Sturel, Newark, N. J.-The lock for froning the brim is arranged in a large hole in the center of the
table with its lower end resting on a vertically adjustable stand, so that it table with its lower end resting on a vertically adjustable stand, so that it
can be taken out after the brim has been froned on the upper side and reversed, to fron the under side, the crown belng placed in the hold in the table. The stand for the block is adjustable, high or low, to adapt it

Improved Process of Concentrating Copper Pyrites.
Françols A. H. La Rue, Quebec, Canada.-This is a process for ellmi ing impurtites from and preparing copper pyrites for conventent transportation, by partlally reductng the previously roasted and carbonized ore
with heat until it becomes magnetic, and then passing the product through With heat until it becomes magnetic, and then passing the product through
an electro-magnetic machine, whereby the copper and tron ore are sepan electro-magnettc machine, whereb
ated from the earthy or other matter.

Improved Wagon Tongue Support.
Joseph 0 Ing side pleees, by which a fork-shaped end is produced. A center plece is interposed between the front part of the hounds, and projects, bya tongue
extension, into the forked pole end and is pivoted theretn. The center extenston, into the forked pole end and is plvoted theretn. The center under side of the front axle and fastened ereto.

Improved Check Row Attachment for Planters. lysander L. Haworth, London, Ohio.-A cross board 1s secured to the
frame of the planter, and to the end parts are ptroted two pulleys, around frame of the planter, and to the end parts are pivoted two pulleys, around
which passes a cord which is stretched across the fild. The ends are separt of the hills. To the ends of a shaft are attached arms which recelve apart of the hils. The cord, so that the same can sllde through freely, but not the knots. As each knot strikes the slotted arm, it turns the sald am to the rearward
until it can slip through the outer part of said slot. The arm 1s then again unt11 it can sllp through the outer part of sald slot. The arm is then again
carried forward by a wetghted arm also attached to the end of the shaft. To the shaft are besides attached guard arms, which prevent the cord from To the shaft are besides attached guard arms, which prevent the cord from
getting out of the slot as the knots sllp through. Suitable connection is provided from thits shaft to the dropping sllde and valve.

Improved Electric Railway Signal.
Paul Tesse, Henry Lartigue, and Plerre D. Prud'homme, Partis, France.-
This invention is a semaphoric mast, to the top of which are plpoted two large arms fulcrumed so as to hang vertically, sald arms being attached to the cranks of two similar electrical apparatus below by a traction rod
Just below these two large arms are two small ones, fulcrumed to sald separate electrical apparatus similar to the first mentioned. The whole line consists of a serles of these masts provided with arms and electrical
apparatus, sald arms betng dtsposed vertically along the mast when not in apparatus, sald arms belng ditposesed vertically along the mast when not in
use, and the electrical apparatus of the large arms of one station betng use, and the electrical apparatus of the large arms of one station befing
connected by wires with the electrical apparatus of the small arms of the second station, etc. The large arms are locked or presented horizontally
to the gaze of the englneer, mechantcally by moving a crank of the electrical apparatus. Sald metion, also, by means of a commutator, brings Into play a battery, which, by communicating with the electric apparatus
of the small arms of second station, allows them to fall hortzontally. The of the small arms of second station, allows them to fall horizontally. The
mechanical effect of sald fall, through a commutator and battery of second mechanical effect of sald fall, through a commutator and battery of second
station, sends a current back to first station, which acknowledges, upon a bell and an annunclator at first station, the recelpt of the original signa
sent from said first station. By means of this arrangement the large arms of a mast at the first station serve as a signal to an approaching train, and of a mast at the ifrst station serve as a signal to an approaching trann, and tion, of the passage of the train past the first station. After the train has reached the second station, the agent there allows the small arms of his station to fall, which mechanical action, through a commutator and bat-
tery of the second station, allows the large arm of the frst station to fall.
Sald fall, through the commutator and battery of first station, sends ano. ther current to second station, which acknowledges, by a bell and annunclator, the recetpt of original signal, and announces the fact that the large
arm of first station has fallen. This combined electrical and mechanical apparatus is situatedin fetw. This combined electrical and mechanical small one on same side of the mast being used for the trains passing up, and the other large arm and small arm on the opposite side for the trains

Dantel Kunkel, Oregron, Mo.-Thts is an Machine.
machine for which letters patent were granted to same inventor October , 1866. By suitable construction, as a disk is turned in one direction, a in will rest against sald disk and hold another pin projecting downward vertically, to take hold of the clothes and sweep them through the suds.
As the direction of the disk is changed, rollers partally revolve, the pro. of the clothes in agother place and sweep them in a another directio of the ches the suds. Mechanism is provided which keeps the clothes away
through from the center of the tub, so as to be in proper position to be moved

Improved Seed separator.

William E. Les cockle from wheat, comprising a sheet metal cylinder perforated with with akin belt as wide as the length of the cylinder surrounding it. This causes the perforations to retain the cockle, carry it up, and throw it on a descending shaking trough, hanging in the cyHnder above the wheat, to
chute the cockle out at one end. Above the cyllinder, where it 18 not cor ered by the belt, a revolving brush is arranged to brush back on the chute any grain that may stick on the perforations. The chute has a brush
one edge to brush down the wheat and leave the cockle in the hole.

Improved Shingle Block Sapper and Bolter.
Jonn F. Bassett and James Nichols, Limestone, N. Y.-This invention consists of a sector-shaped table, plvoted to and moving by friction rollers
on a truck of the usual construction. The table 1s provided with rased with a slot and segmentally cut-off side part corresponding with a saw recess of the truck. A stop pin at the bottom of the pivoted table and a
spring latch define, in connection with a check block and stop pin on the floor, the position of the table toward the saw. A pivoted arm with center pin swings in a standard of the table, and is applied to the block or a dog swings on the center pin of the arm, and serves to adjust the block for sapping and bolting.

Improved Electric Car Detaching Device.
W . Carson, High Bridge, N. Y. This invention consist
William W. Carson, High Bridge, N. Y.-This invention conslsts of a plv each car truck, and placed in electrical circuit by means of spring contacts wlth a powder charge and detaching mechanism of the drawhead. The closing of the ctrcuit, whether by the action of the lever frame on the
spring contacts when the car is thrown oft the track, or by direct action spring eontacts when the car is thrown off the track, or by direct action
from the car, gnites the powder char ge,'separates thereby the drawhead from the car, 1 gnites t
Alfred L. S. Chenot, Paris, France.-This invention
sion cylinder bearing upon tis lower end a hammer block and in a percus moving smoothly in an Incasing cylinder, which acts as a guide, and prefents any lateral motion of the percussion cylinder resulting from the trokes of the same. Inside the sald percussion cylinder is a pliston rod
bearing upon each end a piston which moves freely in the cylinder an a bearing upon each end a plston which moves freely in the cylinder an diaphragm, which, with the two pistons, divides the cylinder into thre ar ccmpartments. When the piston rod is elevated by the connecting
mechanism, a vacuum is formed in the upper and lower comparticents, ompressed plenum in the midale compartment, and the cylinder ratsed by the elasticity of the air. When the connecting mechanism drives the
piston rod down, the force of the steam, gravity, and the clasticlty of the atr combine to give a heavy, quick, and elastic blow. Improved Spring Saddle Seat.
John L. Sommerville, Maysvel, are spiral sjeringe inclined in of the tree A joint in the leather covering of the tree separates the seat from the
pommel, and is laced up with elastic cord. Strong leather supports attached to the rear portion of the saddle tree extend forward to near the jont, the forward ends of which are attached together and to the leather one end and with the leather covering of the seat at the other end, so that, when the seat 18 depressed by the wetght of the person, the pressure

Improved Car Coupling. Ifdde Granville, N. Y ., assignor

Michael J. Roach, Middle Granville, N. Y., assignor to himself and R. L. Williams, same place.-The drawhead has an adartional detachable face plate fastened to flanges, and cushioned off by packing. The approaching
drawhead strikes agalnst the face plate and carries a slide back until its dinhole is verticelly below the pinhole of the rawherd releasing thereby a pin from the silde and dropping it to couple with the link of the ordinary shape. An inclined movable plate is arranged in slde grooves of the
drawhead below, the slide plate, to protect the spring of the sliding plate from injury.
Improved Valve Coupling for Hose Branches.
James R. Higgs, Utica, N. Y. - This is an improved valve coupling for
hose branches, by which two or more streams of water may be thrown on the fre from the same main hose, and thereby the extingulshing of the pring valve sliding on a gulde tongue of the valve stem turning in suit a ble bearings.
lmproved Reservoir.
City, N. J.-This is a reser
Bennet Cohen, Jersey City, N. J.-This is a reservoir which may be attached to the water pipes in the upper stortes of butldings, so that, should
the water be cut off from below, there may be a sumfictent supply retained above for temporary purposes. The upper part is made semicircular, and back is perfectly flat, so that 1 t may be secured to the wall. In the pipe near each reservorr is a check valve, so that the upward pressure of the water in the pipes will cause the water to run continuously up through water in the pipes wincause the water to run continuously up through
the pipes and reservorrs. Each reservor 18 provided with a ventilator,
which will close automatically by means of a float valve when the reserwhich will close automatically by means of a float valve when the reser-
votr is flled. A faucet taps the water pipe between the check valve and lowest part of the reservolr, so that it may be able to carry off all the wate lowest part of the reser
contalned in the latter.

Improved Watchman's Time Detector.
Anton Meyer, with and plain paper disks substituted, on which the marks of the stations and the time are quickly printed by sultable spring devices without the
direct action of the keys on the marking parts and a bridge piece. There direct action of the keys on the marking parts and a bridge piece. There
is a rotating steel dial,which has the hour and minute subdivisions engraved in raised figures thereon, and is set in motion by a sultable clock train. on a plain paper disk, rotating with the steel dial, by means of strong band springs with steel marking plates. The last are actuated by the keys at the stations, so that one spring strikes on the steel disk at each
station for indicating the time, while the springs for marking the stations strike their corresponding numbers consecutively in the customary man ner.

Improved Wood Planing Machine.

John H. Russell, Mllwaukee, Wis.-This is an improved system of with tapering or arched backs and other diffirent shaped pleces of wood to be planed upon three or four sides at a time, and which will hold the wood to be planed firmly in place while betng operated upon.
then

Improved Rotary Steam Engine
William Haab, New York city.-The shaft is attached to a piston plate enclosed between the two parts of a cylinder, to which the plston is
secured. The abutment is given a horizontal reciprocating motion by the exhaust steam, and is flxed to one leg of a gate. On the other leg is a piston, which works in a small straight cylinder, which cylinder is conchamber. A supplementary exhaust tube is connected with the cyllinder and is for the purpose of exhausting any steam that may remain between
the piston and the abutment after the piston has passed the exhaust cylthe piston and the abutment after the piston has passed the exhaust cyl-
inder. A spiral spring on this tube throws the abutment and the small piston back, the former into the cylinder and the latter to the cylinder, at tube, in which is a main piston. The steam is admitted through and opened by tappets on the shaft striking an arm attached to the valve stem Improved Liquid Compound for Burnishing Leather Goods.
James Clausen, New York city.-This compound is prepared of ground nutgalls and extract of logwood bofled in water, Castlle soap, and glyce
tn. A few drops of the liquid are mixed with the common ink used for burniehing and finishing leather goods, the ink becoming thereby of superior blackin

Improved Molding Machine.
Otto Meyer, Kansas City, Mo.-This invention consists of a barre
saw mounted on rollers, which are in adjustable supports adapted for hifting readily to sult saws of different sizes for sawing different curves There is an adjustable work-holding table for presenting the work to the saw, by which it is designed to saw moldings to shape with less waste of
time than attends the present mode of sticking moldings. The idea is to aw out whole strips in making grooves, and in cutting out corners and the like that may be used for window stops, beads, and the like, which are
now cut into shavings. now cut into shavings.

Wusimess aud tersomat.

 The Charoe for Insertion under this nead is $\$ 1$ a Lin Bost and Ch eapest Injectors, Damper Reg. roves, 422 Vine St. Phile
 Notic \rightarrow-All the parts for making one Pat. nress Albert L.De wey, Westifeld, Mass.
 A practicicl Enqineer and Drst trman, of
good bustess capacty, wibhes a situation combing

 Address E B. Morgan. Paterson, N.J.
Engines and Boiles a Specialy- 1 st class,

 St., Pltssurra,, Pa
We want a a good Traveling Salesman for
Bat stiten and Provices. Lenign Valley Emery Wheel Company, Welsaport, Pa.
Models and light metal work. H. B. Morris, Ithaca, N. Y.
Miller, Barr, \& Parkin, Pittslurgh, Pa , have
a machine foy making steel lict ton rings tor hammer and steam engine cyllinders. Ssind for deecilption.
Econgmy and Safety-Horizontal and Up,
ght Engics, new and 24 thand 2 to 15 H.P., forall pu,

Baling Presses. J.M.Albertson,N.London,Ct, New and latest improved 25 h h. p. Hoadley
Portable. 81,550 . Forsaith © Co., Manchester, N. H. For Solid Wrought-iron Beames, etc., see ad.
vertsement. Address Union Iron Millis, Pitsourgh, Pa., for lithograph, etc.
 ${ }_{P}^{\text {Steent, and and }}$ Place, New York
Sold Low-A Book and Documents, show.
tng how to introduce Inventions. Plans and meth.

 Mann\& Co., 281 Howard St., Baltimore, Md.
Rue's "Little Giant", Injectors, Chespest
snd Best Bonler yeeder in the martbet. W. W. Chase o
 Many New Pagland Manu factories have Gas
Works. Whlch llght them at one fourth the cost of coai gas. For particulars, addreess Providence steam ano
 Steam Whistles, Valves, and Cocks. Send For Solid Emery Wher's and Machinery, Scale in Stem Boiless. In wall remore and
prevent scale tin any Steim Boller, and mate no charge until the work is found satisfactory. Geo. W. Lord, Polldaelphia, Pa
Engines 2 to 8 H.P. N.Twiss, New Haven, Ct For Sale-A valuable Patent on small ar-
ticle made of metal. M. Scott, New Brighton, Pa. First Class Tools and Tool Chests. For
descriptive circular, andreess J. T. Prate © Co, 5 . Fultor St., Net Yors. Steam and Water Gauge and Gaüz Coc
 $\$$ co.. $62 \& 64$ Gold St... New York. Send for catalogue.
Millsone Dressing Diamond Machines
Simple, eftective, economical and durabie, giving unt. Simple, eftectire, economical and durabie, giving unt.
 nara © © nurray. Irvon and
nut Sts. Phaydelpha. Pa.
nut Sts., Phuadelpha. Pa.
For the best Cotton Cans and Galvanized Fire
Fails addreess James Hill, Providence, R.. I. For small size Sceer Cutting Engine Lathes
and rill Lithes, a acress star tool Co. PIovidence M echanical Expert in Patent Cases. I. D.
 Price only three dolisrr.-The Tom Thuml
Electric Telegraph. $\&$ compact working Telegraph ap paratus, for sending messages, making magrets, the electric uggt, giving alarms, and varlous other purposes. Can be put In operation by any lad. Includes battery key and wires. Neatly packed and sent to all parts of
the world on recelpt of price. F. C. Beach $\&$ Co. 26 :
 Manngue, House \& Co, 69 Duane St, N. Y Endless or in in iece, for Priters, Engravers, Polishers
Pisno Forte Masera, Paper Makers, Calico Printers Puno Forte Masera, Paper Makers, Cailico Prinetrs for 11 ninds of 1truxds. sample ent on application.

ment. Adrew's Patent., Instre page.
Temples \& Oilcans. Draper, Hopedale, Mass All Fruit-can Tools,H erracute,Bridgeton,N.J,

IIfdraulic Presses and Jacks, new and se
cona baad.Lathes end Machinery tor Pollennng and Buf ang Mealis. E. Lyon 7 Grand street, Nef York.
Deanes Patent Steam Pump-for all pur ooes-strictly frst clase and rellable. Send for circular. Forges-(Fan Blast), Portable and Station
ry.
Keystone Portabie Forre Co, Phladilphla, Pa The "Scientific American" Office, New York,
is nited with the Minlature Electric Telegraph. By
 of the estaplshment. Cheap and effective splendid Tor shops, oftices, iwellings. Works for any distance,
Price 55 . F. C. Beach \& Co., 263 Brosd way, New Yoris Price t5. F. C. Beach \& Co., 263 Broadway, N
Yakers. Send for tree illuatrated Catalogue.
Brown's Coalyard Quarry \& Contractor's Ap
aratus toi holsting and conveying muierale by ron For Surface Planers, small size and for oox Corver Grooving Machines, send to A. Davis, Low Lasthes, Planers, Prills, Milling and Index
Hachine. Geo.s. Lncoln\& Co., lartord, Conn For best Presses, Dies and Fruit Can Tools
Eames Patent Molding Machines for Metal
 Smail Portable Engines, 2 to 12 H.P. Send The Improved Hoadley Cut-of Engine-The he Uotred states. Send tor circular. W. L . Chase $\&$ Peck's Patent Drop Press. For circulars,
ddrees Milo, Peck \& Co..New Haven, Conn Smail Tools and Gear Wheels for Models. Portable Engines, new and rebuilt 2 d hand Oois. I. . . Shearman, 45 Cortlandt St. New York.
 Johr son's Universal Lathe Chuck. Address
 Buy Boult's Paneling, Moulding, and Dove
allug Machne. Send for otrcular and ample of work. 3. C. Mach's \mathbf{c} Co.. Battle Creez, M1ch.. Bos 227.
The New Half Dollar and other Steam En-

E. A. C. will find a rule for proportion ne pulleys on p. 180, vol. $26-\mathrm{H}$. G. R. will find parti 6i, vol. 29.-G. K. TC should consult a phypler on p , vol. 24. M. M. will tind directions for gild ing mir

 18-P. H. can case-harden from by the process de.
 sir snake.-T. U. S. Will find full directions for
ouzing on brass on p. 331 vol.29.- E. P. M. and 1. WIll In fidirection. for bronzing on brase on p 32,

 erproon cotton cloth by the process described on p.
vol. 8 . and
vevent milde 00. vol. 50 , and prevent mildew by the rectpe on p. 1388
vol.27.-G. R J. snd C. G.J.s rules for tioding thera-
 3. E will find full directions for proportioning gears on

 If preserviog flo wers.
hem, see p. 288 , vol. 31 .
(1) A. H. D. ssys: A friend of mine has reie feed water of the boller ts heated by itve steam ta. ben from the dome on the boiler. The manufacturer
recomm ends hiw, for econom9's sake, to heat the feea
 Is more economical an
vith the exhaust steam.
 nod at both ends, at 10.0 Fah. What will be the contrac
on at 0° ? Will the gring return toits origingllength at 100 , provided the fastentngs have meanwhile been reak if cooled under the given conditions. 2 . Will
or stell wire deterlorate from constant contact wth rub.
ber, pure or vulcanized?
What remedy, 19 any, can be ir, pure or vulcanized? What remedy, if any, can be
sed to prevent such deterioration?
A. We think not ion.
(3) G. asks: 1. Has there ever been a loco. notve constructed with only one cylloder? 4. Wedo
oot know of any. 2 . Could a locomotive be worbed oot know of any. .2. Could a locomotive be wotked
vithonly one cylidider, and would there be arything objectionable in such construction? A. A locom otive fact that tit is done occasionally, in case of accldent The princtipal obiection to a sily gle cylinder engine is
he difficulty of etarting and reversing.
(1)
 What ts the proper variation of the magretic needile at
this point? 1 there a general rule by which I can find the variation of the needie at any poont, knowing the 1attudu and longitude? On what degree of longitude
is the vartation 0 ? A. The variation must be found by is the variation 0 ? A. The varlation must be fonnd y
observation. It is not constant at any one place, so that the agoonc lines, or lines of no variation, are con. hually changlige their position
 purposes, costlng from 83.50 to 85 per tun. We can ge
Black or fine coal tor about $\$ 250$ per tux. We have tried several times to use slack, nnd as many times bav to tre concluslon that we do not know how to con struct our furnaces and manageo our tirese ann we we woul
be pleased to have pour views on the question. be pleased to have your views on the question. A.
Such coal reaures astrong draft, atd grate bars wit Such cosirequires a a strong draft, atd grate bars wh.
small interstices. Steam is sometimes admitteá be neath the ash plt. There are several patented device
(6) G. H. G. \& S. S. M. C. Say: 1 . We wish to
conduct steam from boiler to engine, distance 350 teet. What wonld be the loss per ceut of tuelby the conden
sallon of steam tin travelirg that distance, and what sation of steam in traveling that distance, and wha
sized pipe would be required to supply a 30 obrse no we sized pipe would be required to supply as. borsent able if the pipe was well covered and trapped. Use aipe 31nches ind dameter. . What would be the cost
pop an arp pump suffecently large to furnish 30 horse
of an of an air pump sumficiently large to furnish 30 horse
power? A. Four thousand dollags. 3 Would addtition al distance require additional pumps? A. No, for a
 ho w much of either? Should it be set so that the in-
stant it passes the center the port will open? end of trooke. There is no eneneal rule for the best
amount of lap. 5. Wth what would you broze the bell of a steam whstile made of thin sheet copper?
is not probable that you can repair it successfully.
of (7) W. S. H. says: I wish to make a m คdel

 orobably answer this purpose better than any manufacHared comoound
 detired object. What will cause the partuples to ad
nere? A. We think that the prope deree here? A. We think that the proper
would acomplis the destred result
 near the floor, passing tyside part titions,and debouchng
at the root. The house is warmed by a furnace. 1 am told by a bullder that the dratt in these tubes will be as 1 lkely to be down as up, andithat the only proper way
is to have the tubes terminate in a chimney. I can see that he mas be correct so long as the temperature in. would not a very sligntadatition of heat to the air ot room cause a current to pass up the ventilator?
Yes. You are correct; expertence proves that yo
(10) E. asks: My driving pulley is 6 feet
 ardee it traveles 2, cis feet per minute, and 18 141 feet
long. How muca horse poweram I using? A. You do not send enough dara. The distance between the cen
 settilig the questlon would be tomake a test, if the
matter isof any mportance. (11) E. H. asks. 1 . What should be the
st ength of a nickel solution? Do the salts merely requtre to be dissolved in water, or is cyantide required? the double eullphate of ammonta and nickel), 100 parts of
 wanized iron, particuariy that used for making 3. What ts the latest and best work on electro-metal.
lurgy? A. Roseleur's " Gavvanoplastic Mantoulation," 1urey? A. Roseleur's' " Gatvanoplastic nanioulation."
4. Is there any way of coating cast Iron goods, such as door k nobs, hollo w and made of malleable trov, bo as and nickel did not do tu all caeee, as the iron is porous,
and electro-plating will not all up allt he small holes.
(12) B. H. asks: What is the metal used

 zinc with a little mercury, or zinc alone. Altele pot as
 ressure to the square inch, what will be is temper
(14) R. T. asks: Will a thin steel spring rocess of tinnong? A. No.
(15) 0 . K. asks: What will be the work-
ghorse po wer of a boiler whose dimensions are $22 / 2$

(16) J. J. T. says: 1. I have a double chim-
(16) J. J. T. Says: 1.1 have a double chim rr, and the smoke will go up the ch'mney avd down the othrintino my room; at other unes the draft is
townboth chimneys. What ts the d'fllculty? A.
 arankemene ion her side of the romm. 2. Where is the
better on the ot
oroper place to put regifters for ventllating a oom, at
 With Bome exceptions. . Does one chimney or ventil.
ator interfere with the other in the same room? A .
(17) J. S asks: Is the idea that powerfu team practcel ? A. The change would not be econo
(18)
(18) A. V. asks: Has the low pressure oressure? A. If the pressure is only 20 lbs, it must act
upon 4 times as much area of piston as steam of 80 lbs pressure, to produce the same effect, ther things being
(19) C. M. Q. and others.- The most im. scribeo, in many cases with appropriate illustrations,
In theese columns.
(20) W. H. asks: When, in painting walls
wo more coas ory spotted,
it cansed by the un: orous than orhere, thus productingan unequal absorp trion of color? A. It is most probably caused by a with the lime in some places than in others he best prepaation for coating the walls prior to psinting, to obtaln an even glos8? A. It18 usaal to re.

 cation sbould be the paitot. 3.1 calcicimintog walls tha
 will notstop the suction. What will? A. A glue size ing, the walls should be first thoroughly washed; whet of the proper consistence, the calcimining will frieh
 oxes, so adjusting them, and then putting up the Are there any silde valve engtines that can be re Inave a spygla
Inave a spyglass with two glases. The large gliss is
ht; would it not be betier to erind it to a convx Yes, If it is properi) done. We do not thid k, however

 the arr in the case in motion nnteaca of forcing it out,",
How should a aiower be made soas to force out th tnstead of stmply giving it motion? A. It is a good
plan to arrange the fave in the case so that the alr ts silgbtly compresed ster re ching tue discharge opetiogs.
(23) S. asks: If it be true that a candle
red out of a a hot gun will go through a board what

 the "wicked" part of the candle were not strong Which way would a compaass potnt if it were placedex (24i) F. S. Jr. says: 1. How long is a Ger10ng mile, 10,125 sards; German geogra phical mile $, 8,100$
 English feet; Auscrian foot 181.0037128 Engilh teet:
Gtrman foot 0.97 Eoglish feet. (25) I. P. McD. asks: 1 . Which has the
moie resistance to e electricity, a rely or a a ounder, and why? A. Commonly speaking, the rilly, becanse of
the greater number of courolutions of wite in its coile.
 that of the ordinary relay. 2. Whil electrictry separate
tin any degree, or travel in two cilferent directions? A .
 water a cooductor or non-conductor? A. Water is a conductor of electrictity alth bogh a poor one. 5 . Will
t form a good ground wre when not connected dreet It with the eround or earth? A. No. 6. Have the pores In any substance anythting to do with its poxer or
conducting electricts?
A. Conductivty
has been nown to vary with the density of metal conductors.
Do you thing telegraphing a good business to follors?
(26) R. O. S. asks: How much nitrate of acid? A. The nitrate of siver will welgh a litile more
 re-crystallized? A. You would probably have rove to. . Io what sort of a vesse would the fnsing
have to bedone? A. Fuse coin is probabily made of an alloy of gold. The inscrip.
ton signolies Jotn V, King oit Petalg. (untranslatable ton signifes Jotnn V, King of Petalg. (un ranslatable
abtrevistion). "In hoc signo vinces ", means "by this
(27) N. A. W. sys: My housekeeper went
the dark for some sugr, and came ruunng back, sav.
 oolly. wens for them. The frightened houseseeper
 It is well bnown that, when two pieces of sugar are It is well known that, when two pleces of sugar are
rubb at together in the dark, a sort of eiectrical phos. ohorescence may be observed, due probably to the frre-.
cion of the particles. Atteniticn has been calldd to it
(28) G. C. W. asks: How do astronomers sun's distance is calcuated in various wsye, as by ob-
serving the time tt takes for light to travel from the
 arallax.

1. What are meteors composed of? A.Price cipally of
When
 1. Whith has the strongest attraction, on electro-magnet Wre weighing one half pouna,or one of the same size containing one hundred feet of conper wire welghing
one balf pound? A . The latter. 2. What welight will n elect o.riagnet, containing 50 feet of copper wire,
Vo. 22, with one halt toch core, with one cellof Bun. en's battery, hold ap? A. We can glve you no general ule for determining magnetic energy in this marner.

What is the length of the steamshlp Great Fosterm? What is the izie of her ensine cylinders, and how many uns of coal dids she consume in 24 hours? A. Length
692 feet \boldsymbol{t} cyllinders of padile wheel englnes 74 inches diameter by 14 feet stroke; cylliders of screw engines

 f englne
$\xlongequal{(35) \text { W.O. says: My engine appeared to }}$

 liagrams extiblt an unusual amount of back pressure tuanty of taking a dagram when running light, it is

 at the end of stroke, the steain belog cut off sharoly.
The for ward pressure gradualy runs do wi untul), durtog he latter half of stroke, there ts a potnt where the back pressure overobalances the forward pressure (armely, the pressure above the matn valve, or between
piston and cut-oft valve), wh'ch forces the maln valve Mo and allows the steam to escape during the latter
unalf
haf stroke the engine being carried over by the mo-
 The steam is regulated by a varitable cut-off governor,
which retleves the malin valve if undue pressure. Am I correct? A. Your expla ation seems plausible sc cording to the dhagrams, but we do not get a very clear Idea of the arrangement of the valves. If the valve
11ttg on account of too much cushion, change it. The lift on account of 100 much cushion, change 1t. The
fryt thing to determine, however, 1 s whetber or not the Valves are tif ht; as 11418 only when this matteris settled
that the enginetr can properly begin to theorize about (36) R. M. says: I have been round Cape
Hoin and the Cape or Good Hope severy1 1imes ana have been round tne glovetwio in a salling sulo, but

 more, then come down and lana the Chtra mailin New
York. I belleve this can be done and will be done yet. A. We do not understand what you mean bs the curren of air that goes round with the earth, unless it its the
atmosphere; in which case, we do not think that jou
 here to the kethe epout, and thally the spont would
suapend the whove weight of the tin cup. Upon further tavestigation, it was found that any nall in the house plain to A. If the statement se rellable, the fact that
overy particle of tron sonut the premses was found to every particle of iron sbout the premises was found to
be temporarily polarized is a fine illustration of the power of the tnduced currents llable to be gen
on the instant of the passage of the discharge.
(38) W. M. W. asks: How can I prepare
 with 5 percent of lipsed oll, snd run into cakes for ase. When needed, mel

 kido dof phos ohorus should 1 use ? A. Ase a larger pro-

(40) H. C. W. Eays. In the SCIENTIFIC ter will produce a gallon of steam if confind in the
gume epace. Ithluk you bave made a matake as Ido
 remain water. A Have you any auth ority for your
opminton? 2 . Please glve me a rule for find d'ng the stzz is of the pulley in the head of the lathe, to fita fy wheel, ${ }^{\text {so that the b }}$ p. 88 , pol. 22 .
(41) P. H. asks: Is there any method of
hardenil steel so inat it will drill a atile or hardened steele A. Heat the steel to cherry red and quench it
(42) R. R. asks: 1. What is the best way to mend an overshoe that is all rubber? How can
mend one that is ruberer and cloth? How can I mend a leather shoe wirtout seming a patch on, using ce
meat prepared for the purpoeet? A. A solution of pure gum rubber in naptha will answer thess pur.
poses.
2 cut the gum of an old o oershoe be de disso ved in any way to make it usefuia as a ce not think 10 would pay you to try the experiment. egg, with a wre tastenedin it to be dipped tin cosi o ol
to kindle free; can you tell me bow to make tr Ordinary potter's clay is mixed with sulphur or othe
 and thor oughty burned. It will then be found to be
eecceediogly porous and will then absorb, by capillary
ent attraction, a large quantity of oill.
Is there any kind of preparation that will make any
Sind of goods waterproof without injurig the How sit prepared and used? A . Ten pounds of alum and a simllar quantlty of acetate of lead are dissolved tn
sufflicient warm water, and the mixture allowed to down. The clear folution, acetate of alumtna, poured off, and mized with water in whlch difsolved
 proot are stceped in th's mixture for twelve hours, ar.
ter wh'ch they are dried and subjected to presesure. ter which
This process
moth
(43) J. V. R. asks:
iod What is carbolate of
in
. pound, kno $\begin{aligned} \text { n as such to } \\ \text { chemists. }\end{aligned}$
(44) J. H. M. says. 1 . In looking over the
back numbers of the scientiric Amprican. I find a question by W. B. N. about the rack ana pintcnand ec
ceotric set worke for fawing lumber. Thee appeare to me tee greatest sifference imaftnable bet wepen the
tystems In the systems. In the firt plaee, the rack and pinion block
has a unitorm motion throushout the nole of tise movemft; the firt and last 1.52 of an inch is made
at prectsely the same speed as any of the intermedate
por
 the lever. There fore. In order 10 eet correctls and not
throw a small log too far a a wy itom the knee, you are exact notint. If not, your luw ber will be too thick or

 Hotlon, so that 1 ts not necesary that the lever should
ne moved to any fled polnt In order to mave ebr. With the eecentric bleck sou have only to go
bhough with a certatn manpulation to ge cert hrough with a certain manipulation to get certaln ard ccurate nocratent as compared with vary twother. inches in one one
notber ad
nanement wards or forwards, the knee always moves ahead rherefore you can set as quick as sou can with the rac add pinton, for you have only to go throgg with the
same process. A. There are vartous devices for opera. tigg the rack and plnton set work , also for operating he eccentric set works. By a suddeu or qu'ck jerk on
he lever, ett tara was from the knee unless it tis fastened toit. Ther
the
 er. The only liability, then, ts to the extent of slack
vhich may exist in the work ing patis. 2. In our mill we have a cog wheel and pition to drive 5 gangs and arge circular saws. This gear is oriven by two 18 x : nch cylinders. The cos wheel 1810 feet dis meter with
 Or sbatt 16 iu ceeses, length of hub 12 tinches. The co of se d wheel are made of maple, well fitted and driven his wheel fastened win dovetailed kess. The rim of we took tro wrought rron rings, ,1/2 inctees square, and out them on hot, to shrink the rim toge woul

 the extent of preesiure and stize of wheel, cauiling it
(45) M. M. asks: In what months do the Winds blow the trongest, and what are the prevalent
Jirections? A. In February and March. From S. W.,
W.
(46) B. says: Some zinc castings are to be expotad to the we ther; but as they are of an orn
mental character, I wan: to wash them with somectem cal that will oxddize them to some extent and give
bem a better color that therain will run down on the castingain a milk stream, gliving them a streaked appearance. Can yo
 natural oxidation? A. Your best plan would probably be to try a serles of experiments on the subject, by
uiting the various actids begin ing with ntric, and ma. using the various actos beglon ning with nitric, and ma
king them of varlous deges bing them of various degrees of stiength and
temperatures untill the object to
(47) R. C. asks: Is there any instrument tweetness of cider, to tell If it will turn tinto vinegar
 ta chemst.
 How can I cean off the finger marks ond dirty spots?
A. We do not know of any other method than the use
(49) C. H. asks: What will clean hammered
(50) W. D. asks: How can I color paraffin s,etc., so that it will retain the black, we belleve this has rot yet been accomplifhed. By contivued experiment you might possibly discover
(51) Z. C. B. asks: Is there a composition with which the ingides of tinegar tanks, made of spruce
lumber, can be painted to make them tight, which the
(52) C. H. M. asks: Why are the brilliant
 A. The tngredents (white sane, pearlasp, niter, arsen.
c. manganese, etc) are are first made into a paste witb ed lead, which, after the mass has been fusc d, imparts cor

Upon what does the magnettc tension of a helix de pend, upon the number of turns of the wire, or upon
the volume of electucty flowing througb it? Which would dinue the more magnetism, a hellis of small a lstger wire of 200 sifrals and 6 equally strong cups to produce the current? A. It depends apon the number
of farads per second, and the compact nees of the hellx
 or the inductive in fluence is mersely as the ε quare of
the distance from the core. As to electrictly and crys
(53) G. H. H. asks: 1. Is there any test bethe ground floor should not be used as a sleeping apart.
ment, on account of dampntess?
A. The hygrometer is used for this purpore. th nenling or nea room, sbould
the flue open near to the celling or near to the floor he fue open hear to the celing or
A. Near the floor to mary instances, but
the mpure air? A. A.
(54) O. B. sars: : From philosophical works, 000, silver 972, tin 303, frebritck 11. Earthen ware is
 pears that silver 1s more than 88 times a better conduc
tor thas firebick or earthen ware; yet Prof fesor Tyn tor than tiretictick or earthen ware; yet Prof fesor Tyn
dall in his work " Het dall in his work on ". Heas as a Mode of Motion," in
cpeaking of the comparative radation of a silver tea. por and an earthenware one, both benng giller with boil

 practice tin 18 always pre ferred for hot arr p tpes to thuee
that are smoothly plasterect?
Of course, some ad tage would be derived from the superior smoothness of the tin; the ascending air currents would not encoun-
ter so much friction,but this advantage would not com ter so much friction,but this adrantage would not com
pensate for the diferetece in the conduciling c apa ctity of thetwos batances, tin beting more than 2 itimes a bet ter conductor than the plastr. Please explain.
Good radiators are good abecrbers of heat, hat 1 s , surfaces which cas essily communicate motion to the ether are equally capable of accepiting it frem the
ether. On the contrary, s oad radiator, such a s a metalIle surface, is a bad ahsorber, and theref ore a good re.
fiector. Hence, the thinnest metallic fim upon a sur. fector. Hence, the thnn nest metallit gim upon a sur.
face powerfully protects tio tro the action of radiant tace p.
heat.
(55) L. O. asks: What is a test for lard oill one or considerable cifilculty, and cannot be ac vai
ageously emplo yed by one whols unacqualt tea wit aemicalo
(56) M. A. asks: Why do the leaves of one nd green? A. It is probably due to some accident
nat has befallen the tree, whlch has cansed the prema are change in the color of ts tollage
(57) W. A. C. asks: How can I make a good Take oft water 1 gillon, extract of ligwood $10 z$; boil
hem untill ihe extract is idssolved then hem until he extract is dissoivel,
 nakesa cheap and good color for shoe or harness edge
nut for cobobling and for new work, upon which you
 he to use, you put a a tablespoonful of lamphlack to bo int of ti.1t, will make a blacker and nicer fiolesh. nakes a goon color for co eap work. but for tine work xtract of lopwoud and uncture of iron each 10 ,
aut galls, pulverized, 1 oz, sweet oil $1 / 2 \mathrm{cz}$ mix. will insects preserved in a solution of arsen

dealer in nanticalinetrumet ts.
Csi you furnish back numbers of your pa
Generally. Serd usalist of what you tequire
Generally. Serd us a 11 ts of what you tequire
How can I make a cheap telescope? A.
How ca
vol. 30.
(58) M. K. asks: Do you recommend cos
 tve sublimate are also extensitely used for this purpose. ALother good method is hat of slighty char
riag the ends of the posis, as charceal is very unchangeable, resistilit perffecty the aetion or both ar
ai dmoisture. Timber and grans of waft and rye converted into charcoal 1,800 years ago, at. Hereulane. um. remain as entire as if they had been charred but
(59) G. Says: I have a glass 55 inches long
wit 2\% of only fity times. You state that a glass with that
sized objective may be made to magniff a hundred and ity if it 18 to to used for an astronomical plass, Whic often want to do. Can I have as atronger eyeplece,
hat I can use for such purposes?
A. Yes. What metali In common use would answer for a fau
cet for vinegr, and would not be aftected by it? cet for vinegar, and would not be aftected by it?
Sock tin might be used, but faucets of wood are tar the bestror thits purpose.
What 1 t the pest t touse
r:soaking? A. Trycoalt te
(60) S. J. L. s. says: I learn that Professor oses through spongs irci and powdercd limestone he iron 19 procured 1 na apwdery, spongy state by the of sulphon of and ore coper by heat. Can for
 may be obtaned in a finely divided state as the bydra-
ted sesquitoxide, by using Dittric actid aa the solvent s nd ted sesquilorde, by ustag nitric acld as he solvent snd
prect pitaing tit with ammonia, aecanting the supernatant llquid, and washing the precipitate several times
(61) W. H. F. asks: What is best for fill-
 eed oll and antonate of lead is used for this pur cose.
Can tog balloo
bubbles? A. No. . .
Wood expands wath water, but a cord which is or woody fiber shrinks. How is this? A. Wood does not expand longtudinaly, but transer nsely. This $\begin{aligned} & \text { an ellirg, } \\ & \text { as in the case of the cord, causes it to twist very }\end{aligned}$ tight iy, which accounts for the longtitudnal con traction. How can I glld or bronze the tuside or a cocoa-nut
shell that I bave made into a bowl? A. Ftrst apply woor three coatungs of bolled linseed oil and carbo gold size. This is prepared by grinding together some red oxice of head with he hickest drying olt hat cat turpentine, till it is is brought to a proper consistence Den the 8 ize has sumfletentil drited, the gold 1eat 18 ap down with a ball of soft cotion. The dextrous appll.
cation of a comel's hair bush sweeps away the locese artucles of the eold loaf without disturby the
(62) I.G. C. asks: I am making a hollow lass prim for has a stlll higher dispersive power. Is this true? A Yes. 2. What cement or varnish can I use, that 18 no
permeable to or soluble in that liquuld A. Take quantity of common shellac, dissolve in alcohol, exp
(63) G. asks: 1 . Does the nickel plating
process winout the use of a batery, devised by Pro. lesbor stoloa, glve a
ith a battery? with a batery? A. It gives a fine coverivg. Which if
quttedurable. 2. Does the Stolba process deposit ans of the zine used in the solurion? A. No.
How are cbloride of nickel and sulphate of dicke) the oxide ration stelds green hydrated crystals. Sulphate of ntckel is obtinined by dissoding mctallice nilikel, or its
oxide or carbonate in sulphuric acld It crystalizesin oxide or carbonate, in suphuric acla. It crystalizcesin
green, rho mble prism 8 , which require 3 parts of cold \times.
(64) J. P. asks : How can iron stains be
 spot with lemon juitee, springle with salt, and lay th
the zun to dry. Repeat the application uutil the stans e removed
(65) J. T. V. asks: Can you inform me of a What chemical is used for'preparing the automatic
W. telegraph recetiving paper? A. If a current be made
o pase through paper soaked in todide of potassium, or pase hrough paper soaked in 1odide of pot assium,
1odine will be separated at the postive wire,
band s to employ a misture of equal parts of saturated solu. tions of ferrocyanide of potasstum and ittiate of am mouta, diluted with an equall volume of Water, one
part of esch solution to two partsof water. Any kind
(66) Q. asks: How is the crystalized or oduced? A. Immerse for a short time in dillute nt (67) E. E. P. asks: What is the best sizing
apply to outedide brickwork before pannu11g? A.IIY (68iJ. D. akks: Is there any liquid subautd.
wha
contact wit result 1 . iresstible came in surd, for there can of nelther except as mere met
(69) M. B. asks: 1. Where should a tree one hundred fet tign breas, to order t tat the part roo. It he gronnd dity feet from the root of the tree? A
 the hypothenuse of a ripht-ap pled trap aple 1s qual to (70) A. G. Jr. writes to correct statements ame, In regard to the Leclanche rattery, which wer
oounded on misconceptios of its real action. In the Leclanché, he conditions of ordinary battertes are not
changed. In this, as in all other forms of battery where it is used, zinc is the eltectro-ppelitive el cment mor
 Iriven to do more than a almited amount of work (run
ding down to very short time if kept on clostd eir cuit , and th
long time.
(71) H. C. W. W. says, in reply to W. W. Fs,
Who asked as to the action of ous on rubber: Scine
 or two, I found the oll had swelled the rubber to abont

 ind glases which will produce a clear misical ore.
Fine glase of old manufacture is 18 lead glase, and has a Deauutuly billilant appearancee and when struck, it
gives a very clear mote. If the edge is thin, $1 t$ is very asily thrown into musical vibration. But very little of this glass is now made; a year ago there were but
wo manuacturess of it in this conutry hose pave it up during the past year. The manufacture of lime plass has been so very much improved withn a few years that it is takigg the place of the
more expensive lead glass, and it is sometimes atficalt, even for an expert, to tell by the eye which is which
but when the glasses are struck, there is longer any doubt. The lead glass gives a pure clear tone, in cony.
 note from the edge of the lime glass. H M., who (73) J. H. G. says, in reply to H. H. M., who the sun will not cause it to run or melt?" I have an old
tashoned steep saivgle roof that I had covered with English 1006 ng felt; then I had coal tar applied (about ave fet square at a tume) and then 1 eprinklea clean
coarse barsaod on the tar. So far it has made a good, cheap rooting, which does not run. The roof ts quite (74) J. K. says, in answer to C. M. C.'s ques.
tion as to thumping in an tneine: 1 think the center or
 Minerals, etc.- Specimens have been recived from the following correspondents.and examined with the resalts stated
G F. F.-It is an mpure quarizose rock, colored by

 magnetite, together with clystaized 1ragmeats of 21r
P. B. asks: Howcan Igetrid of rats, other-
 spincle, with a dress quite aeep at the eje but sballow
 o be eet so clcse ihat the meal will heat, and the spet
B so high hat the grall will be ibioun oui bet ore the fricding has been completcd. They also declare that such mill will take more power than an upper rnyner
of 48 inches alameter. Is ins t ? 2 . We have 8 hoise water power; how much corn ought thas 10 grind per
hour?-B. G.B a\&ks: Of what material is the reed of whistle, ma opetatiou tor fisochronizigg the balr or balauce pring
of a waten ? - A. F. W. asks: How snall 1 make a pood article of canay, of vatious flavore? ask: How is mar ganese convertea into manganite? . McD. asks: What is the best method of alisipg cor
ind coin meal on a emall scale, eu that the meal mas b b shipen without dapget of bealung? Is it better to
dry the cera or to dy the mealp-w. H. R. asks: How

communicatrons received.

The Editor of the Scientipic americas acknowledges, with much pleasure, the re eipt of original papers and contributions pon the following subjects :
On a Sliding Face Plate. By E. B. W On a Siphon Ram. By B. F. On the Sun and the Earth. By W. L. On Copper in Wineral Springe. By J.N.P On Scientific Truths. By A. M. On the Squares of Numbers. By E.B.W On Lacing Belts. By C. McC.

HINTS TO CORRESPONDENTS.
Correspondents whose inquiries fail to appear should repeat them. If not then published, they may conclude that, for good reasons, the Editor declines them. The address of the writer should always be given.
Enquiries relating to patents, or to the patentability of inventions, assignments, etc. will not be published here. All such questions, when initials only are given, are thrown into the waste basket, as it would fill half of our paper to print them all; but we generally take pleasure in answering briefly by mail if the writer's address is given.
Hundreds of enquiries analogous to the following are sent: "Where can a machine for making matches be obtained? Who sells a basket sifter? Who makes combined butter printers and scales? Whose are the best books on mechanical drawing? Who sells dies for cutting envelopes? Who makes a machine for dressing millstones? Where can lathes for turning butter ladles be bought? Who sells battery carbons? Where can a paper bag machine be bought? Whose is the best hammer hay press? Where can a computing machine be obtained? Who sells egg testers? Who makes pocket alarm wathes lling pan uses and selling prices of mica be found ?
Who sells fint glass for lenses? Whose is the best steam plow? What is the price of a terrestrial globe, 2 feet in diameter? How can the sugar-refining business be learned? Who sells corn mill apparatus, to do the best work with the least power?" "All such personal enquiries are printed, as will be ob-
served, in the column of "Business and Perserved, in the column of "Business and Per-
sonal," $w h i c h ~ i s ~ s p e c i a l l y ~ s e t ~ a p a r t ~ f o r ~ t h a t ~ p u r-~$ pose, subject to the charge mentioned at the head of that column. Almost any desired information can in this way be expeditiously obtained.

Index of Inventions

 por whichLetters Patent of the United States were grantid in the weer ending October 27, 1874, AND RACH BEARING THAT DATR.
[Those marked (r) are reisued patenta. 1
 Auger, earth, I. C. Van Den
Azle erkern, W.D. Rinehart

Bale tie,
Batteng, J. Lerrell
Beppacker. Bed, aduastabie, A.F.
Bed olouge, F.Bran.
Bed lounge, J.
Hoey. ..
Bed lounge, J. Hoey
Bed bottom spring
Bed bottom spring, Branson et a
Bee hive, J. R.\& T. J. Moseley
Beer kettie vottom, R. Dreher.
Bench hoos, carpenter's, E. Odell
 Bitumen, molding, , G1bbons
Boat, torpedo, C. J. Von Cort
Bolt, O. . S. Sis. Boat,
Bort, \mathbf{c}. sqayer.
Boot
Boot pac, moccasin, Kelleher \& Randietet (r).
Boring machnee, H. Kalbach Boring machne, H. Kalbac
Bottle estoperer, E. Harris.... Bottle stopper, J. B. Miller Bowlling pins, setting, J. s. Conilin
Broo Brushes, making.I. s. \& J. W. Hy Houghton.

Calendar, T. J. Thorp
Cans, faucet for oll
Cans, faceet for oll. E
Car axle die, E. Kerr.
Car axle de, E.E. Kerr.
Car brake, rallway, J.
Car coupling, R . Hopkins

 Chandeller, matill onnt for J. .v. Mathriet.
Cheese vats, etct., heater for, G. Harrls.....
Churn, W. E. Ditckson.

Cloth measuring, I. M.e.
Clothes dryer, B . Collner
Clothes line fastener, J. . Hill
Coal, handiling , C. H. Basi
Coat and carriage robe, B.

Core box, J. Kirkpatrick
Corset, C. P. Clarik
Corset, H. A. Lyman (r).
Digger, potato, D. Fulkerson
Dol's's clothes
pattern, C. L.
Door check, G. W. Roberts.:
Dose indicator, etc.
Drawting apparatus, C. Dieh1.
Elevator, H. H. Blake
Engine balance valve, steam, J. Goodman

Engine sllde valve, steam, B. Bolth
Eng tines, rellef valve for
Fence post, D. E . Mable

Frire extngnumber, H. S. Parmelee.
Fork, horse hay, J. F. Troxel...... Forms, turnng globular, A. J. Kane. Frame for chlaren, , \&afety. J. Perkine
Furnace, metallurgical, N. W. Wheeler

Furnace, regenerator, A. Ponsara (.)
Game apparatus, W. A. Elderkin....
Gas puritylng, Huett \& C anander.... Gas, regulating ock for,
Grall bunder, J. MeNeal
Grat dren
Graln drill cleaner, J. H.
Hame fastener, S. Mille
Hammer, power, J.C
Hammer, power,
Harvester,, . Fall.
Harvester
Harvester binder attachment, C. M. S. S.
Heater, soldering tron, Burwell et al. Heater, evaporating, A. M. Rodger
Heel-grinding machte, Teel-grinding machnne, Thompson \&. French (r).
Hinge, lock, A. J. Alston
Horse coll sr stay. W. H. Penfield.
Horte hoof protector
Hydrant, J. A. stacy
nk or fild, writling, I. M. Ream
ron and steel, making. A. T. Hay
Ivory, fictitious, J. .
Kiln. R. . . . Marshall.

Latch, gate, E. Halsey
Lock, A. Hermann........
Loum shuttle gulde, Hastings
hechanical movement, F. H. Rtchards
nilking stool, N. E. Hind
Mills, toll taker for grist, J. F. Strat
Mining machine, coal, R. Fletcher.
egative, J. H. MeConnell
Nut locks, D. R. Pratr.....................................
res, reluctng, N. W.
oreralls, A. Rosen berg.
Paper-cuttIng machine, T. s. Greenman
Paper-cutuligg machine, D. Heston.....
Paper pulp stock grinder, F. A. Cushman
hotographtc paper, T. Doney.
Piano action, upright, c. Petitc
Planoforte attachment, A. Steinway.
Pile cutter, G. H. Cavanagh.............
Pills, etc., machine, T. J. Young..
Planter, corn, J. A. McC
Plow, Buckley \& Harms
Plow, P. H. Decker.......
Plow, H. B. Whittemore
Plow, corn, A. F. Batcheller
Plow shade attachment, J. G. Darby
ocket book, D. N. B. Coffin, J
ress, cotton, G. W. Stewart
Pump, M. S. Clark.
Punch, Morgan \& Retd.........................
Purifier, flour and middilings, C. F. Keller.
Rarifier, middilings, J. B. Martin
Rake, horse hay, S. H. Bushnell
Refrigerator, J. J. Bate....
Roof, flreproof, J.D. Plerc
Rope socket, F FBowen
Rowing exercise apparatus, L. D. Tice.
aw handle, W. Millspaugh
Scales for weighting colns, w...............
Sewmiz.. Sewing implement, combined, F. L.
Sewing machine cutter, T. L. Barber Shrtt, H. B. Fanton.
Shoe, club foot, W. Autenrleth......
Shoe lace, metallic spring,. Hatght hoe pac, moccasin. Kelleher \& Randlett (r) Sinks, etc., cleanlng, R. A. McCaule
Smoke stacks, cone for, S. Hughes. oldering machine, Hine \& Be pidering machine, D. Guptall Splnning wheel, M. McLeod...
Splitis, rectifying, C. B. Jarvis portsmen, decoy brd for, Strater \& Sonier Still, oll, Alexander \& Eberhard. Sin, on, McGowan \& Van Syckel
Stone-dressing machine, T. J. Glfford Stone-spliting machine. S. S. Brooks.
Stove, cooking, G. W. Swett (r)....... Stove, cookng, G. W. SWeth (r)
Stove, cookin, N.S. . r .
Stover cover, J.V.Vrooman (r)
Table, L. Postawka........
Table, game, w.C.Stiles.
Table, book-supporting, Patterson \& Swenson
Tack, stair carpet, M. Krtckl................... Telegraph cable, G. Zann1
Telegraph cable,
Tellurian, G.P. Tindall.
Thermostat, electrical, w. B.
Thill hold
Thr F. C. Burchell.
Thistle extractor, Blimer \& Ecke
Tile, etc., porous, $\mathrm{S} . \mathrm{E}$ Loring....
Tobacco, suspend1ng, S. R. Mathe
Tobacco, treating, M. R. Pearsal
Tollet case, chamber, E. Ewing .
oy pistol match, w. S. Beeche
Tube expander, o. Paga
Turning globular ferms, A. J. Kane
Umbrella, cane, A. Hill.
Valve, discharge brake, G. Westinghouse, dr
Vault, safe, etc., A. L. Stims
Vencle wheel, G. Cornwall..
Vise jaw, movable, B. F. Steph
Wagon seat, S. G. Peabody
Washing machine, J. A. Eno
Watch key, F. Jacot
Watch regulator cap, W.. . B. Schmie Watch balance cock die, Manchester \& Bole
Water wheel, R. Hunt
Wheel for harvesters, etc.,
Wind lass, W . H. Harfleld (r)
Windmill, Sholes \& Kelly.....
Windmill, E. and D. C. Stove
Window blind, etc., A. A. Jaqua
Wrench, B. G. Martin

APPLICATIONS FOR EXTENSION Applications have been dulyilled and are now pending
-or the extension of the following Letters Patent. Hear-: ingsupon the respective applications are appointed for the days heretnafter mentloned:
$31,220 .-{ }_{\text {FINGER GAR RD }} \rightarrow$ M. L.
 31.315-Grinding Card Treth.-C. Hardy. Jan. 20.
$31,578 . \rightarrow$ PAPER Folder.-W. H. Milliken et al. Feb.

EXTENALONS GRANTGI
30,536.-Finishing GAs Fittines.-
DISCLAIMER
s0,536.-Finishing Gas Fittinges.-J. w. Lyon
designs patented.

TRADE MARES BEGISTERED.

 2.041 and 2,012.-TAR CorDIILS.--H.R. Wishart,Pnila, Pa,
204.-P®BLICATIONs.-J. Gruber, Hagerstown, Md.

SCREDULE OF PATENT HEES.

 On 1saulng each orlginal Patent.
On appeal to Examiners-1n
On appeal to Commissloner of Patenta...
On application for RExtension of Patent..
on filing a Disclammer.
On an application for Deilign (3X yeara
Onapplication for Design $(7$ years).
Candadian patents.
itbt of Patents Granted on Casada
,999.-N. Stephens,Brookiyn, Ktngs county, N. Y., U.S. Improvement In cement lined pipes, called "st
Improved Cement Lined Pipe." $\begin{aligned} & \text { oct. } 29,184 \text {. }\end{aligned}$. coo.-M. S. Schario, village of Sunderland, Ontari county, Ont. Improvement 1 in spring bed bottoms,
called "'schario's Improved Spring Bed Botom." cat. 29, 1974.
 P. Q. Une machne à faire les cambrures de botees
et soullers, called "Le Talleur de Cambrures de Frechette,",
299. 1874.
$4,02$. .

 provement in step laders, Nav.
Improved step Ladder ." Nor
Inci.
Wis, U. S ., aselgnee of G . Raymond same dac count
 mond's Wind Wheel." Nov. 2, 1874 .
 proved Churn Dasker." Nov. 2, 1874.
d,005.-J. Head, Andover, Alleganany county,N. Y., U.S.
Improvements on a machne for scourlng leather
called "J. Head's Leather-scooring Machnne." Nor
In
,
Mass.,U.S. Improvement on medicated pads or Delts
for the cure of rheumatism and other stindred com
platnts, called "Dr. Cooperes's Medicated Pad or Belt," Nor. 2, 1874.

provements on car eatham, Kent connty, ont. Im| provements on car couplings, called |
| :--- |
| matte CCar Coupling." Nor. $2,1844$. |

 Dust and Weather Protector." Nov. 2,1874 ,
 Improvements in car coup
Coupling." Nov. 2, 1874.
 assignee of C. M. Coolidge, same place. Improve
ments on a process for producing caricature photo graphs, called "Coolldge's Process for Productng Car-
 ,011-A. Goth and C. A. Wolle, Bethlehem, Northamp. ton county, Pa., U. S. Improvement on machn nes for
coativg paper with oil colors, called "Goth \& Wolle's coating paper wotng Paper with Oll Colors."

Machine for Coating | 1.874 |
| :---: |
| $4,012 .-J$ | Useful form for and W. F. Munro, Toronto, Canada screwna

, 1874.
,0is.-A.
 ment on racks and safes Rack and Safe." Nov. 7,1824 .
Lit, -F.S. Barnjum, Montreal, P.Q. Q. Improvements on
pantaloon stretchers, called "Barn jum's Patent Pai

t,015.-C. A. Husseg, New. Yorkr city, U. S. Improve. road Asle Box." Nov. 71874
Mans., U. S. Improvements in processes for drying
Mand lumber, called "Wood's Process for Drying Lumber
 tng oven Cook stove., Nov. 7,184 .

 4,019-K. McKenzie, Hamilton colty, Ont. Improve
 ,020.-C. Rommel, Elizabeth, Un1on county, N. J.J.U.S.
Improvements on polychromatic printing machines, called "Rommel's Untversal Polychromattc Printing

Machine for the catching and collecting of the Colo rado potato
Nov. 7, 1874.
2.2.-T. E. Roberts, Ionia, Ionia` county, Mich., U. S.
Improvement on spark arresters Improvement on spark arresters and consu
"Roberts' Spark Arrester." Nov. 7, 1874.
,023.-J. Tomlinson, Goderich, Huron countr, M1ch. U . S. Improvements in barrels, called "Tomlinson's Improved Barrel." Nov. 7, 1874.
,024.~G. L. Anders, Boston, Mass., U. s. Improve-
ments on printing telegraphs, called "Anders' Improved Printing Telegraph Instrument." Nov. 7. proved
1874.
4,025.-E
New Brunswick. Improvements on freezing and refrigerating apparatus, called "Tozer's Freezer and

gatuextisementz.

Engravings nay head advertisements at the same rate per
Iine, by measurement. as the letter press. Advertisements
must be received at publication oftice as early as Friday

TTEADY

bmployment

BESSEMER
SteelWireRopes

Labor to Hire.

CA TRIAL TRIP. ${ }^{\text {The Fie ince ot }}$

Le counts patent latae doge,

$\$ 60_{0}^{3} 90$ 等

THE NURSERY.

The best and cheapest Paint in the

Iadies at Home

MAGNETS-Permanent Steel Magnets

SHINGLG\& BARREE MACHINERY

Todd \& Rafferty Machine Co.

BAIRD'S Books
 For Practical iner.

 be sent, free or postage,
with his address.
HENRY CAREY BAIRD, N INDUSTRIAL PUBLISHER, 406 WALNUT STREET, Phlladelphia
MAACETERERY

S HINGLEA AND BARBEL MACHINERY.-
 B ANKRUPT'S SALE OF HORIZONTAL

WOrls $\begin{gathered}\text { At home, male or female } \\ \text { week, } \\ \text { Wey or orening. No Capital }\end{gathered}$

A Rare Chance to Advertise.
Cheapest and Best Mode of Introducing NEW MACHINERY AND INVENTIONS.

ToAdvertisers.

During the month of December, we shall publish a sprotal edition of 100,000 coples of the SCIENTIFIC
AMERICAN, which will be malled in separate wrappers and the postage prepald to every post offlce in the United States, Canada, and adjoining provinces.
It is intended that a copy of the paper shall reach the principal manufacturers, workers in lumber and
iron, railroad shops, and the works of other mechanical and chemical industries in the United States iron, ralliood shops, and the works of other mechanical and chemical industries in the United States,
Advertisements will be taken for this extra edition, at the following rates: namely, 75 cents a line inslde, and $\$ 1.50$ a line on last page. A few notices, in the Business and Personal column, not exceeding four lines in length, will be inserted at $\$ 150$ a line. This affords an unusually favorable opportunity for
advertisers to reach a class of persons not accessible in the ordinary cbannels of advertising. The advertisers to reach a class of persons not accessible in the ordinary cbannels of advertising. The
names have been selected with care, and the publishers guarantee the number 1ssued to be full 100,000 ; the names have been selected with care, and the publishers guarantee the number issued to be full 100,000 ; the
postage on these copies, which is rwo thousand dollars, will be prepaid, thus insuring the prompt forpostage on these copies, which is тwo thou
warding of the papers to their destination.
Advertisers will bear in mind that this announcement is for a Special Edition, which is to be circulated ratultously among non-subscribers, and that the same advertisements which appear in the regular edition,

ENGRAVINGS.

this pa mustrations and descriptions of machines or articles of utility, whether they have already appeared
ADDRESS
MUNN \& CO., Publishers, 37 PARK ROW, NEW YORK

COLD ROLLED SHAFIING.

FIRE-PUMPS A SPECIALTY

 ADAPTED TO:EVERYSITUATION CEOFBLAKE MFGCO
 BOSTON
 NEW YORK
 CHICAGO

 ONS ${ }^{\text {samber hoistivg }}$ (nved
FOR LEGAL ADVICE CONCERNING

Patent
Planing and Matching

Fifth and Last Gift Concert Poblic Library of Kentacky.

November 30, 1874. drawing certain at that date. hist of gifts.

One Grand Cash Gift.
One Grand Cash Gift...............................50.000 $\mathbf{2 5 . 0 0 0}$
5 Cash Gifts, $\$ 20,000$ each.... $\mathbf{1 0 0 , 0 0 0}$
10 Cash Gifts, 14.000 each.... 140.000
15 Cash Gifts, 10,000 each.... 150,000
$\begin{array}{lll}20 & \text { Cash Gifts, } & \mathbf{5 , 0 0 0} \text { each.... } \\ \mathbf{2 5} \text { Cash Gifts, } & \mathbf{1 0 0 , 0 0 0} \\ \mathbf{4 , 0 0 0} \text { each.... } & \mathbf{1 0 0}, 000\end{array}$
30 Cash Gitts. $\mathbf{3 , 0 0 0}$ each... $\mathbf{1 0 0 , 0 0 0}$
50 Cash Gifts, $\quad \mathbf{2 , 0 0 0}$ each .. 100,000
100 Cash Gifts, 1,000 each... 100,000

19,000 Cash Gifts, 100 each... 50,000
GrandTotal,20,000 Gifts, all cash.a.950.000
PRICE OF TICKETS.

Whole Tickets
$\begin{array}{r}25 \\ \hline\end{array}$

Renths, or each Coupon	
11 Whole Tickets for	$\mathbf{5 0 0}$

221/ Tickets for \quad For Tickets and information, Address 1 THO. E. BRAMLETTE, Agent and Manager Public Library Bullding, Loulsville, Ky or THOMAB H. HAYS \& CO. $\underset{609}{ }$
OR COVERING FOR BOILERS AND

Corrugated Iron,

PORTABLE STEAM ENGINES,COMBINN ing the maximum of efficiency, durability and econ-

R ICHARDSON, MERIAM \& CO.

 TRON BRIDGES—CLAREE, REEVES\& \& Co.,

 newspaperb, and estimates Bhowing cost of advertuing:

SCRew CaAbers

Andrew's Patents.

Macd ${ }^{\text {Page }}$ Inside Paze

옥․00 cente lingino. ine measurunena as meever meses Aaverusemena mast bereceived at pubbucation ottce as early as Fridav

B OARD OF PUBLIC WORKS, CITY OF

BLAKE'S PATENT Stone and Ore Breaker

THE PULSOMETER.

Branch Dopote

Water Theels.

Working Models

Mill EurnishingWorlss

Mnun \& Co.'s Patient Offices.
Established 1846.
The Oldest Agency for Soliciting Patents in the United States.
TWENTY-EIGH1 YEARS' EXPERIENCE.
MORE PATENTS have been secured through
he world. ventions, and procuring their patents.
They employ as their assistants a corps of the most ex
perienced men as examiners, specification writers, and perienced men as examiners, specification writers, and ected from the ranks of the Patent Office
MUNN \& CO., in connection with the publication of the Silentific American, continue to examine inventions ssignments,attend to filing applications, in the Patent Office paying the government fees, and watch each case step by step while pending before the examiner. This is done through their branch office,corner F and 7 th Streets. Washngton. They also prepare and file caveats, procure design prepared by the inventor or other attorneys) procure cory matters of infringement, furnish copies of patents: in attend to every brach of patent business both in this and n foreign countries.
Patents obtained in Canada, England, Munce, Belgium
Germany, Russia, Prussia, Spain, Portural , the Bri Colonies, and all other countries where patents a granted.
al inventions make in the Scientific American of name and residence of the patentee. Patents are often sold, in part or
Δ pamphlet of 110 pages, containing the laws and full diertaining exclusively to Foreign Patents, stating a circula each country, time granted, etc., sent free. Address

MUNN \& COMABERICAN

MORRIS, TASKER \& CO. PASCAT IRON WORIS: PHITAADEIPHIA, TASKER IRON WORKS, NEWCASTLE, DELAWARE

ASBESTOS MIATERIALS

POKTLAND From the best Condon Manare (Practical Treatiseon Cemen	Trearise on Cement furnisned p Rrs.	
SUPRR-FPATERS 		
Pyrometers.For teeting Orens, Boll er these Blast furnaces Super-heated steam, Oll Stills, \&c. $\begin{aligned} & \text { Address } \\ & \text { HEN KY WULKLEY, }\end{aligned}$ 98 Libertv St., New Yor	AHechanicalSensation The Tanite Co STROUDSBURG, MONROE: Co., PA.	
SA S100.OO GOLD PREMIUM at First PRIZE SILVER MEDAL, for t		
O EMERSON, FORD\& CO.,		

A M

Salamander Pating

NIAGARA STEAM PUMP,娄 $\quad \begin{aligned} & \text { Manuactured soleles } \\ & \text { Hy }\end{aligned}$ Engines and Boilers,

FREEMAN \& BURR, cLoming warefoves,
 SuIts, \$10. SUITs, \$20. $\mathbb{S}^{\text {UITS, } \$ 30 .}$ $\mathbb{S}^{\text {UITS, } 840 .}$ $\mathbb{S}^{\text {UITS, }} 850$. $\mathbb{S}^{\text {UITS, } \$ 60 .}$
 DEREOAT COJTNTRI ORDERS

$$
\$ 5, \$ 8, \$ 10, \$ 12, \$ 15, \$ 20 . \$ 30, \$ 40 .
$$

DE

HARTFORD
STEAM BOILER Inspection \& Insurance COMPANY
 HUSSEY, W WLLS \& CO., CAST STEEL, Including the ". Grante hand or Edge Tools. CAST STERL TEETH,

Provide

 SCIENTIFIC AMMERICAN. FOR 1875.the most popular scientific paper THIRTIETH YGAA

VOLUME XXXII-NEW SERIES.

 The pubishers or the scieivilific ambrican beg oe announce that on the irst day of January, 1875 , ${ }^{\text {a }}$new volume commences. It will continve to be the alig of the publishers to render the contents of the new
volume more actractive and ueeful than any of tits pre volume mo
deceessora.

To the Mechanic and Manufacturer!
Ho person engaged in any of the mechanical pursults should thnts of dolng without the soirntirio Amprr. ans. Every number containg from six to ten engraving
oz nev machinesand tnventions which cannot be fonnd

It is the Most Popular Paper in the World ! having the large ciculation of nearly 50,000 per week
 tiventions, manutacturing establishments, tools, and
processes. The sclempricicamerican ts devotea to the meter. sts of Popular Sclence, the Mechantc \triangle rts, Manufac.
urees, Iuventiona, Apricanture, Commerce. and the indus
 Whe Housenold, the Library, and the Readidg Roo in
By the new law, the postage must be paic iw advanse Neives the pajer by matil iree of charge One
TERMS.
One copy, one year(postage included).
One copy, three montis (postage 1ncluded).... 1.0
one copy of Sclentific American torone year,aad
one copy of engraving, "Men of Progress".. 10.0
ene copy of Sclentinc American for one year,and
-ne copy of sclentifl Americad for one year, and
one copy of " Scleuce Record" tor 1874. 550
Remit by postal ordei, araft or express.

MUNT \& CO.

THE "Scientific American" 18 printeran

