ruit. The owner fold the apples as curiositien, and frequest y individual ppecimens brought large prices. It was exc ejirg gin'erreitg to examine the crop, as one apple diff red wioely from another, and uhere was difficulty in find ing iwo pr cieely alk, A few were found in which almost exacily one bulf was a weet and the opposite sour, but a majurity were made up differently. Sections, ene quarter or one eixieenth, more or less, would be sweet or sour, and the remainder would be of the opposite kind. The line of de marcation oa the et n was distinctly defined, the sour por tion having a redoish color, while the sweet was of a pale green. Tuere was no mistaking the flavor; the aour portion was very ejur, aud the sweet very sweet. On the same tree a poles grew which ware uniform in kind, some being entire ly awest aud ot'sers entirely sour.

This pomologi:al freak was brought about by a careful process of budjiog, two buds of different varieties being d vided, a ad ore half of each joined together, so as to adhere and grow in that condition. As none of this fruit bas be en seen of late yeare, we conclude that the tree has per isbed.-Boston Journal of Chemistry.
We car corroborate the foregoing, having ourselves eeen them growing, and tasted apples that were sweet on one half and sour on the other. This was several years ago. The ises of produced this curious fruit was upon the ises of the Rэv. Dr. Ely, of Monsou, Hampden county, Mass

PRACTICAL MECHANISM.
 number Xill.
 BY JOSHDA ROBE
 piston Rings.

The tension referred to in our last (see page 293) is, in all prabability, caused by the unequal cooling of the ring after it is cast
Iron and brass molders generally extract castings from the mold as soon as they are cool enough to permit of being remosed, and then sprinkle the sand with water, to cool and save it as much as possible. The consequexce is that the part of the casting exposed to the air cools more rapidly than the dart covered or partly covered by the sand, which creates a tencion of the skin or outside of the casting. The same effect is produced, and to a greater extent, if water is sprinkl d on one part of a caating and not on the other or even on one part more than on anothor.
Is has already bean stated that brasses contract a little, sideways, in the process of boring, and that work of cast metal allers its form from the skin of the metal being removed; this alteration of form, in both cases, arises in the case of a pieton ring from the release of the tension.
It sometimes occars that a piece of work that is finished true in all its parte may unexpectedly require a cut to be tak +n off an uufiniehed part (to allow clearance or for other cause), and that the remoral of the rough ekin throws the work out of true in its various parte, as, for instance: a saddle of a lathe be'ng acrap-d to fit the lathe bed, and its alides finely scraped to a orriace plat-; or the restitetlf being fitted and adjasted to the croas side of the saddle. If, when the nu and eciem of the crose a ide are placed in position, the nut is discovered to bicd aea ast, the grove (of theraddle) along which it moves (fibe out bing too thin to parmitof any more bsing taken cff it) thersis no altarnative but to plane the groore in tie saddle deeper, which operation will cause the gaddie to warp, d sterying ite fit upon the lathe bed, and the truanes of the Va of tue cross slide, and that to such an ex ind as to e matimbe require thrm to be refited.
Tue - $\mathrm{v}^{\prime} \mathrm{l}$ +ffecta of this tension may be reduced to a mini mum by takiog the castings from the sund and placing them in a batp in some candooientpartof thefoundery, and cover ing them with paod kapt in that place for the pur jose: and by rua hing out all the parts of the work which are to br cut ar, on chuck:ng before finishing any one part.
H.stod ti ge are turned larger than the bore of the cylinder Whichib y are intanded to fit, and, as before stated, sprung isto thacylioder. Tae amount to which they are turned larger depende upon the form of split intended to be given to the ring; it it be a straight one, cut at an angle to the race of the ring, which is the form commonly employed, the diame ter of the ring may be made in the proportion of one quar ter inch per foot larger than the bore of the cylinder, sufficient boing cut out of the ring, on one side of the split, to permit the ring to soring in to the diameter of the cylinder, w en the riog m ' y be placed in the cylinder and filed to fit, taking care to keep the ring true in the cglinder whilerevolv. ing it to mark it. But if the ring is intended to be of the form bera illustrated, the ring must be made of a larger proportionate diameter, the proportion depending upon how much the ende of the ring are intended to lap each other, the lap being from a to B, in Fig. X.

Fiç, \bar{z}.

There is more work entailed in giving a piston ring this form of aplit, but it is undoubtedly superior to the plain one. Avother play to givespring to a piston ring is to turn it to the same diameter as the bore of the cylinder, and then to pene it all rouod on the inside face (that is, the bore), the result being that, when the ring is samn in two (which is all that is necessary in this case), it will spring open and be of a larger diameter. When, however, it is placed in the cylinder, it will require to be sprung together again to the diameter to which it was turned (the split being open to the width of the eplit cut by the saw), so that it will not require much, f aly, filing to fit it to the cylinder,

latee work.

When bolte and plates are employed to hold rough wisk, are must be token to place the plates over those paris of he work which touch against the chuck or face plate against which the work is bolted; or the pressure of the pla es on the work will spring it, and when it is taken out of the laibe (or other machine) it will spring back to iss original position, and the part that has been cut will be no longer true, caus ing in many cases a great deal of unnecessary vis \rightarrow work. It it is not practicable 10 во place the plates, then hore parte of the work which stand off from the face plate or ctu k should be kept from apringirg by haviog wedges driven be tween them and the plate, which is of great importace in light work.
The plates (or clampe) should be so placed that the erds gripping the work travel in advance, the bolte being kept a close to the work as possible and the packing at tbe other end of the plates, as shown in Fig. 42. $a d$ r + presente the

clu k plate, B is tbe work,
C C are tie plates, and D D are the pathirg pieces. Heavy cast iron work requiring much turning to be done to it between the centers should have wrought iron pluge screwed on the ends, and tb iron; because centers, if of cast iron, cut, and soon ru out of truth. Before boring o turning work tbatis chucked if there is sufficient rosm, put a rod of iron between th centers to crunteract any end play there may be in the spin dle of the lathe. In applying a steady rest, be careful not to put an usequal strain on the work by screwing any of the ja wa tighter than the others, or it will spring the wor out of the straight line, in which case the cut taken by the sool will not be parallel. When there is sufficient room, us a boring bar with a small tool in it for boring boles; for the
extra etrength of the borivg bar enables the tool to take a hasvy cut, which a borivg tool having a slight body would oot do, in conss quence of the springing.
If work chucked in a lathe is much heaviar on one side rhan on the other, bolt a weight on the chuck (near the light side of the work) sufficiently heavy to counterbalanceit, othor wise the centrifugal force generated by the revolutions o he heavy side of the work will cause it to revolveeccentric. ally, and to be in consequence turned untrue.
In turning a cone on anytbing which is held between the centers of the lathe, the dog or clamp used to drive the work must be so placed as to be able to move to accommodate the varyiog angle of the center line of the work to the centur line of the poppet head of the lathe, as illustrated in Fig. 43.

The dotted line, a, represen th the c nter line of the work B B are the latbe certors. C 's the ceuter line of the poppo head of the latbe, $\mathrm{D} D$ is the chack plate E is the position of the center ine of the dag or drivirg clomp at one nide o the lathe center, and F is ite position whea the lathe bas made one half of a revolution; from which it will be par ceived that the tai atock of the lathe, briug moved out of tre center line of the hetdatock of the latbe, the end of the do or clamp which is driving the work adoaoces toward and recedes from the chuck plate at every revolution, and liberty must therefore be given it to move in that manner.
In boring brasees for journale, place a piece of sheet tin in the joint of the brasesp, and bore th- m the thickness of the tin too large, which will make them fit well on the crown when the tin is taken out ; for brasses bored with the jointa close together always bind on the sides, and will wot fit down on the crown without being filed.
The same end may be attained by boring the brespes trifle too large, so that filirg a little off the faces of the join will let them togyther and down on the crown; bnt the above described plan is the beat.
The amount of sbrinkage to be allowed for contraction, on boles in castiron of two or less inctes bore, abould be so litn'e that,the outeide callipers being gaged to touch the shaft very lightly aod the inside callipers or gape to touch the hole only sutficiently tofeelt he touch,you cav jast pee plainly between the twowhen they are placed or gaged inget ber
For larger sized bores, proportiocately increased allowance should be made, so that a hole of 12 in ches diameter will bave less than $\frac{1}{4}$ of an inch of shritkage. Wrought iron may be given a little more sbril kage,and steel one half less in the case of the 12 inch hole.

EXPANSIONAND CONTRACTION

Much labor and expense may often be saved by employing the principles of exp naion and contraction to refit work For ins'ance, eup oose a bolt has worn loose: the bolt may b hardened by the commnn pruesiate of potash process, which will cause i^{2}, to increase in fiza, both in length and diameter The hole may be almo hardsned in the same way which will decrease its diam ter; and if the decrease is more than ne ossary, the hole may be pround or "lapped "out by mean of a lap a lap is a mandritused to grind holes which are
pot
and cannot therefore be cut by a tool A lap may be simply a piece of 1od copp \boldsymbol{r}, or an iron mandril with tin or lead cast ar sund it. The diameter of a lap ebould be turned to be an easy fit at both ends in the hole and a trifle larger in the middle, so that the hole which it is intended to grind will fit tightly on the middle of the mandril, the latter being about hree times the length of the former
The operation is to place the lap throngh the hole which it is togrind and then between the centers of the lathe; then, while the lathe is running at a bigh speed, supply the lap with oil and grain emery, moving the work back and forth along the ap until it will pass tasily fromend to end, when the lathe may $b \rightarrow$ stopped and the lap indented with a cold chisel, and eupplied with oil and emery, and the grinding opera'ion procerded with as before. The work should be held upright and on each side of the lathe alternately, so that its weight ball not cause the grinding to be excepsive on one side of the hole. Only about $\frac{1}{64}$ of an inch of ebrit kage can be obtained on a holeand bolt by hardening, whicb, however, is lighly advantageous when it is sufficient,because both the hole and he bolt will wear longer for being bardened.
For closing long holes, boxes, etc., the water process may be employed, as represented in Fig. 44. $a \alpha$ is the section of

wrought iron square box or tubs, which is supposed to be made red hot and placed suddenly in the water, B, from te end, C, to the point, D; 1 he result is that the metal in the water, from C so D, contracts or shrinks in diameter, and compresses the hot metal immediate'y above the water line, as he small coneat D denetes. If then the box or tube is lowly immersed in thewatur, ite form, when cold, will be as described in Fig. 45, that part from C to D maintaining its originel size. and the remainder bring smaller.
It must then be rebeated and suddenly immersed from he end, E, nearly to D, until it is cold, and then slowly low red in the water, as before, which will convact the par rom D to C, making the entire length parallel but smaller both in diameter and bore, than befure it was thus operated pon
Smallholes to be reduced in bore by this process should be filled with fire clay, and the faces nearly or wholly covered with the same substance, so that the water will first cool the circumference, as showa in Fig. $46 a$ represents the hole, B the circumference of the washer tup TFIG. posed to be operated on, a and the dotted we, C, the fire clay filling the hole and oearly covering the face; so that the part not covered will cool first, and, in contracting, force in wards the metal round the role, which is preven'ed from cooling so quickly by the clay and herefore gives way to the enmpressing forca of the outeide and cooler metal This principle may be made ure of for numerous purposes, as for reducirg diameters of the tyr.s of wheele, reduc ing the size of wrought iron bside, or for closing-in connecting rod straps to refit them to the block end, + be mode of peration for which is, in the case of a od whose strap is held by bolts running tbrough the bloc and strap, to bolt the strap on the rod to prevent it from warping, to then heat the back of the strap, aod (bnlding the rod in a vertical position) submerge the back of the strap in water to nearly one half its thickness.
If the boltsare not worn in the holes, or if the strap is one having a gib and key, they may be merely put into their places without placing the strap on the rod. Even a plain piece of iron shrinks by being heated and plunged into water, but only to a sl'ght degree, and the operation cannot be successfully repeated. Eccentric rods which require to be shortened, say $\frac{1}{64}$ of an inch, may bsoperated on in this manner, in which case care must be taken to immerse them evenly so as not to warp them.

Prizes for Essays.

The Academy of Arte, Science and Belles Lettres of Caen, France, offers a prize of eight hundred dollars for an ereay on the subject of the functions of leaves in the vegetation of plants. A dissertation on the present state of ecience on thi question, including the results of personal experiment showing new facts tending to confirm or modify the doubt ful points in theories now admitted, is required. The papers must be submitted before January 1, 1876.
Another prize, of one hondred dollars, is offered by ise Academy of Sciences of Rouen, for a treatise on the adyin ages to be obtained by the conservation and improvemen f cider by the employment of the processes of heating now applied to wines, The award will be made duping the com. ing yearf

The testing of oilf, in a simple mode, has always been a desideratum. Mies Kate Crane, in the American Journal of Pharmacy, gives an account of a series of experiments insti tuted by her, which tend to show that much reliance can be placed on the cohesion figures produced by dropping oils on the surface of clean water. In her ex periments, a single drop of oil was allowed to fall from a burette held at a distance of four inches from the surface of a dish of clean water. The time requirtd for the production of certain figures was carefully noted, as it appears that several oils will produce very similar figures ultimately, if sulticient time be given. Oil of turpentine spreads out instantly and begins intestine motions, and lastly forms a beautiful lacework Oll of cinnamon forms a figure not more than half the size of the above. In a few seconds, small portions are detached and separate into distinct drops. Oil of nutmeg forms a large figure instantly, the edge showing a bsaded line. Poppy seed oil spreads instantly to a large figure, retaining an unbroken form for a few seconds; then boles appear round the edge, and soon the whole surface is broken up with curved lines. Cod liver oil spreads into a large film; a little way from the edge small holes appear, and in a minute or two the surface is studded with them. These gradually enlarge, assume irregular shapes, and become separated by branching lines. As these oils give different figures, and behave differently when mixed with one another or with lard oil, this method may be of very great use in the preliminary testing of suspected oils.

NEW DETACHABLE HORSESHOE

The improved horseshoe represented in the annexed illus. tration is so constructed that it may be put on or removed from the hoof without requiring the labor of the blacksmith. When constructed of malleable iron, its cost need not be over half that of the ordinary shoe, while it is much more durable, there being no wearing out of the rim, if that portion be constructed, as it easily may be, of steel. The inventor suggests that the device is especially adapted for use in the army, and that $i t$ might be made in various sizes, and thus issued, nothing further than a rasp, in the hands of a cavalry soldier or artilleryman, being needed to fit the shoe to the horse's hoof.

The invention, as shown in section, in Fig. 3 of our engraving, is made in two parts, A and B, fastened together by dovetails, C, at the heel, and a screw, D, at the toe. The lower part has toe and beel calks, and the foot of the horse rests upon its upper side. The portion, B, forms a metallic rim around the hoof, covering the edge of the same, so that

Fiy. $?$

finn:

when the parts are screwed together by screw, D, the shoe is firmly held. By placing a cloth or rubber cushion beneath the foot, the fit of the shoe may be tightened, and of course, by loosening the screw, the shoe may be easily removed.
Exterior views of the device, from above and from nnderneath, are given in Figs. 1 and 2. By its use, the horse's feet are left in their natural state, only requiring to be rasped off occasionally as the hoof grows. The shoes may be removed when the animal is turned out to pasture or when in the stall.

The inventor states that the entire shoe, ready for use, can be made for from twenty to thirty cente, and that, even if it be provided with a fancy polished rim of brass or othermetal, its cost will not be so great as that of the common shoe.

Patented through the Scientific American Patent Agency, August 25, 1874. For further particulars address the in. ventor, Mr. Luther W. Griswold, Marshalltown, Marshall county, Iowa.
a Valdable Gift.-Tbe Cincinnati Gazette states tha Twumas H. Yeatman, Eeq., has presented to the Young Men's Christian Association Free Library, of that city, a complete set of the volumes of the Scientific American. They comprise thirty bound volumes, and extend from 1859 to 1874 This is a rare and valuable gift.

WILLANS' THREE-CYLINDER ENGINE.

Weillustrate herewith an ingenious aod very neat arrangement of three cylinder engine, deaigned by Mr. P. W. Wil. lans, of Greenwich, England, which is now in use for driving a fan, etc., at the works of Mesers. John Penn \& Co., of

Greenwich, an establishment with which Mr. Willans is connected. In the engine in question three cylinders are used, and each cylinder is single-acting, receiving its steam upon the upper side only of the piston. The connecting rods are attached directly to the pistons, and actuate a threethrow crank shaft.

Each piston serves as a steam valve and controls the sup ply of steam to one or the other of two remaining cylinders There is a steam chamber in each piston and a port in its side (see Figs. 1 and 2). Steam is supplied from the boiler
by means of a hollow rod passing through the top of the Fig. 3.

cylinder into a steam chest. When the piston has reached about three fourths of its downward stroke, the steam port in it ovtrlaps a port formed in the side of its cylinder, anc s'eam then passes to the top of another of the cylinders: when, on the other band, the piston bas reached about one half its return stroke, it uncovers the port in the side of its cylinder and allows the steam to escape, from the cylinder
into which it was previously admitted, into a casing round the cravk sbaft, from which the exbaust steam is taken either to a condenser or to the air, as the case may be
In an engine which is required to run only one way round, the port in the side of each cylinder passes direct to the top of one of the other cylinders; but where it is desired to re verse the engine, as in the one illustrated, the ports to the top of each cylinder and those to the sides of each cylinder meet in a three-way cock (see Fig. 2); and this cock, by connecting the port in the side of any one cylinder with that to the top of either one or other of the other cylinders, revers es the engine. It will be seen that the wear upon the con necting rods and crank shaft beariogs is always in one direction, namely, downwards, so that no moderate amount of wear affects the working of the engine, and the whole ma chine is perfectly noiseless. The tubes through the tops of the cylinders, besides forming guides for the pistons, allow a great number of revolutions to be made withoutany loss of power in stopping and setting in motion sgain, the amount of dead weight in motion being small; and the pressure upon the three tubes keeps them in equilibrium, but still maintains a constant pressure upon all the bearings. All the lubrication is done through a steam lubricator on the steam chest (Fig. 1), and whatever oil is wasted in the cylinder pssses down to the bottom of the casing, and lubricates the lower ends of the connecting rods as they pass round. The upper ends of the connecting rods receive their lubrication direct from the steam chamber in the piston by way of amall holes drilled through the bottom of the chamber. As the stroke of the engine is so large in proportion to the width of the steam ports, the latter are opened and closed very quicky, and there is little or no back pressure in the cyliodere. By some slight modifications the engine may be made com pound, and the crank shaft may, it necessary, be kept cut side. A plan of the arrangementis shown in Fig. 3. When there is a casing round theaxle, the feed water may beheated by being pumped tbrough pipes passing through that casing We have examined the engine at work at Messre. Penn's (says Engineering, to which we are indebted for the engravings), and have found it work with admirable steadiness a very high speeds. Some indicator diagrams have also been taken from this engine, showing a very good distribution of the steam. The whole arrangement is, as will be seen, very simple and compact, and there appears to be a wide field for the application of such an engine.

IMPROVED CORK-SOLED BOOTS.
Represented in the annexed engraviog is a novel plan for making boots and shoes with cork soles, which, judging rom some completed articles which the inventor has submit

ted to us, is an invention both valuable and timely. A very thick but very light sole is provided, which effectually keeps out the cold and wet of winter, and in summer shields the foot from the excessive heat of the sun-baked pavements. The device is as easily repaired as the common sole, and its use in bad or rainy weather would obviate the wearing of ovfrehoes, to most persons a disagreeable necessity
In Fig. 1 a view of the finished boot is given, from which it will be seen that there is no detraction from the neat ap p_{i}^{6} pearance of the covering. In Fig. 2, a sectional view of the sole shows the mode of attacbment of the various portions of the same. The upper, A, is attached to the inner infole, B. by a seam. C is the cork, which is made in two layers, superposed, this construction preventing dampness passing hrough, however thin the material itself may be. Around he edges of the cork is placed a band of sole leather, D, covered with fine calfskin, E. This coverand the upperedge of the band are sewn in with the upper to the inner insole. By a second seam the upper, the lower edge of band, D, the cover, E , and the welt, F , are attached to the middle sole, G . The upper is taken up in both seams, giving great strength and firmness to the sole. The outer or main sole is secured to the welt by a third seam in the ordinary manner.
Patented through the Scieatific American Patent Agency, June 16, 1874, by Mr. E. A. Brooks, of 1,196 Broadway, New York city, who may be addressed for further particulars, is

