of the world, may do so by passing through the building lengthwiee, keeping in the zone devoted to the particular department; and any onedesiring to examine only the products exhibited by any particular countiy or State may do so by passing through the building cros
the art gallery
is of a highly ornate design, and is intended to be the best and handsomest building yeterected on this continent for the purpose. It is to be constructed of granite, glass, and iron, and will be thoroughly fireproof. Its dimensions are
365 feet long, 210 feet broad, and 72 feet high, with a dome, surmounted by a figure of Columbia, rising to 150 feet from the ground.
The Central Hall will be 95 fest long, and the Pavilions, one at each end of the building, will be 45 feet. The Pavilions will be connected to the Central Hall by arcades, each 90 feet long by 40 feet bigh.
Tbe lighting arrangement, the most important point in the construction of an art gallery, appears to be thoroughly effi cient. From the east and west sides of the Central Hall ex tend the galleries, each 98 feet long, 48 feet wide, and 35 feet in hight. These galleries admit of temporary divisions for the display of paintings. The center hall and galleries will altogether, form one grand hall 287 feet long and 85 feet wide, capable of holding eight thousand persons, nearly twice the dimensions of the largest ball in the country. From the two galleries, doorways open into two smaller galleries, into private apartreents which connect with the pavilion into private apartwents which connect with tbe pavilion
rooms, forming two side galleries 210 feet long. A corridor 14 feet wide opens into a series of private rooms. Mr. H. J. Schwarzman is the architect, and Mr. R. J. Dobbins the con' ractor.
It will be seen that the Commissioners have duly appreci ated the magnitude of their undertaking, as well as tbe ad visability of appealing to modern taste, culture, and refive ment. If these two structures, the erection of which is be ing vig rous'y prosecuted, are finisbed as they are represented in our engrevinge, and tbe otber three are equally wortby of their noble purpose, we shall as a nation, have something to be proud of in our Centennial Exbibition, and among ous best extibits will be the buildicge themselves.

the franklin instituie exhibition.

PUMPs.

Tbe huge water tank in the southeastern corner of the bil dieg atcracts crowds of visitors. Clustered around it is to be fourd almost every variety of ateam and hand pump. All the stram pumpe are in opera,ion, and together discbarge
immense quantities of water. Am'ng the ex'ibjors weno
 Sour, Hedry C Hall \& Co (ouleomet, r puaps), Cooper,Jozer \& Cadoury J H Biilington \& Co., and last, but not 1.ast, Thomas Shaw. Tue pump shown by this gentleman is one of the largest ever extibited, and deserves en pec al no tic \uparrow. Hecalls it a compoard propeller pump, and he claim. for it esp-cially simplicity of construction: it contains no valves, and coneists essentialy of but three pieces, namely. mical, costing much less than any other equally powerful mical, costing much less than any other equally powerful
pump. Its enormous power is a feature ptculiar to it. The one exbibited is a 20 inch pump, and lifta 10,000 gallons per minute; wilh a greater speed it can litt 14,000 per minute. A 7 inch pump yields 1,000 gallons, and an 8 inch pump, 1,200 gallons, per minute. It can be used either as a force or a lift pump; can be placed at any angle; will lift sand, mud, sticks, and oirt off sunken lands without serious hart The hight to which the water can be lifted depends ooly upon tbe poweremployed. A serious difficulty was at first experienced in obtaining a bearing suitable to sustain without injary the enormous weight of the column of water, to gether with the shafts and propellers. This has, however,
now been successfully met by Mr. Sbaw's effective water bearing, which consists essentially of a cast iron beam rest. ing on the top elbow of the pump, upon which pillars are secured, supporting a stationary disk carrying an ordinary stuffing box, penetrated by the propeller shaft. A dome rises from the stationary disk, and inside of this a second diek is attached to the propeller shaft and revolves with it. Water is forced below these two disks, under a pressure equal to the weight sustained. In this way the entire weight of the revolving machinery and the greater part of the water col
umn is supported on a film of water on which the revolving umn is supported on a film of water on which the revolving
disk floats. When too much water is forced between the disks, the revolving disk is raised and the surpius allowed to es. cape. The water is raised into a large tank 16 feet long, from which the water falls 10 feet to the tank below. The pump is driven by a beautiful engine built by Neqfie \& Levy, of Philadelphia.

IRON AND STEEL.
The Union Iron Company of Buffalo exhibit a heavy 15 ach beam weighing $66 \frac{2}{8}$ pounds per foot, 52 feet 6 incbes ing 50 pounds to the foot, 60 feet 6 inches long, also rolled in a single heat.
The Midvale Steel Works, of Nicetown, Philadelphia, make a beautiful display of their manufactures of cast steel. Several cold twisted rails are exhibited, showing the excellent quality of the steel. Forgings of various forms are also to be seev. A steel axle made of Siemens Martin steel was submitted to the following tests: A weight of 1,640 pounda falling 20 feet, was allowed to fall on the bar, placed on
bearixg three feet apart. The bar was reversed after each
blow. The following dfflections were observed: The firet blow produced a deflection of 7 inches; the second, of $\frac{7}{8}$ inch in the opposite direction; the third, 68 inches in the oppositedirection; the fourth, $1 \frac{3}{1} \frac{1}{6}$ inches; the fifth, $5 \frac{1}{2}$ inc

heaters and stoves,

In heaters and stoves a very large display is made. Lie. brandt \& McDowell exhibit, among other novelties, the Radiant Parlor Cook, Our Mutual Friend, and the Great Canten. ial Range. Samuel Kirby exhibits tbe Phœnix Double Heater, which he claims to be one of the most economical and powerful now in use. A small grate attachment serves as a consumer in cleaning clinkers from the fire. J. A. Lawson exbibits a combined self-feeding and surface burning furnace, called the Pearl. It is designed especially for the consumption of antbracite. Other firms are adapted to bituminous coal and wood. Fuller, Warren \& Co. exhibit a very beautiful open front Franklin stove, which they call the Howard. The cheerful, open fire is combined with economy and cleanliness. Tbe Pennsylvania Heating and Ventilating Warehouse and Blacksmithery Works, of Philadel. phia, exhibit one of D. Mershon's Sons' wrought iron air tight furnaces, adapted for all kinds of fuel. A novel appli cation of a regulator is made, by which the fire can be regu lated without going into the cellar. This is effected by sim ple levers and pulleys. Reynoids \& Son, of Philadelphia, exhibit their wrought iron airtight furnaces. Among a number of forms we note especially the Centennial Furnace arranged expressly for burning bituminous coal or coke. machine tools.
Unquestionably the most interesting feature of the Exhibition is the display of machine tools. Among the prominent exhibits we notice those of the following firms: William Sellers \& Co , W. B. Bement \& Son, Van Haagen, Shoper \& Bro., Faris \& Miles, E. Harringtou \& Son, ard many others. Asitwill oe impossiblein the limit ed space of a single letter todo justice to a, 1 there exhibits, we tberefore stlect one of the most prominent, namely, that of William Sellers \& Co., of Philadel. phia. Among the many ingenious tools exaibited by this firm none attruct more actention, both from experts and nonexperts, tban their automatic gear cutting and wheel-dividing machine, and indeed justly so, for it is a marvel of in genuity. Its movements are entirely automatic, no manual labor whatever being required on tbe part of tbe operator, aave the oiling of the macbine. It is impossible to convey a clear idea, in a orief description, of the number of beautiful motions of tbe machine. Thegradualad vance of the cutter, ite quick return and fiual stop, the automa ic staring of the dividing mecbsnism which brings the wheel around to the ract position for the Dext tooth, must he seen to be fully opreciated ; and when once ceen, there is a kind of fascily tion about it that akes a visitor spevd a lex gthof time in x . aniligg its beauties.
Alongide of the gear cutter is one of tbeir self-acting lide lathes for turuing and screw cuttive, the arrang. m-nts of which secure great convenience for working. The top of the phears is a plazie eurface. The seddle carroing the slide rest is guided on the Iront edge, the heads moviog between the parnliels. The cone pulliy in furoished with 6ve stepa, giving fitteen rates of epeed, rising propartionally from the elo west to the most rapid. Tbe feed movementia especially vovel. By means of an ing nious combination of frection dieks, incented and patented by Mr. C. Sellers, the rate of speed is altered by the simple turning of a milled scref, no atop page or change being necessary. The imporiance of this feature will be iartactly recogniz-d.
A nut shaper of entirely new design is also on exhibition. All six sides of the nut are finished at the same time, by means of a peculiar arravgement of cutters. A continuous stream of oil is supplied, to the surfaces cut, by a pump be neath, run by the machine. Nuts finiehed by this machine have a beautiful and characteristic appearsnce impar:ed to them. We also notice a radial drill, with adjustable arm capable of a five foot swing. The tool is so arranged that the ppindle can be accurately adjusted to any point of the
lathe, thus avoiding the moving of heavy work. A section of the latter is susc 4 ptible of vertical adjustment, thus adapt ing the machine to the performance of small work. The apindle is drivan by a belt running horizontally, giving the remarkably smooth motion so characteristic of the Sellers' upright drills.
Another interesting feature of their exhibition is a lathe in which are two small grinding machines, one for drills and the other for straight edges and other hardened work requiring true surfaces. The drill grinder produces the required edge on the drill with no other labor than is needed to set it in tbe required position. Though a small tool, it deserves especial mention. The slotting machine is also remarkable for the originality and excellence of its construction. A
vertical adjustment to the connection of the slotting bar enables it to be easily set for different hights of the work. The feed movements are readily controlled by the workman, without leaving a position favorable for watcbing his work. A number of other novelties are exhibited by this firm, among which might be mentioned their improved forms of Gifford injoctors for feeding boilers, but want of space pre vents any further notice.
Messrs. Riehle Brothers make a fine display of their scales and testing machines. They have on exbibition one of their 75 tuns upright testing machines for ascertaining the tensile strength of round, flat, or equare specimens of any material from 18 to 32 inches long; also one of Professor Thurston's Fow testing machines.
Fairbanks \& Ewing, of Philadelphia, have on exhibition
a large number of their standard rcales for different purposes, as well as aca es gracuaied to the Rues'an, Frencb, Fairbanks \& Co. also make a fine display.
As an unusually fine specimen of wood work, we note the Union table, made by Samuel McCracken, of Philadelphia. It contains some 35,000 pieces of wood. Among the varieties employed are the following: oak, pine, walnut, coco, tulip, amboyna, lance, locust, mahogavy, Hungarian and American asb, cedar, white holly, French walnut, aatin, and rose. The American eagle is in the center, surround t d by thirteen stars, and in circles beyoud this are stars and other devices. On the whole, the effect is a happy one.
A Bullock printing press and a machine for making envel. opes, both in actual operation, draw large crowds of the curious. Working models of Chambers' and of the Excelsior brick macbines are also exhibited.
The exhibition of drugs, dyestuffs, and chemicals is one of the most attractivefeatures of that portion of the building on the left hand side of the main entrance. The Penn sylvania Salt Works, Powers \& Weightman, Henry Bauer, John Lucas \& Co., Harrison Brothers, and Rosengarten \& Sons have exceedingly large displays.

Sheet Iron Gas Mains,

The Paris Gas Company have lately laid down a main 3.2 feet.in diameter and 1,093 yards in length, from St. Maude to the Place du Trône. Hitherto sheet iron pipes covered with bitumen bave not been applied to mains of that dimen sion, and it was important to ascertain bow such pipes of a moderate thickness would answer beneath the public roads, where they would be submitted to the permanent and acci dental pressure tending constantly to produce deformity.
The company had already adopted sheet iron pipea of 2755 inches diameter, without any important deformity being pro duced, and it was only necessary to submit the 3.28 inches pipes to similar pressure to ascertain what effect it would produce, all theoretical calculation being deemed untrustwortby. A comparative trial was therefore made with the aid of an apparatus planned for the special purpose. A pipa of 2755 inches diameter, of the ordinary tbickness of $0 \cdot 157$ incb, and a pipe of 328 fe t diameter, 0.197 inches thick, were laid in the ground in the mode adopted for the mains in Paris. the trencles having been dug in such a way that there was a space of 10 inches between each side of the tube and that of tbe trench, and that the filling.in above each pipe should be $3 \cdot 28$ feet in depth. The pipes in ordinary use are 1312 feet in levgit ; but in ord κ r to spread the weigbt over a large pur face, pides 1968 feet long were adopted for the experiment aod one end of each was leftopen to allow of access to the in'erior.
The tral was made by placing on the soilabove them pige of lagd, from four up to twen'y tuns weighr, which were sapported on a platfurm c mposed of timber, and having a surface of 86 equare feet. Ttis platform was laid upon $t a 0$ pieces of timber, each 197 iucbes lorg and 985 iaches wide and placed 690 fent apart, whichrepreeenced the tyres of the two wheels of one of the axlee of a locom tive of for's tuns, Th \rightarrow a pparatus for the indication of the drforaities produced consisted of a circular disk of abest iron with ning radial roda, each supported by two small guides screwed to the disk, and provided with a spiral spring whicb kept its outer - d pressed againat the inner surface of the pipe. The gu'des of the rods were eacb provided with a eet ecrew to hold the atter in plaç while the a pgaratus was bring placed ia the pipe. The only obj-ct of tise rode at the lower part of the dibi wa mater of the late la theaxis of the pipe, and when the apparatus was in place both the guides of these lower rode were ecruwed firmly to the dirk. Thus any alteration in the vertical diameter was mearured fom tbe center In the center of the diek was an opeciog 787 iuches in diameter, ficted with a pisce of iron corerted with leather, which carried a circular piece of paper. Eych iron rod on the upper part of the di.k was fitted with a pointer held in a small tube by a spring, and provided with copper button. When the apparatus was in its place a fin ger was pressed ou each button, and the position indicated by pricking through the papar, the leather bebind preventing tbe point of the needle being turned. When a load was laid on tbe platform above, the position of the pointers was again pricked through tbe paper, and the difference between the two marks ehowed the amount of deformity produced. The results obtained were then transferred to a diagram of the ame section as the pipe itself.
By comparison of the diagrams obtained, it was found that with a load of twenty tuns pressing on the pipes for 130 hours the 3.28 feet pipe had given way vertically to the extent of 2.85 per cent, and the smaller pipe of 430 pe cent. The conclusion was that a pipe 3.28 feet in diamete and 0197 inches thick offered greater resistance than a pipe 27.55 inches in diameter and 0.157 inch in tbickness, which had already proved itself satisfactory in practice. It was found by further experiments that, when a pipe had once been deformed by a heavy load, it only recovered itself to the extent of a fraction of an inch when the load was removed. After these experiments a main 328 feet in diameter was laid from the gas works at St. Maude to the Place du Trône, and as the joints were made they were tried with compressed air under a pressure of $2 \cdot 755$ inches of the mer cury manometer, the pipes themselves having been previ ously tested under a pressure of 75 pounds to the square inch. These trials revealed a few defects which were easily repaired. Since that time the main in question bas been in use constantly, without exhibiting anytbing contrary to the results of the several experiments which we have above re

Much time and attentiong Iron. Kick, of Prague, to the subject of etching iron with acids His mathod is not a new one for arriving at a knowledge of the quality of iton or steel, having been used with some the quality of iton or steel, having bsen used with some
success for a long time, but the care with which the professuccess for a long time, but the care with which the profes-
sor has conducted his experiments makes them exceedingly sor has co
valuable.
Some kinds of iron exbibit what is known as the passive state, and are unacted upon by acids until this state has been destroyed by hea:ing. The surfaces thus prepared were inclined to rust very soon. After aseries of experiments with nitric, sulphuric, and hydrochloric acids, and etching solutions of copper salta, Professor Kick found that a mixture of equal parts of hydrochloric acid and water, to which was added a trace of chloride of antimony, was the best etching added a trace of chloride of antimony, was
solution. The chloride of antimony seems to render the iron less inclined to rust, so that, after washing thoroughly in warm water, and applying a coat of dammar varnish, the etched surfaca may be kept quite clean.
The smooth surface that is to be etched is surrounded with a ridge of wax an inch high, as is done in etching cop per plates, and theacidis poured into the dish thus formed. At a temperature of 55° to 65° Fah., the action soon begins, as showu by the gas evolved; in winter the etching is poor. The time required is from one to two hours, but the etching should go on until the texture is visible. Every half hour the acid can be poured off without removing the wax, the carbon rinsed off, and the surface examined. If too much carbon rinsed off, and the surface oxamine antimony is added to the acid, a black precipichloride of antimony is added to the acid, a black precipitate will soon form, which can easily be distinguished from
the carbon. One drop of chloride of antimony to the quart the carbon. One drop of chloride of antimony to the quart
of acid is sufficient. When the etching is finished, the wax of acid is sufficient. When the etching is finished, the wax
rim is removed, the iron washed first in water containing a little alkali, then in clean water, brushed, dried, and var niebed. It in a few hours it bygins to rust, the varnish should bs removed with turpantine, which will also take off the rust, and then varnish apain.
The appsarance of different kinds of iron when etched is esseutially as, follows: Soft or sinewy wrought iron of ex csllent quilicy is attacked so equally by the acid, and so lit le carbon is separated, eved af cer several hours' action, that the suifice remains bright and smooth. Fine grained iros acts the pame; the surface is still smootber, bat a little darker. Coarae grained and cold short iron is attacked mush more violenily by arid than the abore. In ten mit. uter, espec'a'ly with the lattar, the surface is b'ack. After thir:y miautea a black slimo can b, washed off and the sur face will remain black iu ppite of repestcd washiogs, and txbibits oumerous little holes. Certain parts of the iron are usually easen deepar, while others, alchough black and porous, offar more repistance. By allowivg tbe acid to ac porous, offar more repistance. By allowing tbe acid to ac
for an bour or so, then washing, drying, add polishing with for an bour or eo, than washing, drying, apd polishing witb we know, rus's more easily than wrought iron, and it is in teranticg to know that the action of asidsia also violent, the surface oeing attacked very violently. Gras pig iron ac's like sterl; the etched surfaces have quite a uniform gray color. In puddled ateel, the color, after etching and washng, is gray, with quite a uniform shade, and the lines are acsrcely visible. Cement steel bas a very similar appear anco, the lines boing very weak. In Bessemer and cast steel the etched surfaces are of a perfec'ly uniform gray color, with $f_{\circ} w$, if any, uneren places. The softer the steel, the lighter the color.
On etching, the finest hair-like fractures are rendered prominent. A piece of steel, which looked perfect before etching, aftorwarde exhibited a hair-like fracture through out its whole length. When different kinds of iron are mixed, the acid attacke that for which it has the greater af inity, while the other is less acted upon than if it were alone. Etching is exceedingly valuable to all who deal largely in iron, as it enables them to determine with com parative accuracy the method of preparing the iron, as in the case of rails, etc., as well as the kinds employed.

New Phosphor Eronzes.

Dr. Kunzel, whose name will be recalled as the joint discoverer, with M. Montefiore-Levy, of the well known phosphor bronze, now announces the additional discovery that when phosphor bronze is combined with a certain fixed pro portion of lead, the phosphorised triple alloy, when cast into a bar or bearing, segregates into two distinct alloys, one of which is hard and tough phosphor bronze, containing but little lead, and the otker a much softer alloy, consisting chiefly of lead, with a small proportion of tin and traces of copper. The latter alloy is almost white, and, when the casting is fractured, it will bo found nearly equally diffused through it; the phosphor bronze alloy forming, as it were, a species of metallic sponge, all of whose cavities are occupied by the soft metal alloy segregated from it. This phenomenon of the segregation into two or more alloys of comnomenon of the aegregation into two or more alloys of com
binations of copper with tin and zinc has long been known and from the fact that such separation is generally massive, and from the fact that such separation is generally massive, and nst equable throughout the mass, it has been a source
of great annoyance to the founder. Dr. Kunzel, however, seems to have succeeded in causing the segregation to take place in uniform distribution throughout the casting, and has taken advantage of the properties of the product, which he obtains in this manner, to construct therefrom bearings of railway and other machinery.
In heavy bearings, such as those for marine evgines, the valuable properties of Babbitt metal, and similar anti friction alloya, are well recognized; but these, being generally tion alloys, are well recognized; but these, being generally
Boft, are open to the grave objection that, where they are
subjected to considerable pressure, or even moderate pressure accompanied by continued vibration, they become distorted in form, and then fail to sustain the journals in their proper places. The device is, therefore, resorted to by the machinist of casting a hollow cage of hard metal, of proper form for the intended bearing, the cavities of which be hen fills up by casting into them the soft metal alloy, which thus forms the actual rubbing surface of the bearing. The hard metal cage thus supports the soft metal within, and prevents its distortion or escape, save by surface abrasion. Dr. Kunzel claims to effect the same result by the peculiar constitution of his new phosphorised alloy for bearings. This forms its own supperting cage for the soft bearing metal, which, as alluded to at the outset, separates from it in the process of cooling. He claims that these bearings combine the very amallfriction and non-abrasion of the jour nals with the firm resistance to pressure and stability of form of bearings of hard metals. The test of practice, how ever, alone can decide the value of these slaims, though hey seem very plausible.-Iron.

The Waste of Power in Cotion Mills,

The winter session in connection with the Manchester Eng., Scientific and Mechanical Society was lately opened by a paper by Mr. Evan Leigh, C E., on the waste of powe n cotton mills.
During the course of his paper, Mr. Leigh said that it might naturally be thought that England would not allow herself to bs surpassed by any foreign country on any point relating to her principal and favorite manufac tures. On one or two points, however, England has been most decidedly excelled by inventions originating in America. He alluded to ring spinning and belt driving, both of which were eminently calculated to save power, and con sequent waste of fuel. Referring to ring spinning, be sa:d
that it had been introduced into England as an American invention more than forty jeats ago, but for some reason it was not generally adopted by the English spionera. Per baps that, was owing to the recent failure of the Danforth tbrostle, another American invention of great promiee, that bad been adopted by se reral spinners. Although the princi ple of the two frames was thtally difforent, the Eoglis 4 apin wer was not to bo caught again, no he fought ahy of the ring frame, and it was believed that for more than thirty years oot oue frame on that principla was ueed in Great Britain
于ver, du'y appreciatiad is Am+rica, and he ayatem was cul ivated un il the difficulties and tract mechanical require mente attendiog its construction were thorougbly matered and the repult was the production of a frame that took only alf the power of an nrdinary flyer throstle, bpaides being capable of working practicaly at a much higher apted. Ac he Leconia Mill, Biddeford, Me, Mr Leigh arw, laqt year, girlainding, apparen'ly with ease, 1,344 spindles of there fames, with the front rollers ranning seventy revolutinns per minute, spinning No. 26 yarn, a d found it qui e com. x on for such piecers to run 1,100 or 1200 spindles with so liitle hurry shat they had plenty of time to avail thempelves of a seat which was provided tor each spinder, on which she at and leisurely watched the frames sp'n. He (Mr. Laigh did rot think that this arose from superior ability in the American, but simply that in foreign countries spinners are less jealous of one a ather, and band themselves togeth
In Boston, Mass ,the Cotton Manufacturers' Association had a semi-annual meeting, at which papers were read relating to now inventions in cotton spinning and manufacturing, and discussion followed, in which each related the results of his own experience in testing any invention in question. In 'ated, and the truth arrived at, establighing a saughly venti 'ated, and the truth arrived at, establishing a safer basis for the investment of capital than would otherwise be the case Should opinions be divided as to the merits or demerits of a new thing, the question was adjourned to the next meeting, and, if need be, a number of experts went round to the dif ferent mills and tested the machine in question impartially by the results produced and power consumed, which wer and another meeting generally settled the point.
Going on to speak of the comparative advantages of belt and gearing, Mr. Leigh said that the proper application of driving belts to the machinery was a most important ques tion. To be rightly appliad, a main driving belt should move through 4,000 or 5,000 feet of space per minute, and be sufficiently wide to drive all the machinery and shafting quite easily when running in a slack state. After a new belt had been once tightened up, it should work many years without wanting any further tightening, and would do so i made of good material and properly applied, saving in th meantime a large amount of power and all the grease and labor of putting it on, to zay nothing of the noise heavy gearing makes. The apeaker then adduced some practical instances of the extent to which belt power might be used in connection with machinery, giving examples from the various mills he had visited in America, showing the durability and ease with which large belts did their work. The
lesson taught by the big belt was imperative, namely, that there should be very light shafting run at a very high speed with larger drums and pulleys; then very little would be heard of strap-piecing, or wear and tear of belts, working with less power and steadier production all the while. The implest and best, and also the cheapest and most durable, methed of driving by belt was to convey the power from the main driving shaft direct to each room by a separate strap
it from the other direct by a separate estap, apportioning the width of each atrap to the power it was required to drive, and, whenever a belt was necessarily short, allowing a little extra width.

Schools for Engineers.

Within the past ten years, schools for engineers have increased rapidly in this country. They are, to apeak exactly, eclectic schools, where most of the positive and some of the abstract aciences are made a part of the regular course. They are not purely theoretical in their instruciion, but hape workshops attached, wherein the usual tools of a modern machine shop are found, and where substantial work is undertaken and subsequently sold in open market in competition with that of the trade. These schools or colleges have teachers thoroughly skilled in their professions, many of them being themselves graduates of machine shops in the most honorable and praiseworthysense, who have from hum. ble beginninge raised themselves to posts of importance and responsibility. Associated with these men are others of special prominence in the sciences they preside over, so that, by the union of practical example and pure theory, a student may graduate from any branch of science he selects
It is scarcely necessary to say that such schools are of the very greatest importance to the country; and in view of this fact, it is proper to remind young men that engineering, which is largely and carefully taught there, is a profession which greatly needs thoroughly educated men. There cannot be too many in it, for the future of this country is so vast, its resources so utterly undeveloped, that there will be need of all who have fitness for engineering pursuits. Civil, mecbanical, mining, hydraulic, and architectural engineers will be in demand in the future, and will find ample room for the exercise of their professions without interfering with one anoth er. Nowhere can they find better facilities to be. come acquainted with the best modern practice of tbeir callngs than in these industrial schoole. The ordioary colleges afford no such advantages as can be obtained at Cornell University and the Stevens Iastitute of Tecbnology at Hoboken, and some others. These are well appointed establichmente, with complete workshnpe, where Science and tbe practical develcpment of it go haod in 1 and; where the natures, peculiar qualities, and modes of working various melals are shown io processes carried on by the student himself: not with a view of dabbling in the pursuit as a soct of experiment or recreation from dry: r studite $\begin{aligned} & \text {, but to produce works }\end{aligned}$ wichare valuqble.
Professor Sweet, of Cornell Udiverity, for example, sent ut at one time circulare of face plates, etraight edgep, aud angle plates of guasanteed excellence and accuracy, 8] of which wre offord at low $\mathrm{p}^{\text {rices and made at the Universi- } y ~}$ woskshops. It is notable also ihat, in the Stevens Institu'e o Technology, for example, the terms for a courae of any branch are an low as to be almost dom'val By the aunifi. euce of Ejwid A. Stevede, who lefta latge fum of monty to found the Iratitute, resid+its of New Jnreey are raceived a pupils at $\$ 75$ per yrar for inetruction orls, and nou residencs at $\$ 150$ With such faciities, it is to be hoped that be rule ofthumb engineers will gradually become ex. inct, and their places supplied bymen who have a reason to ive for their opinions, and can teil why they make a piston rod six inches in diameter, or why they sink shatts where here are no surface indications to warrant them in the utlay.
The men who practised their calling without a thorough ducation in it were pioneers in the profersion, and are entited to reapect and consideration for their eminent eervices. Where there was no thoroughfare, they boldly made one; where there were no precedents, they made preced ϵ nts; they were a law unto themselves, and by their native talent and agacity established works which more timid men would Dever have undertaken. They made few contly mistakes; and though they may have used a few tuns too much of iron or other material, it was cheap in the end, and experience has to be bougbt in some shape. Now, however, that a more perfect and direct road to the acquisition of professional nowledge is open ttrough these industrial colleges, it will e the fault of parents and guardians if the coming genera tion does not reap the benefits of them.-Nezo Fork Sun.

Effect of Ammonia Fumes on Flowers.

Professor Gabba has been examining the effects of ammonia on the color of flowers. It is well known that the smoke of tobacco will, when applied in sufficient quantity, change the tint of flowers; but Professor Gabba experiments by pousing little ammonia liquor into a saucer and inverting a funnel over it. Flacing the flowers in the tube ofthe latter, he finds hat blue, violet, and purple colored blossoms become of a fine green ; carmine and crimson become black; white, yellow; while particolored flowers such as red and white are char ged to green and yellow. If the flowers are immersed in water, the natural color will return in a few hours. Professor Gabba also found that asters acquire a pleasing otor when submitted to the fumes of ammonia.

A NEW potato, known as the white queen (reine blanche) is being cultivated in France. In good soil, from ten to fif'een tubercles are formed, many of which attain or exceed the weight of 22 pounds. The flavor is said to be very fine. Planted in February or March, it becomes ripe in July.

Engineering learns that a rolling mill at Columbus, 0 , has ecently contracted to furnish a large quantity of rails to a railroad company a $\$ 52$ per tun. This is said to be $\$ 3$ per tun leas than the price at which the same quantity of rails could be delivered from England to the same part of the
United States.

