THE BJILDINGS FOR THE CENTENNIAL EXHIBITION. between the long lines of exhibited articles, will be mainly ments for the person. 4 . Furniture and manufactures of

The Commissioners who have charge of the arraugements for the Cantennial Exhibition, to bo held at Philadelphia in 1876, have recently given to the public definite details of the buildings to bs erected in Fairmount Park for the purpose. The structures are five in number, the Main Building, the Art Gallery, and the Machinery, Agricultural, and Horticultural Halls. We publish herewith views of the first two, which give an excellent idea of their general appearance and proportions.

30 feet wide.
The foundations for this structure, which promises to be admirably light and convenient, as well as graceful in appearance, are to be piers of masonry, the superstructure consisting of wrought iron columns, with roof trusses of the same material. The columns are to be of rolled channel bars, with plates riveted to the flanges, and the roof trusses are straight rafters, with struts and tie bars. The columns are to be 24 feet apart; and timber paneling, to the hight of
general use in construction and in dwellings. 5. Tools, im. plements, machines, and processes. 6 Motors and transportation. 7. Apparatus and methods for the increase and diffusion of knowledge. 8. Engineering, public works, architecture. 9. Plastic and graphic arts. 10. Objects illustrating efforts for the improvement of the physical, inellectual, and moral condition of man.
In the Main Building will be located portions of all of the above departments, except No. 6, which will be placed in the

The Main Building is to be 1,880 feet long and 464 wide, covering 2002 acres of space. The whole will consist of one floor only, except in the projections and towers, where galleries, giving additional space, will be provided, adding 1.45 acres to the available area. The great length of the building has rendered advisable the breaking of the roof lines by the addition of three transepts or cross avenues. The roof is chiefly of the hight of 70 feet from the ground, the towers the corners being 75 feet high. The central portion 184 the corners being 5 feet high. The central portion, 18 eet square, rises to an elevation above the rest of the build ing, and is surmounted by four towers 120 feet high. The
central avenue will be 120 feet wide, with another, 100 central avenue will be 120 feet wide, with another, 100
feet wide, on each side of it. The passages for promenade,
seven feet, is to be filled in between the outer columns Above the paneling, glass sashes are to rise to the top of the building, portions of the sashes being removable for the pur pose of ventilation.
The engineers and architects of the structure are Messrs. Henry Pettit, Consulting Engineer of United States Centen nial Commission, and Joseph M. Wilson
Every product exhibited in any part of the entire Exhibi tion will be considered as belonging to one of the following ten departments: 1. Materials in their unwrought condition, mineral, vegetable, and animal. 2. Materials and manufac tures, the result of extractive or combining processes. 3. Textile and felted fabrics. Apparel, coscumes, and orna-

Machinery Hall, and No. 9, to which the Art Gallery will be especially devoted.
The departments will be arranged in parallel zones length wise of the building, the zones being of different widths, according to the bulk of the products exhibited in the particular department. The States and countries exhibiting will be arranged in parallel zones crosswise of the building, these zones also being of different widths, a cecrding to the amount of space required for the exbibits of each country. Between each department and each country will be passage ways distinctly marking the limit of each. Theresult of this dual system will be that any visitor or student, desiring to compare the products of the same kind from different part

of the world, may do ao by passing through the building lengthwiee, keeping in the zone devoted to the particular department; and any onedesiring to examine only the product oxhibited by any particular count,y or State may do so by passing through the building cro
the art gallery
is of a highly ornate design, and is intended to be the best and handsomest building yeterected on this continent for he purpose. It is to be constructed of granite, glass, and ron, and will be thoroughly fireproof. Its dimensions are 365 feet long, 210 feet broad, and 72 feet high, with a dome urmounted by a figure of Columbia, rising to 150 feet from he ground.
The Central Hall will be 95 fest long, and the Pavilions, one at each end of the building, will be 45 feet. The Pavil ions will be connected to the Central Hall by arcades, each 90 feet long by 40 feet high.
Tbe lighting arrangement, the most important point in the construction of an art gallery, appears to be thoroughly effi cient. From the east and west sides of the Central Hall ex tend the galleries, each 98 feet long, 48 feet wide, and 35 feet in hight. These galleries admit of temporary divisions for the display of paintings. The center hall and galleries will altogether, form one grand hall 287 feet long and 85 feet wide, capable of holding eight thousand persons, nearly wice the dimensions of the largest ball in the country. From the two galleries, doorways open into two emaller galleries, 28 feet wide and 89 feet long. These open north and eouth into private apartients which connect with tbe pavilion rooms, forming two side galleries 210 feet long. A corridor 4 feet wide opens into a series of private rooms. Mr. H . Schwarzman is the architect, and Mr. R. J. Dobbins the on ractor.
It will be seen that the Commissioners have duly appreci ted the magnitude of their undertaking, as well as tbe ad visability of appealing to modern taste, culture, and refine ment. If these two structures, the erection of which is be ig vig rous'y prosec ated, are finisbed as they are represented n our engrevinge, and the otber three are equally wortby o their noble purpose, we shall as a nation, have something to be proud of in our Centennial Exbibition, and among out best extibits will be the buildicgs themselves.

the franklin instituie exhibition.

PUMPS

Tbe huge water tank in the southeastern corner of the bai dilg atcracts crowds of visitors. Clustered around it 18 o be fouvd almost evesy variety of ateam and hand pump, All the stram pumpeare in opera,ion, and together discbarge immense quantities of water. Amrng the ex'ibitors we no the Putter \& Hoffman, C. A. Cinde \& Co, William Cramp \& Sour, Hedry C Hall \& Co (ouleomet, r puaps), Cooper,Jozer Cladvary J H Biilington \& Co., and last, but not l. ast, Thomas Shaw. Tue pump shown by this gentleman is one of the largest ever extibited, and deserves erpecial mo ic \uparrow. He calls in a compoaxd propeller pump, and he claim. for it esp-cially simplicity of conetructioe: it contains no valves, and contists essentially of but three pieces, namely. the column pipe, shaft, and propelier; tberefore it is econo mical, costing much less than any other equally powerful pump. Its enormous power is a feature ptculiar to it. The one exbibited is a 20 inch pump, and lifta 10,000 gallons per minute; wilh a greater speed it can litt 14,000 per minute. A 7 inch pump yields 1,000 gallons, and an 8 inch pump, ,200 gallons, per minute. It can be used either as a force or a lift pump; can be placed at any angle; will lift sand, mud, sticks, and oirt off sunken lands without serious hurt The hight to which the water can be lifted depends ooly upon the poweremployed. A serious difficulty was at first experienced in obtaining a bearing suitable to sustain with. out injary the enormous weight of the culumn of water, toether with the shafts and propellers. This has, however, ow been successfully met by Mr. Sbaw's effective water bearing, which consists essentially of a cast iron beam rest. ng on the top elbow of the pump, upon which pillars are secured, supportiog a stationary disk carrying an ordinary stuffing box, penetrated by the propeller shaft. A dome rises rom the stationary disk, and inside of this a second diek is ttached to the propeller shaft and revolves with it. Water is forced below these two disks, under a pressure equal to the weight sustained. In this way the entire weight of the revolving machinery and the greater part of the water col umn is supported on a film of water on which the revolving disk floats. When too much water is forced between the disks, he revolving disk is raised and the surpius allowed to es. cape. The water is raised into a large tank 16 feet long, rom which the water falls 10 fest to the tank below. The pump is dri ven by a beautiful engine built by Neafie \& Levy, of Philadelphia.
iron and steel.
The Union Iron Company of Buffalo exhibit a heavy 15 ach beam weighing 66\% pounds per foot, 52 feet 6 incbes long, rolled in one heat; and a light 15 inch beam, weigh. ng 50 pounds to the foot, 60 feet 6 inches long, also rolled n a single heat.
The Midvale Steel Works, of Nicetown, Philadelphia, make a beautiful display of their manufactures of cast steel. Several cold twisted rails are exhibited, showing the excelent quality of the steel. Forgings of various forms are also to be seed. A steel axle made of Siemens Martin ateel was submitted to the following tests: A weight of 1,640 pounda falling 20 feet, was allowed to fall on the bar, placed on
blow. The following dtflections were observed: The fir blow produced a deflection of 7 inches; the second, of y inch in the opposite direction; the third, 68 inches in the ppositedirection; the fouth, $1 \frac{3}{1} \frac{1}{6}$ inches; the fifth, $5 \frac{1}{2}$ inch

heaters and stoves.

In heaters and stoves a very large display is made. Liebrandt \& McDowell exhibit,among other novelties, the Radiant Parlor Cook, Our Mutual Friend, and the Great Centen. nial Range. Samuel Kirby exhibits tbe Phœnix Double Heater, which he claims to be one of the most economical and powerful now in use. A small grate attachment serves as a consumer in cleaning clinkers from the fire. J. A. Lawson exbibits a combined self-feeding and surface burning furnace, called the Pearl. It is designed especially for the consumption of antbracite. Other firmsare adapted to bituminous coal and wood. Fuller, Warren \& Co. exhibit a very beautiful open front Franklin stove, which they call the Howard. The cheerful, open fire is combined with economy and cleanliness. Tbe Pennsylvania Heating and Ventilating Warehouse and Blacksmithery Works, of Philadelphia, exhibit one of D. Mershon's Sons' wrought iron air tight furnaces, adapted for all kinds of fuel. A novel appli cation of a regulator is made, by which the fire can be regu lated without going into the cellar. This is effected by sim ple levers and pulleys. Reynolds \& Son, of Philadelphia exhibit their wrought iron airtight furnaces. Among number of forms we note especially the Centennial Furnace arranged expressly for burning bituminous coal or coke. machine tools.
Unquestionably the most interesting feature of the Exhibition is the display of machinetools. Among the prominen exhibits we notice those of the following firms: William Sellers \& Co , W. B. Bement \& Son, Van Haagen, Shoper \& Bro., Faris \& Miles, E. Harringtou \& Son, ar d many others. Asit will oeimpossiblein the limited space of a single letter todo justice o a l there exhibits, we therefore stlect one of the most pro minent, namely, that of William Sellers \& Co., of Philadel. phia. Among the many ingenious tools exibibited by this firm none atrract more altention, both from experts and nonexperta, tban their automatic gear cutting and wheel-dividing machine, and indeed justly so, for it is a marvel of in grnuity. Its movements are entirely automatic, no manual libor whatever being required on tbe pait of tbe operator, arve the oiling of the macbine. It is impossible to convey a clear idea, in a oriefdescription, of the number of beautiful motions of tbe machine. Thegradual ad vanca of the cutter, ite quick return and fiual stop, the automa ic staring of the dividing mecbanism which brings the wheel around to the xact position for the next tooth, must be seen to be fully preciated; aud when once seen, there is a kind of fascius tinn about it that akes a visitor sperd a lexgthof time in tx aniling its beauties.
alorgaide of the gear cutter is one of tbeir self-acting ide lathes for turuing and screw cuttive, the arrang. $m-n$ it of which secure great convenience for working. The top of the fhears is a plaze eurface. The arddle carrying the slide rest is guided on the Iront edge, the heads moviog between the parnliels. The cone pulliy in furoished with 6ve stepa, giving fitteen rates of epeed, rising propartionally from the elo west to the most rapid. Tbe feed movemertis especially vovel. By means of an ing nious combination of friction dieks, incented and patented by Mr. C. Sellers, the rate of speed is altered by the simple turning of a milled screw no atoppage or chavge bring neceasary. The imporiance of this feature will be iartactly recogniz-d.
A nut shaper of entirely new design is also on exhibition all six sides of the nut are finished at the same time, by means of a peculiar arravgement of cutters. A continuous stream of oil is supplied, to the surfacess cut, by a pump be neath, run by tbe machine. Nuts finiehed by this machine have a beautiful and characteristic appearance impar:ed to them. We also notice a radial drill, with adjustable arm capable of a five foot swing. The tool is so arranged that the apindle can be accurately adjusted to any point of th lathe, thus avoiding the moving of heavy work. A section of the latter is susc \uparrow ptible of vertical adjustment, thus adapt ing the machine to the performance of small work. The apindle is drivon by a belt running horizontally, giving the remarkably smooth motion so characteristic of the Sellers upright drills.
Another interesting feature of their exhibition is a lathe in which are two small grinding machines, one for drills and the other for straight edges and other hardened work r $3 q u i r$ ing true surfaces. The drill grinder produces the required edge on the drill with no other labor than is needed to set it in tbe required position. Though a small tool, it deserves especial mention. The slotting machine is also remarkable for the originality and excellence of its construction. A vertical adjustment to the connection of the slotting bar enables it to be easily set for different hights of the work. The feed movements are readily controlled by the workman, without leaving a position favorable for watcbing his work. A number of other novelties are exhibited by this firm, among which might be mentioned their improved forms of Gifford injoctors for feeding boilers, but want of space pre vents any further notice.
Messrs. Riehle Brothers make a fine display of their scales and testing machines. They have on exbibition one of their 75 tuns upright testing machines for ascertaining the tensile strength of round, flat, or equare specim n ns of any material from 18 to 32 inches long; also one of Professor Thurston's new testing machines.
Fairbanks \& Ewing, of Philadelphia, have on exhibitio
a large numbar of their standard acales for different pur Mard thes Freacb Fairbanks \& Co. also make a fine display.
As an unusually fine spacimen of wood work, we note the Union table, made by Samuel McCracken, of Philadelphia. It contains some 35,000 pieces of wood. Among the varie ties employed are the following: oak, pine, walnut, coco tulip, amboyna, lance, locust, mahogary, Hungarian and American asb, cedar, white holly, French walnut, satin and rose. The American eagle is in tbe center, surrounded by thirteen stars, and in circles beyond this are stars and other devices. On the whole, the effect is a happy one.

A Bullock printing press and a machine for making envel opes, both in actual operation, draw large crowds of the curious. Working models of Chambers' and of the Excelsio rick macbines are alko exhibited.
The exhibition of drugs, dyestuffe, and chemicals is one of the most attractive features of that portion of the building on the left hand side of the main entrance. The Penn sylvania Salt Works, Powers \& Weightman, Henry Bauer John Lucas \& Co., Harrison Brothers, and Rosengarten \& Sons have exceedingly large displays.

Sheet Iron Gas Mains.

The Paris Gas Company have lately laid down a main 3.2 cet.in diameter and 1,093 yards in length, from St. Maude to the Place du Trône. Hitherto sheet iron pipes covered with bitumen bave not been applied to mains of that dimen ion and it was important to ascertain bow such pipes of moderate thickness would answer beneath the public roads, where they would be submitted to the permanent and acc dental pressure tending constantly to produce deformity
The company had already adopted sheet iron pipes of 2755 inches diameter, without any important deformity being pro duced,and it was only necessary to submit the 3.28 inches pipes to similar pressure to ascertain what effect it would produce all theoretical calculation being deemed untruatwortby. A comparative trial was therefore made with the aid of an ap paratus planned for the special purpose. A pipa of 2755 inches diameter, of the ordinary thickness of 0.157 incb , and pipe of 328 fe t diameter, 0.197 inches thick, were laid in the ground in the mode adopt+d for the mains in Paris. the trencles having been dug in such a way that there was space of 10 inches between each side of the tube and that of tbe trencb, and that the filling-in above each pipe should be 3.28 feet in depth. The pipes in ordinary use are 1312 fee in leogth; but in order to spread the weigbtover a large pur face, pides 1968 feet long were adopted for the experiment aod one end of each was leftopen to allow of access to the 'erior.
The tral was made by placing on the soil above them pige of lead, from four up to twen'y tuns weighr, which were supported on a platform c mposed of timber, aud having a surface of 86 equare feet. Ttis platform was laid upon tao pieces of timher, each 197 iucbes long and 985 inches wide and placed 690 fent apart, which repreeenced the tyree of th wo whets of one of the axlee of a locom tive of for's tuns. Th \rightarrow apparatus for the indication of the drforaities produced consisted of a circular disk of ahest iron with ning radia rode, each supported by two small guides screwed to th disk, and provided with a spiral spring whicb kept its outar od pressed againat the inner surface of the pipe. The guides of the rods were eacb provided with a eet ecrew to hold the atter in plac弓 while the apgaratus was bring placed ia the pipe. The only obj et of tie rode at the lower part of the diek wan to mal tain the center of tbe lalte la the asis of the pipe, and when the apparatus was in place both the guides of these lower rode were ecrewed firmly to the dik Thus any alteration in the vertical diameter was measured fom tbe center In the cevter of the diek was an opecio 887 iuches in diameter, ficted with a pisce of iron corpred with leather, which carried a circular piece of paper. Eych iron rod on the upper part of the dik was fitted with a pointer held in a small tube by a spring, and provided with copper button. When the apparatus was in its place a fin ger was pressed ou each button, and the position indicated by pricking through the papar, the leather bebind preventing be point of the needle being turned. When a load was laid on tbe platrorm above, the position of the pointers was agai pricked through tbe paper, and the difference between the two marks ehowed the amount of deformity produced. The results obtained were then transferred to a diagram of the me section as the pipe itself.
By comparison of the diagrams obtained, it was found that with a load of twenty tuns pressing on the pipes for 130 hours the 3.28 feet pipe had given way vertically to the extent of 2.85 per cent, and the smaller pipe of 430 pe cent. The conclusion was that a pipe 3.28 feet in diamete and 0197 inches thick offered greater resistance than a pipe 27.55 inches in diameter and 0.157 inch in tbickness, which had already proved itself satisfactory in practice. It was found by further experiments that, when a pipe had once been deformed by a heavy load, it only recovered itself to the extent of a fraction of an inch when the load was removed. After these experiments a main 328 feet in diameter was laid from the gas works at St. Maude to the Place du Trône, and as the joints were made they were tried with compressed air under a pressure of 2.755 inches of the mer cury manometer, the pipes themselves having been previ ously tested under a pressure of 75 pounds to the square inch. These trials revealed a few defects which were easily repaired. Since that time the main in question bas been in use constantly, without exhibiting anytbing contrary to the results of the several experiments which we have above re counted.-The Engineer.

