Corresponderte.

Straw Lightning Conductors.

"Straw is about the last matesial one would think of using for a " ligh ning rod ;" but according to a French journal, it answers the purpose admirably. It had been observed tbat the straw had the property of discharging Leyden jars without epark or explosion, and some one in the neighborhood of Tarbes got the idea of constructing lightning conductors, which were formed by fastening a wisp or rope of straw to a deal stick by means of brass wire, and capping the conductor with a copper point. It is asserted that the experi ment has been tried on a large scale around Tarbэs, eighteen communes having been provided with such straw conductors, only one being erected for every 60 arpents, or 750 acres, and that the whole neigbborhood has thus been preserved from the effecte, not only of lightning, but of hail also. The Journal of the Society of Arts says:. This state ment comes from a respectable source; and the apparatus being extremely simple and inexpensive, it is at any rate worth the trial. Copper conductors are out of the question in ninety nine cases ou', of a bundred, butevery cottager almost could set up a straw one."
To the Editor of the Soientific American
On reading the above account of straw lightning rods which you sent $m e$, I made the simple experiment of measuring the electrical resstance of a small bundle of strawe and found $1 t$ to be very high indeed, say a million or two jues as great at a copper wire of the same size. This real. y disposes of the question of usefulners for lightuing con ductors; fo, not to mention other considerations, with such resistance as this, the straw rod, if struck, would be in. stantly igaited, if not even blown to pieces by an explosive combustion.
The real question of most importance to a lightning rod is, however, not what will becom) of it after it is struck, but, strange as may eound when first stated, what csr tainty there is of i's be'ng struck. Thus: Sappose it to bproved thar a given rod if struck would carry to the ground all the elactricicy entering it, but that this same rod wan far less likely to ba gt-ack than ibe adjacest gable of the toure: What use would such a thiag beae a protec;ion? Evidert. ly we bafe first to coasider the cunditions which will secury the atriking of the rod in prefertnce to anything else near it, acd th n it will be time to inquire as to its capacity to carry off the fluid whon i. gets it.
I bave alrady indica;ed, on a previous occasion, and you bave ably discussed, the very s'mple conditions iovolved in this first and most important problem. Britfly they are these: That the lightning rod sbould offer a path to the earth presenting many huodred times less resistance ithan aoy of the ngighboring accideatal paths, made up of metal pipas, rods, nails, bolts, hirges, stove pipes, gatters, and the like, interspersed with woodwork, humen beings, and otber destructible matter. The electric fluid, when it finds presented to it two equally good roads, impartialls divides itrelf and sends half its substance by each route. If it finds two routes where the obstructions or resistances are as easy a by the cifficult road. In order that a rod, therefore should keep all of a flash to itself, it must offer immensely superior ioducements in the way of conduction to the gound. If it does this, then it is an absolute protection to all around it, and not otherwise. Now experiment has proved beyorda question that the conducting power of a given substance varies with its cross section or weight per runoing foot; and therefore, when wetakea rod of some good conductor, such as copper, and make it thick and connect it thoroughly with the earth, we get an easy path to the earth, for any cloud.collected electric fluid. What we must do, moreover, is to mak, this path so easy that no chance road shall come anywhere near it for easiness.
Under the existing state of affairs, with the large quantity of metal used in our buildinga, this can only be done when we have either a very thick rod or its equivelent ob. tained by uniting the rod near the roof to thevery water, gap, and otherpipes which would otherwise be its rivals. A cond uctor fulfilling the above conditions will always be easily able to carry all the electricity that strikes it. We con stantly see recommendations of this or that form of rod because it has more surface, and electricity of high tension travels cbiefly on the surface. Grant that this last state ment applies in full force to lightning, yet we see that it is of no practical importance. Increase of surface will not diminish resistance or improve conducting power. Thiswe know by cauntless experiments, and the opposite is not even claimed. If, therefore, a certain rod has not substance enough in it to make it an efficiently good conductor, equeez ing or twisting it into any possible form will not do it any good in the direction of securing the attention of the light ing to it; and if it is sot struck, of what comfort is it to believe that, if the lighining (wbich went into the house and set âre to it or killed the inmates) had only gone to the rod, it would have traveled to its own delight on the outside of the same? Lightning is not to be outmanœuvered cbeaply in this way, either by a thin pir ce of metal, whose insufficient condacting pener is not increased by giving it a ribbed a face or a spichl d,wist, nor by a non-conducting straw.
I have said nothing here of another way in which the low resistance of a lightning rod is effective, namely, in facilita ting ioduction and thus charging itself aud the air above it oppositely to the thandercloud, by which mans the discharge is still further determined in tie line of the rod. But this only adds to tha force of my former argument in favor of good and abusdant conductors.

In conclusion, I can only regard the Freach strat theory as a canard, though if it had originated in this State (N^{F} Jtriey) I should have considered it only the consequence of a verbal ambiguity, as we know that New Jersey lightning, moderately diluted, passes with great facility along a straw.
Stevens Institute of Technology. Henry Morton.
[Possibly some of our readers may not be familiar witb the fact that apple whisky is known by the name of New Jersey lightning.-EDs.]

Grinding Plane Irons.
To the Eiditor of the Scientific American:
Seeing in a recent number of your paper a description of a device for equalizing th wear on grindstones, I senc you an illustration of a hold er for plane irons, chisele, etc, with which one man can both turn the stone and grind the tool much more ac. curately than by holding it in his hard.
A is a piece of spring steel 8 inches long, bent at eac end, with thumbscrew. You grasp the holder with the left hand, at B, sticking the point, C, into a board or th wall, at such a distance from the stone as to bring the iron, D , in the right positio on the stone. By raising or lowering C, the bevel is regulated.

Eart Cle Michardson.
East Cleveland, Oidio
 \section*{Cable Scuentific American
 \section*{Cable Scuentific American
 To the Editor of the Scuentific American}

In your issue of Novem bar 7, 1874, you publish a commu acation from Mr. T. A. Edizon, Newark, N J., referring 10 a papur rea before the Butish Association by W. K Win. ter, on an iopror.ment in cable telegraphy. Mr. Eiisor sage that the pinciole shown was invented by himeelf, and paiented bo in Englard and in this country soce e thre years ago, and that it is used by the Automaric Telegrape Compony. Pormit ma, as the consultiag electrician of tbat company (and as owner of all the electro chemical autowa tic telegraph patente used by said compady), to deoy in toto the above assertion. and to show how the case real'y atand in order tha: Me Edison (as well as other parties) may know ow it is bimself.
In the first place, the party referred to, Mr. W. K. Win er does not c aim asy ioprsvement in automatic telegrapby but aicoply an im proved method of operating a galvanome ter or other recelving instrument by mana of the inductio coil aud earth contacr, wherein be uses the primery and sec oodary wires of an ivduction coil as a balanceor Wheat stone bridge, whereby the increase of the current througb the primary wire not only induces a current in tee secoadar wira, but ceuses a self.induced current to flow, being in fac an equivalent for the condenser with shunt helix. Mr Winter's patent bears date December 6, 1872.
In tbe second place, Mr. T. A. Edison professes to claim (in an English patent under date April 26, 1873) one or more electro magnets in the shunt circuit, to neutralize the atten uations of the pulsations in the main line circuit, and bring the line to a normal condition, to prevent tailing upon the chemical paper of a chemical telegraph: in fact, an equiv alent for a condenser with shunt helix.
In the third plane, I claim (under patents of dates October 18, 1870, A ugust 29, 1871, April 9, 1872, April 22, 1872, SAp tember 10, 1872, September 2, 1873) the use of electro-mag netic rheostats, rheostat overflow dams, condensers with shunthelices, or accumulators per se, in a shunt or branch circuit,in combination with an electro chemicalautomatic tel egraph, to bring the line to a normal condition, prevent tail ing, and prodnce rapid work.
As a twenty years' subscriber to your valuable journal,I ask at you will do me the justice of inserting this my reply.
Passaic City, N. J.
George Iittile, C. E.

A Simple Plan of Ventmation -The following simple method for ventilating ordinary eleeping and dwelling room is recommended by Mr. Hinton in his " Physiology for Prac tical Use": A piece of wood, three inches high and exactly as long as the breadth of the window, is to be prepared. Let the sash be now raised, the slip of wood placed on the sill and the sash drawn closely upon it. If the slip has been well fitted, there will be no draft in consequence of this dis placement of the sash at its lower part; but the top of th lower sash will overlap the bottom of the upper one, and as draft, will enter and leave the room.

In causing anæsthesia by subcutaneous injections of chlo ral, M. Colin s'atfs that weak solutions should be used; and when forced into veins, the operation should be performed very slowly, so as not to cause syncope. Veins near to artic ulations should be avoided.
M. Mannecker uses for the oxyhydrogen light (and obtains increased brilliance) a cylinder composed of carbonate of lime, magnesia. and olivine, compressed by hydraulic pressure. Theolivine used is a najural silicate of magnesia

Institution of Naval Architects.
The Institution of Naral Architects, Jchn street, Adelphi, Lindon, have issued the following list of subjects on which communica'ions are desired:

1. On the construction and armament of ships of war.
2. The effect on naval construction of torpedoes or other modes of submarine attack.
3. On the life and cost of maintenance of merchant steam hips.
4. On the preservation of the hulls and cargoes of ships from the effect of bilge water, leakage, condensation, and other causes of internal decay and corrosion.
5. On the disposition and construstion of bulkheads, and n their attachment to the sides of iron ships.
6. On the masting of ships, and on iron and steel masts and yards.
7. On the ventilation of ships by natural and forced drafts, with details of any system in actual operation.
8. On the fouling of ehips' bottoms and its prevention.
9. On machines for the economizing of labor in the con struction of ships.
10. On the use of machinery for economizing labor on board ship, whether merchant ships or ships of war, and whether for loading or manœuvering.
11. On telegraphic or other communication of orders on board ship.
12. On the construction of slips and launching ways, and n the launching of large ships.
13. On the present state of knowleoge of the strength of materials as applied to shipbuilding, with especial reference o the use of steel.
14. On methods for the proper strengthening of ships of extreme proportions, and on the precautions necessary to insure their safety at sea; also on the lengthening of ships. 15. On the straining effect of engines of high power on the structure of ships, and the arrangements necessary to obvi te them.
15. On legislative interference with the construction, stow age, and equipaent of ships.
16. The design, construction, and measurement of yachte. 18. Ou floating structures other than ships, such as docks, ighters, pontoons, aud so fortb.
17. Oa ships for special purposes, such as light ships, telegraph ships, cattle and epecial passenger ships, aud others.
18. Actual measurements or records of sea waver; their higbt, lengtb, periodic time, aud spotd of actance; or their profiles.
19. On the results of the best modern practice in oc an team naoigation, with reference to the latest modern im. provemente, such as purface condensation, supertitatirg compound engines, and the like; alao the value of each of these taken sepsrately, and especislly the results of acy acual experimests to test this point.
20. On the friction developed in marine fterm engizes of different forms; and on the differeace between the gross indicated horse power developed in the cy ixder, ard the net eftective horse power ava: jable for the propulsion of the ship fter working the air pamp, slide valves, ard other moving pats of the engine.
※る. On economy of fuel in marine engines, with detailed esults.
21. Oo methods forstarting, stopping, and reversing marine eam engines of high power
22. On marine boilers, their form, rate of combustion, and he proportion of their various parts
23. Information as to the alleged rapid deterioration of marine boilers supplied with water from surface condensers, and the remedies for the same.
24. Exact information-either experimental or theoretical on the efficiency of propellers.
25. On any novelties in the construction, equipment, or fiting of ships.
26. On any novelties in the construction, arrangement, or details of marine engines and propellers.

Iron Ore Bed in New Tork City.

We find it stated in several of our Eoglish contempora ries (and it will benews to most of our residenta) that "some excitement has been aroused in New York by the discovery of a rich vein of hematiteiron ore in the heart of the city, by some workmen who were digging foundations for a new building. The vein, which is 30 feet wide, was found at a depth of only 4 feet from the surface." We expect to hear, by the next foreign mail, of the erection of a smelting furnace at the mine "in the heart of the city."
We were led, by this startling announcement from across the water, to inquire into the facts of the remarkable discovery; and we learn that some laborers, eng aged in digging a foundation on the corner of Washington and North Moore streets, struck a layer of scoria and cinders, the débris of some furnace, which had been used for filling in the ground a long time ago. Our reporter was shown some specimens of the "ore," deposited in barrels by the workmen, who eemed quite delighted at the sensation which their discorery had created abroad.

Curious Apples.

Doubts are entertained by some pomolegists as regards he truth of the statement made that apples have been grown in which two or morevarieties were blended into one, hat is, apples having one section sweet and the other sour. We have seen such fruit and thereforeknow that it ha* been produced. A tree bearing apples of this na+ure formerly stood in a gentlemau'sgarden in Gro getown, Mase. It was of largesize, andin some years produced several buahels of
ruit. The owner fold the apples as curiosities, and frequent y individual ppecimens brought large prices. It was excesing interepirg to examine the crop, as one apple diff red wioely from another, and there was difficulty in find ing : iwo pr cieely alk, A few were found in which almost exacijy one balf was a weet and the opposite sour, but a majurity were made up differently. Sections, one quarter or one eixieenth, more or less, would be sweet or sour, and the remainder would be of the opposite kind. The line of de marcation oo the et n was distinctly defined, the sour por tion $h a v: n g$ a redidish color, while tbe sweet was of a pale green. Tuere was no mistaking the flavor; the rour portion was vory sour, aud the sweet very sweet. On the same tree a poles grew which were uniform in kind, some being entire ly ewest acd ot'sers entirely sour.
This poomologi:al freak was brought about by a careful process of budjiog, two buds of different varieties being d vided, a ad oxe half of each joined together, so as to adhere and grow in that condition. As none of this fruit bas be en esen of late yeare, we conclude that the tree has per isbed.-Boston Journal of Chemistry.

We car corroborate the foregoing, having ourselves seen them growidg, and tasted apples that were sweet on one half and sour on the other. This was several yeurs ago. The tre which produced this curious fruit was upon the prem ises of the Rov. Dr. Ely, of Monsou, Hampden county, Mass

PRACTICAL MECHANISM.
 number xill.
 BY Joshod rose

The tension referred to in our last (see page 293) is, in all prabability, caused by the unequal cooling of the ring after it is cast
Iron and brass molders generally extract castings from the mold as soon as they are cool enough to permit of being remosed, and then sprinkle the sand with water, to cool and save it as much as possible. The consequence is that the part of the casting exposed to the air cools more rapidly than the dart covered or partly covered by the sand, which creates a tencion of the skin or outside of the casting. The same effect is produced, and to a greater extent, if water is sprinkl d on one part of a casting and not on the other or even on one part more than on anothor.
Is has already bean stated that brasees contract a little, sideways, in the process of boring, and that work of cast metal aliers its form from the skin of the metal being removed; this alteration of form, in both cases, arises in the case of a piaton ring from the release of the tension.
It eometimes occars that a piece of work that is inisbed truein all its parte may unex pectedly require a cut to be tak +n off an uufiaished part (to allow clearance or for other cause), and that the remoral of the rough ekin throws the work out of true in its various parte, as, for instance: a saddle of a lathe be'ng serap do fit the lathe bed, and its alides finely scraped to a opridace plat; ; or the restitself beidg fitted and adjasted to the croas side of the saddle. If, when the nu and eciew of the cross a ide are placed in position, the nut is discovered to bicd aea nst, the grove (of theraddle) along which it moves (fibe ous, bing too thin to parmitof any more bsing taken cff it) thers is no altarnative but to plane the groove in tie saddle deeper, wbich operation will cause the caddte to warp, d strying its fit upon the lathe bed, and the truanes of the Vo of cue cross slide, and that to such an ex;ADt ac to e'matimea require them to be refited.
Tuo + $\mathrm{V}_{\mathrm{l}}+\mathrm{ff}$ ecta of this tension may be reduced to a mini mum by takiog the castings from the sund and placing them in a baap in some convanientpartof thefoundery, and cover ing them witb paod kapt in that place for the pur jose: and by rou hing out all tbe parts of the work which are to br cut ar: on chack: pg before finisbing any one part.
P.stoo ri ge are turned larger than the bore of the cylinder Whichib y are intanded to ft , and, as before stated, sprung isto thencylioder. Tie amount to which they are turned larger depente upos the form of split intended to be given to the ring; it it be a straight one, cut at an avgle to the race of the ring, which is the form commonly employed, the diame ter of the ring may be made in the proportion of one quar ter inch per foot larger than the bore of the cylinder, suffcient boing cut out of the ring, on one side of the split, to permit the ring to soring in to the diameter of the cylinder, w en the riog m ' y be placed in the cylinder and filed to fit, takirg care to keep the ring true in the cglinder whilerevolv. ing it to mark it. But if the ring is intended to be of the form bera illustrated, the ring must be made of a larger proportionate diameter, the proportion depending upon how much the ende of the ring are intended to lap each other, the lap being from a to B, in Fig. X.

Firy.

There is more work entailed in giving a piston ring this form of aplit, but it is undoubtedly superior to the plain one. A oother play to givespring to a piston ring is to turn it to the same diameter as the bore of the cylinder, and then to pene it all rouod on the inside face (that is, the bore), the result being that, when the ring is sawn in two (which is all that is necessary in this case), it will spring open and be of a larger diameter. When, however, it is placed in the cylinder, it will require to be sprung together again to the diameter to which it was turned (the split being open to the width of the eplit cut by the saw), \&o that it will not require much, f aly, bling to fit it to the cylinder,

LATHE WORK.

When bolte and plates are employed to bold rough wisk, are must be token to place the plates over those paris of he work which touch against the chuck or face plate against which the work is bolted; or the pressure of the pla er on the work will springit, and when it is taken out of the latke (or other macbine) it will spring back to itsoriginal position, and the part that has been cut will be no longer true, caus ing in many cases a great deal of unnecessary vis \rightarrow work. I it is not practicable 10 so place the plates, then hore parta of the work which stand off from the face plate or ctutk should be kept from aprirgirg by having wedges driven be ween them and the plate, which is of great importance in light work.
The plates (or clamps) should be so placed that the ends gripping the work travel in advance, the bolts being kept as close to the work as possible and the packing at the other end of the plates, as shown in Fig. 42. αa r ${ }^{2}$ presente th
ctu k plate, B is the work,
C C are tle plates, and D D are the patking pieces. Heavy cast iron work requiring much turning to be done to it between the centers should bave wrough iron plug centers put into the wrought iron; because centers, if o cast iron, cut, and soon ru out of truth. Before boring o turning work tbat is chucked if there is sufficient room put a rod of iron between th centers to conuteract any end play there may be in the apin dle of the lathe. In applying a steady rest, be careful no o put an upequal strain on the work by screwing any of the jaws tighter than the others, or it will spring the work out of the straight line, in which case the cut taken by the tool will not be parallel. When there is sufficient room, use a boring bar with a small tool in it for boring holes; for th extra strength of the boring bar enables the tool to take a haavy cut, which a borivg tool having a slight body would not do, in conss quence of the springing.
If work chucked in a latbe is much heaviar on one side r.han on the other, bolt a weight on tbe chuck (near the ligh side of the work) sufficiently heavy to counterbalance it, oth or wise the centrifugal force generated by the revolutions o the heavy gide of the work will cause it to revolve eccentric ally, and to be in consequence turned untrue.
In turning a cone on anytbing which is beld between the centers of thelathe, the dog or clamp used to drive the work must be so placed as to be able to move to accommodate the varying angle of the center line of the work to the centur lin of the poppet head of the lathe, as illustrated in Fig. 43.

The dotted live, a, represent the c nter line of the work B B are the latbe ceriters. C's the ceater line of the poppe head of the latbe, D D is the chuck plate E is the position of the center ine of the dag or drioing cl mp at one nide of the lathe conter, and F is its position whea the lathe bas made one half of a revolution; from which i; will be par ceived that the tai stock of the lathe, brjug cooved out of th center line of the headstock of the latbe, tbe end of the $\mathbf{d} 0 \mathrm{~g}$ or clamp which is driving the work adoaces toward and recedes f rom the chuck plate at every revolution, and liberty must therefore be given it to move in that manner.
In boring brasses for journale, place a piece of sheet tin in the joint of the brasser, and bore th• m the thickness of the tin too large, which will make them fit well on the crown when the tin is taken out; for brasses bored with the joint close together always bind on the sides, and will hot fit down on the crown without being filed.
The same end may be attained by boring the bresees trifle too large, so that filirg a little off the faces of the join will let them togather and down on the crown; bat the above escribed plan is the best.
Toe amount of shrinkage to be allowed for contraction, on boles in cast iron of two or less inctes bore,abould be so litr'e that,the outside callipers being gaged to touch the rhaft very lightly and the inside callipers or gage to toucb the bole only sufficiently tofeelthe touch, you cav just pee plainly between the two when they are placed or gaged ingetber
For larger sized bores, proportionately increased allow ance should be made, so that a hole of 12 io ches diameter will bave less than $\frac{1}{6} \frac{4}{}$ of an inch of ahritkage. Wrought iron
may be given a little more sbrinkage, and steel one half less may be given a iittle more abrix
in the case of the 12 inch hole.

EXPANEIONAND CONTRACTION.

Much labor aud expense may often be saved by employ ng the principles of exp naion and contraction to refit work For ins'ance, euppose a bolt has worn loose: the bolt may be hardened by the common pruesiate of potash process, which will cuuse it, to idcresse in riza, both in length and diameter The hole may be alao bardened in the same way which wil decrease its diam ter; and if the decrease is more than ne essary, the hole may bs around or " lapped " out by mean not quite true, are a triffe too small, or have been hardened
and cannot therefoxe be cut by a tool A lap may be simply a piece of cod copp. r, or an iron mandril with tin or lead cast ar sund it. The diameter ot a lap ebould be turned to be an easy fit at both ends in the hole and a trifle larger in the middle, so that the hole which it is intended to grind will fit ightly on the middle of the mandril, the latter being about hree times the length of the former
The operation is to place the lap throngh the hole which it is ogrind and then betwern the centers of the lathe ; then, whil the lathe is running at a bigh speed, supply the lap with oil and grain emery, moving the work back and forth along the ap until it will pass casily fromend to end, when the lathe may bostopped and the lap indented with a cold chisel, and supplied with oil and emery,and the grinding opera'ion pro ceeded with as before. The work should be beld uprigh and on each side of the lathe alternately, so that its weight ball not caure the grinding to be excessive on one side of the hole. Only about $\frac{1}{64}$ of an inch of shrir kage can be obtained on a hole and bolt by hardening, whicb, however, is Lighly advantageous when it is sufficient, because both the hole and the bolt will wear longer for being bardened.
For closing long holes, boxes, etc., the water process may be employed, as represented in Fig. 44. $a \alpha$ is the section of

wrought iron square box or tube, which is supposed to be made red hot and placed suddenly in the water, B, from its end, C, to the point, D; the result is that the metal in the water, from C so D, contracts or shrinks in diameter, and compresses the hot metal immediate'y above the water line, as he small cone at D denetes. If then the box or tube is lowly immersed in thewatur, ite form, when cold, will be as described in Fig. 45, that part from C to D maintaining its original size. and the remainder bring smaller.
It must then be rebeated and suddenly immersed from he end, E, nearly to D, until it is cold, and then slowly low red in the water, as before, which will convract the part from D to C, making the entire length parallel but smaller, both in diameter and bore, than befure it was thus operated apon.
Smallholes to be reduced in bore by this process should be filled with fire clay, and the faces nearly or wholly covered wilh the same substance, so tbat the water will first cool the circumference, as showa in Fig. 46 a represents the bole, B the circumference of the washer tup Frg. Fi. posed to be operated on, a and the dotted line, C, the fire clay filling the hole and nearly covering the face; so that the part not covered will cool first, and, in contracting, force in wards the metal round the vole, which is preven'ed from cooling ao quickly by the clay and therefore gives way to the compressing forca of the outeide and cooler metal This principle may be made ure of for numerouspurposes, as for reducirg diameters of the tyr. s of wheels, r duc ing thesize of wrought iron bsads, or for closing-in connecting rod straps to refit them to the block end,' be mode of operation for which is, in the case of a od whose strap is held by bolts running tbrough the block and strap, to bolt the strap on the rod to prevent it from warping, to then heat the back of the atrap, avd (bnlding the rod in a vertical position) submerge the back of the strap in water to nearly one balf its thickness.
If the boltsare not worn in the holes, or if the strap is one having a gib and key, they may be merely put into their places without placing the strap on the rod. Even a plain piece of iron shrinks by being heated and plunged into water but only to a sl'ght degree, and the operation cannot be succesefully repeated. Eccentric rods which require to be shortened, say $\frac{1}{64}$ of an inch, may bsoperated on in this manner, in which case care must be taken to immerse them evenly so as not to warp them.

Prizes for Essays.

The Academy of Arts, Science and Belles Lettres of Caen, France, offers a prize of eight hundred dollars for an ereay on the subject of the functions of leaves in the vegetation of plants. A dissertation on the present state of ecience on thi question, including the results of personal experiment showing new facts tending to confirm or modify the doubt ful points in theories now admitted, is required. The paper must be submitted before Jsnuary 1, 1876.
Another prize, of one hondred dollars, is offered by iso Academy of Sciences of Rouen, for a treatise on the adyin ages to be obtained by the conservation and improvemen f cider by the employment of the processes of heating no applied to wines, The award will be made duging the com. ing yearf

