a Weekly journal of practical information, art, science, mechanics, Chenistry and manufactures.

Vol. XXXI.-NQ. 21.]

THE HAMILTON SURFACE PLANER.

We present herewith illustrations of a new surface pla ner, manufactured by the enterprising firm of Bentel, Margedant \& Co., of Hamilton, Ohio, a concern which has gained an enviable reputation for the multiplicity as well as the value of the improved machines numbered among its recsnt products. Two views, end, Fig. 1, and side, Fig. 2, of the device are given, from which its uses will be readily recognized; while its sym metrical form and compact construction will commend it to the practicsl mechanic. There are two planing tabies, located respectively above and below the cylin der, both of wbich are adjustable. The upper table is made in two sections to plane above the cylinder, and the lower table or bed serves for thicknessing from five or six inches, if desired, down to one sixteenth of sn inch below the cylinder.
In front of the knives the table rests on inclines, and can, by a hand screw sbown in the engravings, be charged from a one six. ty-fourth to one and a half incbes below the cutting line. The back table remains for planing out of wind, etc, at the extremefight of the cutting line. A triangular cutter head of a pecu'iar form is provided; and altbough the knives are straight, similar to those generaily used, they make a drawing cut,thereby insuring à smooth surface. Th machine, thus arranged, can be used for planing out of wind, smooth'ng, equaring, making a glue joint, bsveling, cornering and tapering. Among other advantages claimed for this tool is that the material to be planed out of wind does not need to be levtled, fastened, and run back and forward before the cut is takear ; for, since it rests on a level adjustable table before the cutte cylinder will operate upon it, the planed par glides upon the back table as soon as it pass es the cutter cylinder. The tool, therefore planes economicully, not cutting away any more than is necessary to secure a smooth
surface out of wind, After the work is planed out of wind, it is in the right position to be operated upon by the cutting cylinder to plane it to the required thickners (below the cy linder), requiring no re handlig to other machines used for this purpose only. Very short, narrow, and thin material can be planed out of wind by passing it over the cutter cylinder. Circular, oval, and square framed stuff, without regard to th running of the grain, can be passed ove the cutter cylinder, planed, and finished. Fig. 2 shows the machine arranged for planing boards or timber to the required thickness. The upper table, back of the knives is swung bact and brought forward by the hand screw. This part of the table is so constructed that it forms on the lower is so constructed that it forms on the lower
side a bonnet to direct the upright flying shavings toward the table in front of the cutter head, from which they are blown by the wind created by the revolving cutter head.
The work done above the cylinder is easily fed toward the knives by hand; while the feeding toward the cylinder, below the cutter head, is performed by geared feed rollers, which can be started or stopped by means of a tigatening pulley connected with the feed lever. The latter is held in its position by a spring. The feed of the machine can be changed from fast to slow, or vice versá, to suit for hard or soft wood. An adjustable pressure bar, roller scraper, and a gage admit of the lower table being accurately set for any thickness of cut.
The machine is covered by several paents which have been secured through the Scientific American Patent Agency. The manufacturers, to whom further inquiries may be directed, as above, make several sizes and kinds of the tool, from 24 to 16 inches.
The right to manufacture the planer in the Eistern and Pacific States is, we are informed, open to purchasers.
We see, by the late report of the judges of the Cincinnati Industrial Exposition, that the merits of this machine won for it a first premiunc. Judging from samples of remarka. bly thin planing and other work, performed on the appara-

the hamilton surface planer.
of waste containing 5 to 6 per cent of tin, 660 lbs . of crude bydrochloric acid and 66 lbs. of crude nitric acid are used, with water enough to cover four fifths of the hesp. The operation is carried on in tanks of wood or brick, 9.84 feet cube, lined with a composition of 2 parts of sand and 1 part of melted sulphur, and heated by steam. The action lasts from thirty to forty-five minutes. The liquid is then run off, large masses
 The preventives for this danger are care bay in the lofts is kept perfectly dry, that it is well

The Preservation of wood.
A new work, exhaustively treating the above topic, has recently appeared in France from the pen of Maxime Paulet, a quite eminent chemist. The author advo cates especially the use of sulphate of copper and creosoted oil, according to the circumstances under which the wood is employed. Sulphate of copper has a poisonous action upon the aximal and vegetable parasites which appear at the beginning of organic decomposition. In treating wood which is to bs buried in the earth or submerged in fresh water, the solution should be applied in excess, since the effect of moisture is slowly to dissolve the salt. Sea water acts in this manner so rapidly that sulphate of copper should not be employed for piles or similar marine structures. In wood soaked with the salt solution, a portion of the later unites closely with the ligneous tiesue, and anotber part, in excess, remains free. This last,first dissolved by the exterior liquids, slow y re. tards the removal of that combined with the wood; but the combined portion ibself, though more stable, does not entirely escape subtraction, accelerated or retarded according to the rapidity of renewal of the dissolving liquid.
On the other hand,for wood destined for aerial structures, the quantity of solution should be diminished in order to prevent the mechanical effect of intervascular crystallizations.
Regarding creosoted oil, M. Paulet states that the tarry and carbolic compounds are much preferable to the metalli salts for wood exposed to sea water, brcause the naphthaline, aniline, and notably the carbolic acid the scrap iron washed, and the washings used in treating the exercise an antiseptic action, corgulating the albumen and next lot. The tin is precipitated in a spongy state by m‘ans thus destroying both the circulation of the sap and also that of scrap zinc, 70 parts of which serve for 100 of tin. The in the organic parasites. It is pointed out, however, that precipitated mass is washed, and at once dissolved in bydro chloric acid. There remains a mass composed of chloride
hese substances render the wocd infirmmable, while the metallic salte have just the contrary effect.

suientific Ammicam.

MUNN \& CO., Editors and Proprietors. published weerlizat
NO. 37 PARK ROW, NEW YORK.
o. D. MUNN.
A. e. beach.

TEERIS.
One copy, one year, postage Included...........
One copy, six months, postage included.....
Ten coples, one year, each 82 20, postage included.
Over ten contes, sme rate
$\$ 2700$
By the new law, postage is payable in advance by the publishers,
VOLUME 8XXI, No 21.[New Seribs.] Twoenty-ninth Pear
NEW YORK, SATURDAY, NOVEMBER 21, 1874.

CHEAP WORKMEN MAKE DEAR WORK

It is a common complaint,among those who have paid but superficial attention to the relations of work and wages, that high wages in this country make it very hard, if not quite impossible, for our farmers and manufacturers to compete successfully with the cheap labor of other countries. Such complainers fail to comprehend the economic paradox that the cost of labor affords no criterion of the cost of work,
Of course there are limits both ways. Labor must not be so Of course there are limits both ways. Labor must not be so cheap that the laborer cannot subsist on the proceeds of his toil, nor so dear that the product is swallowed up in wages Within these limita, especislly where machinery is involved the ecovomic law is universal; the cost of produc
rouyhly speaking, varies inversely as the wages paid.
roughly speaking, varies inversely as the wages paid.
This fact comes out very strongly in the special repor
This fact comes out very strongly in the special report of
Comm'ssioner Wells to Congrees in 1868, wherein the relaion of work to wages is discussed in minute detail. As a rule the productiveness of the laborer increases with the increase of his pay, and generally at a more rapid rate; and -though modified by other conditions-the economy in pro. duction increases accordingly. Taking the puddling of iron as the representative process of the iron trade, Mr. Welle found the average price of labor per day for puddlers was from $\$ 1.80$ to $\$ 1.88$ in Staffordshire, $\$ 1.38$ in France, and from $\$ 1.14$ to $\$ 1.25$ in Belgium. The average price of mer chant bar iron was $\$ 33.50$ in England, $\$ 35$ in Belgium, and 40 in France
In an address read before a meeting of the ironmasters of the north of England, Mr. Lowthian Bell gave the results of his investigations as to the cost of smelting pig iron in several countries of Europe. Every where cheap workmen were associsted with dear work. It required forty-two workmen in a French establishment to carry out the same amount of work which twenty-five men were able to do in Englieh fac tories. With labor twenty per cent cheaper, the cost of pro ducing pig iron in France was $\$ 5$ to $\$ 6$ more per tun than t Cleveland.
In Germany, as in France, though the nominal rates of wages were still lower, the actual cost of work was greater
than in England. Thus in Westphalis, where labor was wenty-five per cent leas than in England, the cost of smelt ing a tun of iron was $\$ 375$ more than on the Tees.
The same contrast of cheap labor and dear work was ex hibited in the report of Mr. Redgrave on the condition of the textile industries in England. Where labor is cheap, the number of hands required to perform a given amount of work more than offss ts the advantage in individual wages In France, one person is employed on the average to four tean spindles; in Russia one to twenty-eight; in Prussia one ootbirty seven; in Great Britain one to seventy-four, and not unfrequently mules containing 2,200 spindles are man aged by one mincer and two assistants. Wages were less in Germany and the hours of labor longer, yet the weight o work tarned off was jess than would be produced by th In Russia the inefficiency of the operatives as compared with
those of Evgland was still more strikingly manifest. Their wages hour tor hour were less than one fourth the amount earned in Eugland; yet the produciive powtr of the Eng
operatives throws the advantage greatly in their favor.
The same condition of things is noticed by Mr. Wells, who shows that, while female labor in the coton manufacture is paid from $\$ 3$ to 3.75 a week in Great Britain, from $\$ 1.67$ to $\$ 2.30$ in France, Belgium, and Germany, and from 56 cents to 70 cents in Russia, the one thing most dreaded by conti n \in ntal manufacturers every whert is British competition.
In the carrying.out of his railway and other contaacts in everỳ quarter of the globe, the late Mr. Brassey had occasion to employ great numbers of laborers of almost every nationality, at widely different rates of daily wages; yot it was found to be the almost invariable rule thaic the cost of exe cuting a given amount of work was everywhere much the ame. It anything, the advantage in cheapmess lay wher labor was dearest. Thus the wag a psid in Eoglaud were
higher than in any other country : yet bridges, viadacts, tuahigher than in any other country : yet bridgen, viadacts, tua-
nels, and all works of art on railw w $*$ were executed there nels, and all works of art on railw $* y$ yove extcuted there
more cheaply than in any orher pari of the world. labor was plentiful and very cheap, as in It iny or India, sim ple earth works might be erectrd at a cheaper rate than in England; but this advantago could not wore than mako up for the greater cost of che more d flicult wotk.
.Numerous illustrations of this faut, and of the law that cheap labor does not necesaarily imply cheap work,are given in the. interesting volume "Work and Wages," in which Mr. Thomas Brasesy, M.P..fums up the results of his father's experience as an employer of labor. Mr. Braseey's first great contract os the continent was on the Paris and Rouen Rail way. A bout 10,000 men were employed, 4.000 of them being Eaglishmen. The Freach laborers, working from 5 A. M. to 7 P. M, were pa:d 60 cents a day ; the English navy, beginning at 6 A . M. and leaving off at 5.30 P . M., received $\$ 125$ a day; yet $1 t$ was found on comparing the cost of adjacent cattiogs, in precisely similar circumstances, that the excavation was a adeata lowerchat per cubic yard by the Ergli.h than by the French. la the eame quarry, at Bonni rerer, Frenchmen, Irishmen, and Engliahmen were em. nirper,
ployed side by aide, receiving respectively 60 cents, 80 plojed side by aide, rectiving respectively
cente, sud $\$ 1.20$ a day. The high priced Englishman was cente, snd $\$ 1.20$ a day. The high priced
the wost profitable workman of the three
The Deppe R*ilway was executed principally by native labor. The French earned from 50 cents to 60 cents a dsy when doing piece work their earuings advanced to 70 cen's A large number of Belgians, sonen what familiar with railway work, were employed and earned 90 cente a day. The Eng lish were connidered to be worth $\$ 1$. Ten years later, when the Caen line was constructed, Engliehmen were atill employed for tipping and plate laying, apd on oificult work on epp rock catting. Their wages were $\$ 1$ \& day as before, while the usual earr ings of the French lab srers ranged from 55 cents to 70 cents. The Etglish were $\operatorname{tmployed}$ by exerienced sub-coniractors directly interested in the closest poseible reduction of ex pendiure. Similarly on the Grand
Trunk Railway, in Cadada, where a large number of French runk Railway, in Cadada, where a larga number of French ere paid from $\$ 1.25$ to $\$ 1.50$ a ciay, and did the greatest mount of work for their money. Exterding the investigation to Mr. Brassey's otber contracts in France, Italy, Austria, Switzerland, Spain, Germany, B-lgium, and Holand, the approximate uniformity of cost for railway work is exhibited in all caser, notwithstanoing great differences in a es of daily wages. So, too, in India. On the Delbi and Uncritzer Railway, it was found that, mile for mile, the cost was about the same as in England, although the cost of abor, estimated by its 8 cents to 12 cente a day, was marvelously low. Each laborer did his money's worth, and no ore. Skilled labor was scarce and high,and in the absence of experienced sub-contractors the cost of supervision was very great, averaging twenty per cent on the entire outlay In Southesstern Europe the same state of things pre vailed. Unskilled labor was cheap; but in proportion as kill and manual dexterity were required, ihe difference in he cost of engineering work disappeared. So too in Italy, in the Mauritius, and elsewhere
But, it mesy be objected, in all these examples weak men were pitted against strong men, unskilled against ekilled labor ; there is nothing parad oxical in the assertion that one hearty, well trained, and well fed workman may accomplish wore than two or three untrained and ill fed men, costing ach one half or one third as much for daily wages.
The objection may be well taken, but it fails to meet cases ike the following, given by Mr. Bressey to thow that it is quite possible that work may be more chesply executed by ige eame workmen, notwithstanding that their wases have highly increased. At the commence asent of the North Devon
Railway, the laborers received 48 cen's a day. Doring the Railway, the laborers received 48 cen's a day. Daring the
progress of the work their wages werz raised to 63 cen;e and 72 centsa day. Nevertbeless it was fouvd that the work was executed more cheaply when the men were earning the bigher rate of wages than when they were paid the lower. Again, in carrying out a part of the Metropolitan Drainage Works in London, the wages of the bricklagers were gradully raised from $\$ 150$ to $\$ 2.50$ a day; yet it was found that he brickwork was constructed at a cheaper rate per cubic ard after the pric \rightarrow was raised than before.
An indirect way of rasing wages is to reduce the hours of labor. The evidence is very strong to prove that, with the same men, euch ad vancas in the cost of labor do not necessa fiy increase the cost of work. Indeed it may be said to be the univeral rule that beyond ten hours a day the produc ion deminishes as the time increases. With proper diligence, ght hours are tnough for a man to do all he is capable doing daily, with profit to himself and his employer.
the relation of alcohol to physical strength A correspondent asks: (1) Is there not a clatking of
authorities in regard to the relation of alcohol to phyaical strenghh, as isdi iated in our rectnt article on alcobol, f ond, and force? (2) Whore ex periments were therein refe'red to? (3) How it is possiblo for a dose of alcohol to increase oue's working power, if, as Todd and Bowman state, "the uee of alcoholic stimulants retards digestion by coagulating the pepsin of the gastric juice, thereby interfering with its action?" He addas that he does not ind in his text books any action?" He adds that he does not find in his text books an
authority for the position that alcohol is a force procucere.
There is a serious clashing to be observed among cur ent opinions in regard to the action of alcohol in the humaveys. tem, due very largely to the fact that the effects of alcohol vary immensely with the dose, but more perhaps to the tenency of men to come to decided conclusions from one-sidtd or insufficient evidence, and to hold to such conclusions in pite of every evidence to the contrary.
Regarding authority in the only sense admissible in Sci-nce-that is, as the overwhelming weigh ${ }^{\dagger}$, not of haman testimony, but of facts, critically determined-we cannot say that the alleged clashing is at all serious. Tbe physological action of alcohol has been determined with as close an approximation to accuracy, probably, as that of ary other substance; and while it is never possible to epeak with absolute certainty in such matters, we are jusififed by fact in saying that the grounds for regarding alcobol as a force producerare quite as substantial as those on which we rest our belief that beef, or bread, or any other food is a force pro ducer.
The failure of our correspondent's text bookat t, recogo'ze this result of recent investigations is due very likely to th-ir having been written before the investigation were made. The latest work of eminence in this field- $\mathrm{Pa}_{\mathrm{a}} \times \mathrm{y}^{\prime}$'s "Trestise on Food and Dietetics, Physiologically and Tterafeutical'y Considered"-gives a very good discussion of the role of alcohol within the organism, and admits that, up to the time of its publication, the probabilities were, on the whole, in favor of the belief that alcohol is a force producing food. Investigations still more recently published, roiably bo Drs. Anstie and Dupré, carry the discussion to the po'nt of prac tical demonstration, as we have shown in another colamp. The experiments, about which our correspordent ir quires, were those narrated by Dr. Hammond in the address then under review.
As for the quatation from the worke of Toodand B,wman the facts would seem to prove it perfectily corr-c, wi h the addition of the first two letters of the alptabet. It is not the use but the abuse of alcoholic stimulan's wh ch bas the effect described as every drunkard's s'owach sl owo after a debauch. In excess alcokol arrests digretiod. zs it arreats all the other bodily functions. In , xcees it is a poisor, a very dangerous varcotic poison. N-veribelss ia proptr doess, properly administered, its use bas quite the cou'rary effect. Is faclitates digestion, and is otherwise srrikinely beneficial. Its indiscriminate use, however, is alwaye aud everywhere to be deplored, since criy the fow are able to use it witbout abuing it and themeelvee at tha cace time.
Because a little at the proper time is geof, ton mavy peo ple are apt to infer that a great desl at an y tum 3 muat be better. It is the logical weskness, so happi'y bit off in © Op 's fable, of the old woman with her ben. Breause with one meaeure of barley the $\mathrm{h} \cdot \mathrm{n}$ laid an egg a cay, the thrifty dame reasoned that two mearures of bar ey woud wabe be lay two egge a day. But they did'n. The hen sin ply got fat, and quit laging altogether
As with alcobol, so with tobacso, so with articles of food like tea, coffee, spices and the rest, so with c mmon neces saries like pure air, cold water, txercise, sleep, plearure there are ill balanced people who are rever able to di cer inate between wholesome use and excess. In time, with the spread of real knowledge, with increasing mental avd a oral culture and the general elevation of the race,such weakneeses may be outgrown. Till then they must be borne with. To ttempt their repression by force is more likely to be wisbievous than beneficial, more likely to hinder than help he real advancement of society.

THE LABOR PROSPECTS FOR THE WINTER

The condition of the labor market in this city is su h as t解 ing classes during the comirg winter. Thousands are al ready clamoring for work. So far from being batter than during the darkest days of the panic, the laborers are $c \in r$ ainly worse off; and for this gloomy and stagnant sta:e affairs no definite and certain reason can be assigned
The New York World has investigated this aubject very carefully, and the long detailed report which appears in tbe columns of that journal bears out by actual figures the sin ster opinions above given. In rough numbera, there are 30,000 ordinary laborers in this city, on whose work the ex istencs of an aggregate of 150,000 people dependes. To de termine how large a proportion of this part of the popula tion is idle, recourse has been had to the sources of 6 m ploy ment of the greatest numbers, beginning with the city its-lf The employees in the municipal service, it appears, have fallen off fully one third ; or in other worde. $2,00 \mathrm{men}$, out of the aggregate formerly employed, are out of wosk. Tue pay rolls of the Fourth Avenue Underground Railway iw provement, by reason of the approaching completion of the work, have been reduced by about the sacie number; aid farcher examination shows that the ratio of reduction ia these two largest sources hoids in the cases of swaller op sa tions. Building is stagnant, and but few improvt m-nts are bsing made on lot prop rty; contractors are lampered for funds, owing to the difficulty in raisirg eecurity, and the
disagreemer ts among the beads of the ri y goverrmant bave hicu then, the patio of decreree as above noted, ard app!ying it to miror operatione, a cotal of tea thousand menare ahown to b, out of euploy-fully one third of the unskilled laboring popula ioa. These are the day laborers, who work, by the core or more, uuder cuotraceors
Turning next to the madufoctories, we find a class of men who are not coungcted wiuh the iudustry as parsuere of th eame. They are not mechauice, nor do they fulfil such ape cial funcions as the teamsters or parters. Tb;y are mere workers, usiog their muecles at whatever job they are set to perform. Of these 8,000 are idle, for, from the 7,624 estab lishmenta about New York, they were the first to be dis charged, and so added to the roll of the unskilled unem ployed
From careful invertigation it further appears that, on eac able bodied man of the class of society to which these peo ple belong, no less than four persons are dependent. Hence there has been added to the pauper population not merely $18,000 \mathrm{men}$, but five times that total, or 90,000 souls, and this in November. Compare this aggregate with that o February of the present year-the closing month of winter, when the drain upon the public and private charities is al ways greatest. Then the total was $80,0 \mathrm{G} 0$; now, at the open ing of winter, the figures are 10.000 higker. With regard to wages, in all departments of skilled laborand in all facto ries the standard bas been maintained, with a few isolated exceptions. In coarse and unskilled labor, the reverse is the case. Up to the panic, the usual rates were $\$ 2$ per day, o $\$ 12$ per week; at the present time, very few contractors ar paying over $\$ 1.50$ per day. The Italian laborers are getting but $\$ 1.25$; and railroad contractors in adjoining States are paying that sum, and picking men beside. The comparison between uhis state of affairs and that of fourteen months ago is a striking ons. The pay roll then was: 30,000 laborers at \$2 $\$ 60,000 ; 8,000$ laborers employed by factories, etc., $\$ 16,000$ total, $\$ 76,000$. The pay rell now is 4,000 laborers on city work a. $\$ 1$ 175, 7,000; 16,000 laborers on private enterprise a $\$ 1.50, \$ 24000$: tetal, 31,000. Difference between 1873 and 1874, 45,000 . Average share then to each man, $\$ 2$; now, 6 cents.
It is a fact that the necessaries of life are not a whit leas costly now than they were a year ago, so far as the poor ma is concerned. The wholesale dealer buys his goods in gross, per eps, cheaper; but the retailer, with lessening sales to contend with, has no reason to reduce his prices. In rent a week's wages g nerally pays for one month; but this rela tion was adjusted bafore wages were cut down, so that, to provid shelter for himself and family, the working man pays not twenty-five per cent of his earnings, but fully thirty-one per cent. Cual is dearer than a year ago; if it remuins at ruling rater, and counting the consumption in each family of five persons at seven pailfuls per week, fif teen pur cent of wages after the rent is paid must be devoted to its purchase; and thus we might continue through the necessaries of life, showing that not merely is utter pauper ism starivg the unsmployed in the face, but even those who look to thtir day's work for t
with privations add sufferiog.
with privations aod sufferiog.
 the diminution of immigranta from Eu: ope, and the remarka ble itcreare in steerage passengers leaviug ibis country, avowedly to seek labor in Eogiand. Five hundred sou's left this port in an Iocan stcamer a week or two sgo, and on oue Saturday 2000 workiog people sailed for Great Bri tain, Gurcany, atd Feancs. This is a bad sbowing, and ra ses q tes ions relative to the existing tariff and the na tional fioances, which the coming Coogress musi take ioto veryserious consideration. The immed'ate re ief is in th ha de of the charitable Public institutions are destined to be taxed far bayond theic capab lities, ard private charity will be called upoo witbin the nest six months as never, we think before. Provis on for meeting the outciy for foo should begin at once, not oflayed until the sad talea o starvation and misery fill the poice reports.
It is, moreover, a seriou * question for capitalists and mon eyed institutions to raflect upon, whether they would not secre their owa ends of gain best at this t me by giving these thousards of idle men the means of h-lping them selves. Is is c rtan that a large number of ceserving poor are, within a few months, to be thrown as a charge upon the city and county. They must be supported, and that in idleness, since, as we have already said, muxicipal employ ment offers no o pening whatever. Woald it not be wise for some of our great moneyed iustitutions to put out some of their money in aid of desirable local enterprises which will give the workmen employment? We cap think of no better
example than the case of the Broadway Underground Railway. The road is a direct continuation down town of the tracks of the splendid Underground Railway on Fourth ave nue, and the approaching completion of the latter marks no only the feasibiiity and advantages of such a route wi hin corporate limits, but also suggests the present as the best period for proceeding with the work. The plans of the routs are complete, are approved by the best engineers, leg islative sanction has bsen accorded to the project, and no thing remains but the acquisition of capital sutficient to initi ate operations. A source of labor will thus be opened during the winter for eight or ten thousand men, and forty thou sand psople, near y half of the total number of unem ployed, will ba furnished with a mands of sustenadce. As an in vestment, a first mortgage on a line through the very heart of the city, none better exists. In fine, it would be difficult to conceive of any other project now extant, capable of offor
ng three such great bencits as work to the unempoyed,
rollef to a population esrnestly secting a means of rapid ransit, and a $8 a_{r} e$ investment for captal cratribu'ed to its promotion.
the sentsation of pain in the lower animals. Does the in abct, which we thoughtless'y crush uacer foot uff r as much pain as we should were we simiarly de sroyed? It is generally cooceded that the proper answer to he question is in the negative; and in fact it would seem ut the creation of a oimated nature, that those beings which rom their very esstntials are aubject to who esale destruc tion should be spared the pangs iocilent to the throes of diesolution. No one, except perhaps that most refined of humanitarians who bad scruples about drinking water on ccount of the sufferings he might cause to the animalcula herein, supposes that any real sensation of agooy is experiniced by the zöophyte which we tear from the rock, or by the oyater as we cut it from its abell; but there art maxy
who contemplate the sport of the angler with horror, and who see, in the writhings of the worm on his hook or in the atruggles of bis finay victim, all the tortures of human mutilation. Where then, at what particular class of being, is the dividing lise to be drawu? Are only radiates and mol Iusks apathetic to dismemberment, or do they also experiinca sensation, and how far in the ascending scale does the insensibility to pain extend in its decreasing ratio?
It seems to us, and we have no doubt biologicalfact will bear us out in the view, that the accidental influences of cultivation, of breed, of education in human beings, and also of differences in delicacy of nervous organization, play an importart part in determining the degree of suffering. It is well known that a savage will bear pain, not merely in absoate stoicism bat apparently unmind fully, which if inflicted on a refined and cultivated ivdividual would produce death r syncope. And this is not merely confined to the barbarian but extends through all grades of society. Physicians state hat the sufferings of childbirth are as nothing to the squaw. labor, when compared with those of the delicate females of abor, when compared with those of the delicate females of
oar upper classes. The same general rule applies to the ower animals; a finely bred horse winces under a lash that the dray brute would not notice,and the trained hourd will elp at a blow of which a street cur would think nothing. With this distinction in varieties of species before us on ne band, and the fact that both reason and general belief pint to the insensibility of lower animals on the other, we are brought to the consideration of an interesting argument, raised by Dr. Crosby of this city, in defence of the pracice f vivisection. It is advanced, as a generally received proposition, that the sense of pain is designed for the self preervation of all animals, and further that each is endowed with this sense to an extent only sufficient to ensure the re
ult. That is, in other worde, that an insect, for example ult. That is, in otber worde, that an insect, for example,
has a sufficient sense of suffering to keep him from walking on a hot coal; but if we threw him into the fre, his agony would be comparatively nothing as compared to that of some higber animal in whom the sense of pain is implanted for a greater and more complicated variety of purposer.
It is very dilicult, a most impospible, to judge of the ex istence of pain in an auimal by its mere phyeical costor tion. A human beiog under the influence of ether, during an operation, often wriches and screams as if in geeat torture and yet nothing is felt; simia. aly people in convolsiones show every external sign of suffering, and yet, beyond mere musular soreness due to exerion, none ie present. Nor is the cry a proof of pain, for, as Dr. Crosby saya, a pig will yell ust as lustily, if he be merely beld as he will under the in fliction of a severe wound. We may jidge, however, with greater securi'y, from coincidentactions on the part of the creature, as to whether evfforiog is or is not posestrt. If a man, for example, while uudergoing a surgical cpera'ion hould, as in a case we once eaw, coolly as \& st the urgeor and complacently munch an aopls whilt the koife was pere trating tis thesh, orainary reason would laad us to the be
lisf that his aspertion that "it did not hurc" wss true, and lisf that his aerertion that "it did not hurt" wis true, and
this even did dumbess prevent bis stating the fact If uch be true in the ote case, and in that of the adimal Which we know to be most acutely sensible, then it is logi cal y true in the instances of lower orders which we aresure poseess sensicility in a lese degres; aud hence if a borsa, as off in battle, and thirty-six bours afterward be found quietly grazing, although the stump is horribly mutilated, then it is easona,bly certain that the pain is not proportionate to the asion, if indeed present in any degree whatever.
It is well known that animale often icflict on themselves bjuries which apparently must cause suffering, and yet -very indication proves the same to be absent. Rabbits have
torn themselves free from traps, and been found feeding minus two legs. Rats when pressed by hunger will eat heir own tails. We have seen pigs, after their throats have been cut, cease their cries and attempt to eat, and it is said that the eame animals when stuck unawares often pay no appar ent attention to the wound. It is curious also to notice that abbits and rats, which can support themselves even it heir locomotive process be ivjured, will bite off their feet if caught in traps, but that a carnivorous animal like the fox will never do so, for, once unable to run, he would starve to
death. In the first case there apprars to be no sense of pain oo prevent the action; in the second, the sense certainly ex ists.
Again,crabs and lobsters drop their claws when frightened, seemed unhurt. There is a little lizard in Sicily, which, when suddenly alarmed by the blow of a cane on the rock
near to it, will break off from its tail and scatttle away, run ning into obstacies in ita path acting very like a ebip with oa: a radder. Sir Hupphiey Davy cate to the colclusion th at in fishos the seneation of pin wes very trifling and tbe view seeme proved when it is considered how infinitesimal to the myrifde of erga deposited.
to the myriade of erga deposited.
 degree seems on its face impossiole, pacticularly if the mil liocs and millions which the birds eat be thouglt apon
There is busides a very carious provision of Natiare which is litcla uoderstood, and which cocues into pley, it would ap pear, in all avimals in the presence of immenentdestruction or in cases wheregreat pain presumably exiets, either to be inflicted by a natural enemy. We allude to the action of e mouse when in the power of a cst, or of a rabbit when srized by a wearel. In the last instav ce the rabbit remaina motion less, without a sign of pain while being killed ; ie is appar ently, as the expression is, "paralyzed by fear." So aleo a monse, and precisely so with man, for D. Lioicetone's de scription of his sensations while boixg shaken y a lion ex actly accords with sucb as we migbt imagine would bo the experience of the mouse, when in the claws of the cat.
But while there is every evidence that the suffering of the ower animals is certainly less then that of man under simi lar circumstances, we cannot, however, coincide with the ide that it is so far absent, in the case of the brates ordinarily sacrificed by vivisection, as Dr. Crosby seems to convey As he states, however, an at æsthetic disposes of the ques tion at once; and in generalitis much more humane (and be sides is an error on the safer side) to give the unfortunat bsasts the benefit of the ether, as well as that of the doubt as to their sensibility

Straw Lightning Rods

The Journal of the Society of Arts, London, and other pa pers bave given currency to a statement, derivtd from a
prominent French paper, to the effect that lightning rods made of straw bad been used in France, and found quite a effective for protection as metal rods, and far cheaper. Pres ident Henry Morton, of the Stevens Institute, has written an interesting reply to this statement, given in anotber colomn in which he sbows the utter absurdity of the straw light ning rods, and also takes occasion to point out,in a very c ear and satisfactory manuer, what kind of a rod is necessary to ensure protection, how it should be arranged upon the building, etc. This article will, we are confident, be studied with interest by all who are really desirous of possessing correct information upon the suhject.

SCIENTIFIC AND PRACIICAL INFORMATION.

 fall sickness.In a lergthy article on the above subject, Dr. Hall concludes that if persons in the country where intermittent fevers prevail would adopt the precaution, in early fall, to take their breakfast before goirg out of doors, and $k \in \in p$ blazing fire upon the hearth in the living rocm during the morning aod evening, fevers and chills would almost on tirely disappear as a prevailing diecase.
The importavce of ridding apartments of the dampness and sharpuess of the morsing and evening air, and the ex pulsion of all miasmatic particlea, can
by those who would bave good heslth
the french and enalish tunnel.
The project for the tunnel under the Eoglish channel has been officially transmitted from the French Government to the Eoglish Fortign Office. Among other plane, it is fuggested that the means of inundating the entire bore sbould bo placed in the hands of eash governaent, so that, in case of war breaking out between the two countries, the wotk may be rendered useless. It is calculated that a force of 2000 horse power, oderating for two mon, hs, would be sufficient to pump the water out of the tunnel.

a New white allof.

This metal, recently invented by M Delalot, is sa'd to be very cbeap, and to possess qualities rendering it suitable to repla e the various white alloys now in use. The proporti ns are pure red copper 80 parte, oxide of manganese 2 parte, zinc 18 parts, and phosobate of lime 1 part. The copper is first $m+l t e d$ and the magranere added little by lit the When the latter is dissolved, the phosphate is similar ly mingled. The scnria is r maved and fnglly the zinc is goded aboutten mivut-s before casting To accelerat the fusion of the manganese, $\frac{1}{2}$ part fluoride of calcium, $\frac{1}{8}$ part borax, and 1 part wood charcoal may be used as a flux.

The Boston Boarl of Fire Commissioners, taught by the cent calamity at Fall River, have isaued a circular calling the attention of persons who have on their prowises appara of for preventing the spr-ad of fires, to the necussity of egular inspection of and instruction and drill in the same They advise that printed cards,explaining the conetruction,ar ravgement, and use of such appliances, be postei where they cannot fail to be seen, and that the occapants be drilled as often as once a week in the use. Where fire escapes are attached to buildinge, the board recommend that they be frequently used and examined
Mr. Theodore J. Harbaci, of Pbiladelphia, has designed dexecuted, for the great Centennial evert, di: s for medals, a number of historic eurjocta, such as Old Independence Hall, the Old Cracked Liberty B 11 , a Head of Washington, On the obverse sides, persons can have their business possessor is likely to keep.

the automatic gas saver

It has been calculated that the average consumer of illuminating gas, in large cities, is subject to a waste which costs him from one quarter to one third more for gas than is really necessary to produce the requisite light. The reason is obvious from the fact that the pressure, as transmitted from the works, must always be sufficient to'insure a full supply, not merely to the highest places, whither the gas rushes at greatest velocity, but to the lowest localities. The normal pressure, therefore, never falls to a point at which no waste at the burner can take place. Nor is it, indeed, possible for the manufacturer to supply each customer with the proper pressure to insure the greatest luminosity, for he is prevented, both by difference of situation of points of de. livery and by the constant variation in the quantities drawn from the works by in. dividual consumers. Cutting ff at the service cack or using check burners simply asing check burners simply reduces the light without afree of waste; so that the only valid means of avoiding the latter lies in an appara. tus which will automatically ontrol the pressure, keeping the same uniformly at the most advantageous point, as the gas leaves the meter
A new machine for this purpose has lately been pa. tented (May 19, 1874), and engravings of the same are presented herewith. The noticeable feature is the absence of the straight diaphragm, heretofore commonly employed, forming a flat dish, with the valve rod secured to its center, and governing the valve through its being forced upward as the pressure is augmented. The difficulty, due to the hardening of this appliance and consequent loss of its vibratory power, is, it is claimed, obviated in the present apparatus, by making the form, so as to have from one and a half to aix in telescopic tory motion, according to the size of the machine.
The operation will be understood from the sectional view, Fig. 1.

An increase of pressure, whether it occurs in the mains o service pipe, by putting out lights, is instantly communica ted to membrane, A, the tension of which is thereby in creased. As the membrane expands it is forced upwards, carryiog with it the rod, C, which works the valve, E , and contracts the aperture through which the gas enters cham ber, G; the quantity now admitted in a given time beingex. actly equal to that which passed when the pressure was less and the opening greater. When the pressure again diminishes, the tension of the membrane is of courserelaxed, and being forced downwards by the weight in the cup, B, again carries with it the rod, C , and the aperture to the chamber, G, is enlarged. Thus it will be seen that the saver is a self-acting valve, the operation of which depends on the equal zation of antagonistic forces. namely, the pressure of the gas within the chamber, G, impelling the membrane outwards, and the weight without impelling it inwards. By the combined action of these verydissimilar agents, the area of this aperture, by which the gas enters chamber, G, is exactly adjusted to the velocity with which it moves. From the chamber, G, the gas escapes by the outlet pipe.
The comparative size of the apparatus and its mode of adjustment to the meter are shown in Fig. 2. The effect upon the flame will also be noticed The struction is substantial and durable, the best quality of shee copper, without seam, being used to confine the gas. The valves are ground and fitted so as to control a single burner, and may be readily cleaned of impurities.
The manufacturers add that whoever pays six or eight dollars, or even less, a quarter for gas, will save at the rate of from twenty to forty per cent on his gas bills by using this machine.
Further particulars regarding sales, and also relative to inducements to agents, may be obtained by addressing G. S Lacey \& Co., 615 Broadway, New York city.
cases were, however, so entirely different that a scheme which might succeed with the comparatively small barge and sluggish current of the Seine, would be a total failure with shjps and steamers from 1,500 to 3500 tuns burthe drawing from 20 to 22 feet of water, contending againg volume and velocity of water that, in the event of "taking a shear," will "whip" a 1,500 tun ship to and fro across the current with almost the speed and as little apparent effort as when a current of air plays with a boy's kite

In designing the new machinery, Mr. Nish, assisted by Captain Wright, the mechanical engineer to the trust, de cided that every part should be constructed as strong, and of as few pieces, and as little liable to derangement, a possible. With this end in view, Captain Wright aban doned entirely the wheel gear ing used in the wire rope and chain systems of Europe, eith er as a means of obtainiog purchase or connecting the chain drums. The power was btained by a pair of long stroke engives, and the con nection of the chain barrels by couplirg rods, set at right an les, similar to those used in locomotives.
With these instructions, Mr. E. E. Gilbert, of the Ca nadaEngine Works, Montreal was intrusted with the work of completing the designs and working out the details. The ongines are non condensing with cylinders 22 inches by 5 feet stroke. The frames are of the Corliss type, extended oreceive the bearing of the uter chain barrel shaft. The weakening effect of lowering he first barrel shaft to the enter line of the cylinder i ounteracted by using a suff iently heavy pillow block ell fitted in the gibs, to maintain the full section of the
the walls of the tube into the interior, and may be collected by attaching an india rubber tube to the open end of the ron one, and passing it under a gas holder. Professor Rey. nolds concludes that, whenever iron undergoes oxidation under water, it becomes saturated with hydrogen, and thus loses tenacity-an important consideration in the case of iron steam boilers on iron ships.

CHAIN TOWAGE ON THE ST. LAWRENCE.

By some oversight of our forefathers (not, however, made by the aboriginal Iroquois, whose town of Hochelaga was at the foot of the current), the city of Montreal was built at the head of the rapids; and as, year by year, the trade of the city has increased, the number of vessels and their sizo has kept pace, until the difficulty of getting ships into the harbor became most formidable, involving great expense in

hain towage on the river st. Lawrence

owage, and, in the case of large sailing vessels and light powered steamers, no inconsiderable delay from the impos
ibility, with unfavorable winds, of getting tugs enoug sibility, with unfavorable winds, of getti
about a large ship to drag her up the pitch.
Various schemes were suggested for avoiding the diff culty: a ship canal coming in behind the city, piers at differ ent points with stationary winding engines, etc. ; but eventu ally Mr. A. Gilbert Nish, the engineer of the Harbor Com missioners, determined, under instructions from the board to make a trial of the submerged continuous chain system, as used on the Seine below Paris. The circumstances of the two

rent, 100 fathoms of tow line gineering. ubstitur intended to remedy by the a donkey engine for manual labor. The total .

The iron eatablishments of the United States, including urnaces, rolling mills, steel works, forges, and bloomeries, are as follows: 681 completed blast furnaces, 343 rolling mills, 51 steel works, 37 forges, and 47 bloomeries.
the underground railway, new york city. NUMBER II.
[Continued from page 308.]
In our preceding article we gave a map diagram of the city of New York, showing the general position of the Under ground Railway. We also gave a profile of the railway, ex hibiting the grades and the various kinds of work along the line; also a view of the first bridge, in front of the Grand Contral Dəpot. We likewise gave a general description of the work from 45 th street to 116 th street. The last section of open cut begins at this point, and extends to 133 d street, wher the railway grade rises to the bridge over the Harlem Railway. R ferring to the profile given on page 308, it will be seen that this open cut, from 116th to 133d street, which here passes through the most thickly settlei portion of Harlem, is arranged at such a depth that it may hereafter be covered over and converted into a beam tunnel should it be deemed necessary, like the beam tunnels now existing on
draulic cement and clean fine sand, in the proportion of one part of the former to t wo parts of the latter, the ingredients being thoroughly mixed when dry. After water has been added, the mortar is notallowed to stand for any length of time. A long the top of theretaining wall runs a parapet wall of first class cut granite, with joints and beds dressed to lay three eighths of an inch. The dimensions of this wall are, in general, a breadth of two feet at bottom, eighteen inches on top, and a hight of two feet six inches. On the parapet is placed the coping of granite, ten inches thick by twenty two wide, pene hammerdressed on the outside faces, and beveled on the sides, and prepared to lay quarter inch joints. All this is surmounted by a light wrought iron railing. Orer this cut the street crossings, with the exception of those of 52 d and 53 d streets, are iron plate girder bridges, to be here after described. To accommodate the cross street traffic at 52d and 53d streets, one bridge is constructed mid way in the block bounded by these streets, the approaches being placed at right angles to the length of the bridge, an expedient ren

Fig. 4-THE UNDERGROUND RAILWAY IN NEW YORK. CROSS SECTION OF THE OPEN CUT ON FOURTH AVENUE.

other portiongof the line. At present there are bridges at cross streets over the open cuts. The total length of the work, from the beginnung of the first open cut at 496 h street to the ending of the last open cut at 133 d street, may be put down in round numbers at 22,462 feet, of which $6,937 \frac{1}{2}$ feet consist of open cut, 45621 of viaduct, and 10,662 of tunnel ing, of the three kinds already mentioned.
This tunneling consists of three parallel and separate tun. nels, a large ong in the center, and on either side a smaller one. In the central tunnel, which has a span of twenty-five feet, are two tracks for the use of the express trains passing north and south; through each of the side tunnels, which have a span of thirteen feet, is a single track for the use of way trains, that on the east for trains passing north, and that on the west for those passing south. These latter tunneis have abundant arched openings for ventilation and light, and are provided at convenient points along the line with passenger staions, to accommodate the local traffic. These stations will be hereafter described.
Such, in brief, is an outline of the general plan of the whole work, and with this sketch we pass to the detailed description of the parts, taking up the work section by section, and limiting our attention to one of these divisions at a time.
Section 1. From 49th to 79th streets. F. S. Deyo, Division Asaistant Engineer. Starting at 49 th street, which may be taken as the southern boundary of the work, we enter the first open cut, which, gradu. ally deepening as we proceed northward, extends to the south side of 56 ih street, a distance of $1,7 \% 5 \mathrm{fest}$, at which point it attains its greatest depth of 13 feet. The shape of the cat, therefore, is that of an irregular wedge (the base at 56th and the edge at 49 th atreet), with a breadth at bottom of 50 feet in the clear, from retaining wall to retaining wall, a breadth at top from parapet wall to parapet wall, of 526 feet, and a greatest depth of 13 feet. Of this cutting a cross section is given in Fig. 4. It is lined throughout with retaining walls of first class rubble masonry, dressed to a moderate degree of smoothness on the face, well bonded and thoroughly drained with broken stone, the drains occurring about every fifty feet and provided with openings 4 inches by 6 inches. [The open cut, from 116th to 133 d streats, is similar to this, except that it is lined with brick masoury. Oar engraving, Fig. 4, represents stone linings one side and brick on the other.] In general the walls extend three feet below the grade of the road, and are nine feet thick up to grade, where the thickness changes to seven feet, and then tapers off toward the top with a batter of one inch to the foot. Although the thickness of the retaining wall, both at top and bottom, will, of course, vary with the hight, the thickness at the top is in no case greater than four feet, or less than two feet six inches; or, at the bottom graater than thirteen feet, or less than four feet, the greatest thickness at top and bottom occurring in the retaining walls of the viaduct at 104th street, where the dimensions are $29 \times 13 \times 4$. The general proportions of the walls, in the open cut below 56 th street, may ba given as $15 \times 7 \times 2 \cdot 6$. The stones in the face of the wall are laid with vertical and horizontal joints in cement morlar, and plastered on the buct with half an inch of cement mortar well rubbed down. This mortar is composed of the best quality of Ulster county hy-

FIG. 5.-THE UNDERGROUND RAILWAY IN NEW YORK. BRIDGE OVER THE OPEN CUT ON FOURTH AVENUE, BETWEEN 52d AND 53D STREETS.
of a coiled wrought iron cylinder, secured in position by a collar at the muzzle of the gun. A 10 inch smooth bore is thus converted into an 8 inch rifle. If the system proves successful, it will enable the Government to utilize a large number of guns now useless. The casemates of almost all the fortifications of the United States have been built of a size admitting no larger piece than the 10 inch cannon, and it has been suggested that, by a steel cylinder instead of one of wrought iron, a gun of the above caliber may be altered ven to a 9 inch rifle.
Experiments thus far made demonstrate that, while the 10 icch smooth bore uses a projectile weighing 127 pounds, the same gun, altered, gives nearly double the force, a more even rate of speed, greater penetration, and increased accuracy, with a shot of 186 pounds.
cent or one quarter per cent of gas refuse, the fish were
killed in half an hour and an hour and a half respectively. dered necessary by the impossibility of constructing them in
the usual way, on account of the hight and length of the bridge and the narrowness of the avenue, the span of the former being fifty-two feet six inches, and the width of the is a perspective sketch of this feet.
At the south side of 56th street begins the first of the beam tunnels, which extends thence to the south side of 67 ch street, a distance of 2862 feet.

In our next article we shall illustrate the construction of th ese tunnels, which are somewhat novel and peculiar. In our last number a typographical error occurred in connection with the name of the draftsman of the Underground Railway. Mr. William H. Hornum is the chief draftsman, under whose supervision the labor of preparing the working drawings for this great work has been done.

Changing Smooth Bore Cannon to Rifles. A series of important experiments is now in progress at Sandy Hook, for the determination of the merits of the new
plan of changing smooth bore guns to rifles by the insertion killed in half an hour and an hour and a half respectively.
The addition of one tenth per cent of the substance killed the fish in about seven hours.
Professor Wagner recommends that, instead of throwing the refuse into streams in quantities at a time, it should be allowed to flow in very gradually, at a rate not exceeding five quarts per minute. By this means, these small amounts would be at once diluted to such an extent as to become comparatively harmless, chemical decomposition of their elements in the river water setting in at the same time; and then injurious influence on pisciculture need no longer be feared.

Steel Direct from the Ore
The system of Ponsard, for producing steel direct from iron ore, has attracted much attention, and La Metallurgie gives the following account of a recent experiment made on this eystem.
The apparatus consists principally of a gazogene, which transforms the fuel in a series of large chambers, and of an
apparatus in brick, called the recuperator of heat, which receives the flames from the furnace, and restores the caloric in the form of hot air. The compartments of the chamber serve successively for the reduc. tion of the ore, for the reactions which are effected, and, finally, for the fusion of the whole charge in such a manner that the separation of the component parts is effected by the difference of density. These varions phases of the operation require very different temperatures, and the production of these is the special object of the apparatus. On the side of the furnace doors the temperature is only that of red heat, while beyond the heat is so great that the eye is unable to support the intensity of the glow. This extraordinary heat is estimated at $3,632^{\circ} \mathrm{Fah}$.
The success of the experiment is re. ported to have surpassed all expectation, and the result obtained is considered to demonstrate the possibility of producing steel direct from the ore without any of the transformations necessary under existing systems. Of course this is a fresh revolution in the history of metallurgical industry; and it is almost unnecessary to addthat, should the system justify the report, it will prove a revolution indeed.

The Most Eminent American.

The most eminent living American is William Cullen Bryant, of New York city, poet, author, editor, and publisher. Born in 1794, in Massachusetts, he is now in the 81st year of his age, still active and vigorous both in body and mind. His first volume of poems was published in 1808, in his fourteenth year, and from that time to the present, a period of 66 years, he has been a constant contributor to the literature of the world For the past 48 years he has been editor and proprietor of the New York Evening Post newspaper. On the recent occasion of his 80th birthday, November 4, 1874, he was waited upon by a number of our most prominent citizens, and heartily con. gratulated for his continued health and long and useful life. Hespoke, in reply, of the remarkable changes that had taken place in the politicai affairs of the world during his lifetime. What marvelous discoveries have been made, too, in the world of Science during the same period!

Corrspundente.

Straw Lightning Conductors.

"Straw is about the last material one would think of using for a " ligh ning rod;" but according to a French journal, it answers the purpose admirably. It had been observed that the straw had the property of discharging Leyden jars without spark or explosion, and some one in the neighborhood of Tarbes got the idea of constructing lightning conductors, which were formed by fastening a wisp or rope of straw to deal stick by means of brass wire, and capping the con ductor with a copper point. It is asserted that the experi ment has been tried on a large scale around Tarbjs, eigbteen commanes having been provided with such straw conduc tors, only one being erected for every 60 arpents, or 750 acres, and that the whole neigbborbood has thus been pre erved from the effects, not only of lightning, but of hail also. The Journal of the Society of Arts says:. This state ment comes from a respectable source; and the apparatus being extremely simple and inexpensive, it is at any rate worth the trial. Copper conductors are out of the question in ninety-nine cases ou: of a hundred, butevery cottager al most could set up a straw one."

To the Editor of the Scientific American

On reading the above account of straw lightning rods which you sent me, I made the simple experiment of measuring the +lectrical restatance of a small bundle of strawe and found 16 to be very high indeed, say a million or two times as great ma copper wire of the same s ze. This real y disposes of the question of usefulness for lightriog con ductors; fo, not to mention other considerations, with such resistance as this, the straw rod, if struck, would be instantly igoited, if not even blown to pieces by an explosive ombustion.
The real question of most importance to a lightning rod is, bowever, not what will becom? of it after it is struck, but, strarge as it may sound when first stated, what car tainty there is of i 's beng strack. Thas: Sappose it to $\mathrm{b} \times$ proved that a given rod if struck would carry to the ground all the elactriciry entering ic, but that this same rod was far less likely to be strock than the adjacent gable of the tonee : What use would such a thing be ae a frotecion? Evident y we bafe first to coasider the conditions which will secur the striking of the rod in prefertnce to anything else near r, acd th n it will be time to inquire as to its capacity to carry off the fluid whon i: gets it
I bave already indicajed, on a previous occasion, and you bave ably discussed, the very smple conditious involved in this first and most important problem. Briefly they are these: That the lightning rod sbould offer a path to the earth presenting many huodred tim sess resistance 1 han any of the najgbboring accideatal paths, made up of metal pipes, rods, naile, bolte, birges, stove pipes, gutters, and the like, intereparsed with wood work, humen beings, and otber destructible matter. The electric fluid, when it finds presented to it two equally good roads, impartially divides teelf and sends half its substance by each route. If it finds two routes where the obstructions or resistances are as one to ten, then it sends ten times as much of itself by the easy as by the difficult road. In order that a rod, therefore, ehould keep all of a flash to itself, it must offer immensely superior inducements in the way of conduction to the gound. If it does this, then it is an absolute protection to all around it, and not otherwise. Now experiment has proved beyord a question that the conducting power of a given substavce varies with its cross section or weight per runving foot; and therefore, when wetakea rod of some good conductor, such as copper, and make it thick and connect it thoroughly with the earth, we get an easy path to the earth, for any cloud-collected electric fluid. What we must do, morpover, is to mak this path so easy that no chance road shall come anywhere near it for easiness.
Under the existing state of affairs, with the large quantiy of metal used in our buildings, this can only be done when we have either a very thick rod or its equivalent obtained by uniting the rod near the roaf to the very water, gas, and other pipes which would otherwise be its rivals. A conductor fulfilling the above conditions will always be easiy able to carcy all the electricity that strikes it. We con tantly see recommendations of this or that form of rod bscause it has more surface, and electricity of high tension travels cbiefly on the surface. Grant that this last statement applies in full force to lightning, yet we see that it is f no practical importance. Increase of surfase will not diminish resistance or improve conducting power. Thiswe know by cauntless experiments, and the opposite is not even claimed. If, therefore, a cortain rod has not substance enough in it to make it an efficiently good conductor, squeez ing or twisting it into any possible form will not do it any good in the direction of securing the attention of the light. ning to it; and if it is rot struck, of what comfort is it to believe that, if the ligh ning (wbich went into the house and set are to it or killed the 'nmates) had only gone to the rod, it would have traveled to its own delight on the outside of the same? Lightning is not to be outmanœuvered cheaply in this way, sither by a thinpi-ce of metal,whose insufficient condacting p.,wer is not increased by giving it a ribbed
ace or a spiral iwist, nor by a non-conducting straw.
I have sala ting induction and thus charging itself ard the air above it oppositely to the tbundercloud, by which means the discharge is still further determined in tie line of the rod. But this only adds to the force of my former argument in favor of good and abuadant conductors.

In conclusion, I can only regard the French straw theor a canard, though if it had originated in this State (N w Jtrsey) I should have considered it only the consequence ot a verbal ambiguity, as we know that New Jersey lightaing, moderately diluted, passes with great facility along a straw. Stevens Institute of Technology. Henry Morton.
[Possibly some of our readers may not be familiar witb the fact that apple whisky is known by the name of New Jersey lightning.-EDs.]

Grinding Plane Irons.

To the Eiaitor of the Scientific American:
Seeing in a recent number of your paper a description of a device for equalizing th wear on grindstones, I seno you an illuatration of a hold er for plane irons, chisels, etc, with which one man can both turn the stone and grind the tool much more ac curately than by holding it in his hard.

A is a piece of spring steen, 8 inches long, bent at eac end, with thumbscrew. You grasp the holder with the left hand, at B, sticking the point, C , into a board or the wail, at such a distance from the stone as to bring the iron, D, in the right position on the stone. By raising or loweting C, the bevel is re gulated.

Eart Cle Richardson.
cable Telegraphy.

To the Editor of the Scuentific American:

In your iseue of Novem bar 7, 1874, you publish a commu ication from Mr. T. A. Edieon, Newark, N J., referring ${ }^{10}$ a papar read before the British Association by W. K Winter, on an ioprovement in cable telegraphy. Mc. Ejisor says ubat the principle shown was invented by himeelf, and patented 00 h in Englard and in this country socce thre years ago, and that it is used by the Automaric Telegrapl Compeny. Pormit ma, as the consulting electrician of tha company (and as owner of all the electro-cbemical autowa tic tislegraph patents used by said compady), to deoy in toto the above assertion, and to show how the case real'y etande in order that Mc Edison (as well as other parties) may know on it is bimself.
In the first place, the party referred to, Mr. W. K. Win. ter doss not c aim any ioprsvement in automatic telegraphy but simply an improved method of operating a galvanome ter or other recelving instrument by mans of the induction coil and earth contacr, wherein he uses the primary a od sec oodary wires of an induction coil as a balance or Wheat stone bridge, whereby the increase of the current tbrougb the primary wire not only induces a current in the secoadary wire, but causes a self-induced current to flow, being in fac an equivalent for the condenser with sbunt beliz. Mr^{2} Winter's patent bears date December 6, 1872.
In the second place, Mr. T. A. Edison professes to claim (in an English patent under date April 26, 1873) one or more electro magnets in the shunt circuit, to neutralize the atten. uations of the pulsations in the main line circuit, and bring the line to a normal condition, to prevent tailing upon the chem'cal paper of a chemical telegraph : in fact, an equiv ant for a condenser with shunt helix.
In the third place, I claim (under patents of dates October 18, 1870, August 29, 1871, April 9, 1872, April 22, 1872, Ssp tember 10, 1872, September 2, 1873) the use of electro-mag. netic rheostats, rheostat overflow dams, condensers with shunthelices, or accumulators per se, in a shunt or branch circuit,in combination with an electro chemical automatic tel egraph, to bring the line to a normal condition, prevent tail ing, and produce rapid work.
As a twenty years' subscriber to your valuable journal,I as P you will do me the justice of inserting this my reply. Passaic City, N. J.

George Little, C. E.
a Simple Plan of Ventilation.-The following simple method for ventilating ordinary sleeping and dwelling rooms is recommended by Mr. Hinton in his "shysiology for Prac tical Use": A piece of wood, three inches high and exactly as long as the breadth of the window, is to be prepared. Le the sash be now raised, the slip of wood placed on the sill, and the sash drawn closely upon it. If the slip bas been well fitted, there will be no draft in consequence of this dis placement of the sash at its lower part; but the top of the lowsr sash will overlap the bottom of the upper one, and between the two bars perpendicular currents of air, not felt as draft, will enter and leave the room.

In causing anæsthesia by subcutaneous injections of chlo ral, M. Colin alates that weak solutions sbould be used; and when forced into veins, the operation should be performed very slowly, so as not to cause syncope. Veins near to articulations should be avoided.
M. Hannecker uses for the oxyhydrogen light (and ob tains increased brilliance) a cylinder composed of carbonate of lime, maguesia. and olivina, compressed by hydraulic pressure. The olivine used is a nasural silicate of magnesia

The Institution of Naval Architects, Jchn street, Adelphi, Lundon, have issued the following list of subjects on which communica'ions are desired

1. On the construction and armament of ships of war
2. The effect on naval construction of torpedoes or other modes of submarine attack
3. On the life and cost of maintenance of merchant steam ships.
4. On the preservation of the hulls and cargoes of ships from the effect of bilge water, leakage, condensation, and other causes of internal decay and corrosion.
5. On the disposition and construstion of bulkheads, and on their attachment to the sides of iron ships.
6. On the masting of ships, and on iron and steel masts and yards.
7. On the ventilation of ships by natural and forced drafts, with details of any system in actual operation
8. On the fouling of ships' bottoms and its prevention.
9. On machines for the economizing of labor in the con struction of ships.
10. On the use of machinery for economizing labor on board ship, whether merchant ships or ships of war, and whether for loading or manœuvering.
11. On telegraphic or other communication of orders on board ship.
12. On the construction of slips and launching ways, and on the launching of large ships.
13. On the present state of knowledge of the strength of materials as applied to shipbuilding, with especial reference o the use of steel.
14. On methods for the proper strengthening of ships of xtreme proportions, and on the precautions neceseary to insure their safety at sea; also on the lengthening of ships. 15. On the straining effect of enginss of high power on the tructure of ships, and the arrangements necessary to obvi-

te them.

16. Oa legislative interference with the construction, stowge, and equipment of ships.
17. The design, construction, and measurement of yachte. 18. Oa floating structures other thanships, such as docks, ighters, pontoons, aud so fortb.
18. Oa ships for special purposes, such as light ships, telegraph ships, cattle and spocial passenger ships, aud others.
19. Actual measurements or records of sea waves; thrir bight, length, periodic time, and spetd of açance; or their profiles.
20. On the results of the best modern practice in oc an steam savigation, with reference to the latest modern im. provemente, such as surface condensation, superbeatirg compound engines, and the like; alao the value of each of hese taken separately, and especially the results of ary acual experimerts to test this point.
21. On the friction developed in marine stem engices of different forms; and on the difference betweeu the gross in diculed horse power developtd in the cy ixder, ard the net eftective horse power available for the propulsion of the ship furs working the air pamp, slide valves, and other moving parts of the engine.
z3. On economy of fuel in marine engines, with detailed esults.
22. Oo methods firstarting, stopping, and reversing marine eam engines of high power
23. On marine boilers, their form, rate of combustion, and be proportion of their various parts
24. Information as to the alleged rapid deterioration of marine boilers supplied with water from surface condensers, and the remedies for the same.
25. Exact information-either experimental or theoretical -on the efficiency of propellers.
26. On any novelties in the construction, equipment, or fiting of ships.
27. On any novelties in the construction, arrangement, or details of marine engines and propellers.

Iron Ore Bed in New York City.

We find it stated in several of our English contempora. ries (avd it will be news to most of our residents) that "some excitement has been aroused in New York by the discovery of a rich vein of hematite iron ore in the heart of the city, by some workmen who were digging foundations for a new building. The vein, which is 30 feet wide, was found at a depth of only 4 feet from the surface." We expect to hear, y the next foreign mail, of the erection of a smelting fur aree at the mine "in the heart of the city."
We were led, by this startling announcement from across he water, to inquire into the facts of the remarkable discovery; and we learn that some laborers, engaged in digging foundation on the corner of Washington and North Moore streets, struck a layer of acoria and cinders, the débris of ome furnace, which had been used for filling in the ground long time ago. Our reporter was shown some specimens of the "ore," deposited in barrels by the workmen, who seemed quite delighted at the sensation which their discovery had created abroad.

Curious Apples.

Doubts are entertained by some pomolegists as regards the trath of the statement made that apples have been rown in which two or more varieties were blended into one, hat is, apples having one section sweet and the other sour. We bave seen such fruit and thereforeknow that it ha* been produced. A tree bearing apples of this nature formerly stood in a gentlemat's garden in Gro getown, Maes. It was of largesize, and in some years produced several bushels of
ruit. The owner sold the apples as curiosities, and frequest y iddioidual poecimens brought large prices. It was excesingy in'erertirg to examive the crop, as one apple diff red wioely trom another, and there was difficulty in finding two precely alk, A few were found in which almost exacily one balf was s weet and the opposite sour, but a ma. j rity were made up differently. Sectiods, one quarter or one eisiefnth, more or less, would be eweet or sour, and the remainder would be of the opposite kind. The line of demarcation oo the ek n was distinctly defined, the sour por tion having a redoish color, while tbe sweet was of a pale green. Tuere was no mistaking the flavor; the sour portion was very sour, and the sweet very sweet. On the same tree apples grew which were uniform in kind, some being entirely awest ad otjers entirely sour.

This pomologi:al freak was brought about by a careful process of budjiog, two buds of different varieties being d vided, a ad one half of each joined together, so as to adhere and grow in that condition. As none of this fruit bas been syen of late years, we conclude that the tree has per$\mathrm{i}_{\text {sbed. }}$ - Boston Journal of Chemistry.
We calcorroborate the foregoing, having ourselves eeen them growing, and tasted apples that were sweet on one half and sour on the other. This was several yeurs ago. The tree which produced this curious fruit was upon the prem ises of the Rэv. Dr. Ely, of Monsou, Hampden county, Mass

PRACTICAL MECHANISM.
 number yitl.
 BT JOSHOA ROBE
 piston rings.

The tension referred to in our last (see page 293) is, in all probability, caused by the unequal cooling of the ring after it is cast.
Iron and brass molders generally extract castings from the mold as soon as they are cool enough to permit of being remosed, and then sprinkle the sand with water, to cool and save it as much as possible. The consequence is that the part of the casting exposed to the air cools more rapidly than the part covered or partly covered by the sand, which creates a tencion of the skin or outside of the casting. The same effect is produced, and to a greater extent, if water is sprinkl d on one part of a casting and not on the other, or even on one part more than on another.
Is has already bean stated that brasses contract a little, sideways, in the process of boring, and that work of cast metal siliers its form from the skin of the metal being removed; this alteration of form, in both cases, arises in the case of a piaton ring from the release of the tension.
It sometimes occurs that a piece of work that is inished true in all its parts may unexpectedly require a cut to be tak +n off an urfinished part (5 allow clearance or for other cause), and that the remorsil of the rough ekin throws the work out of true in its various parte, as, for instance: a saddle of a lathe being scrap to to fit the lathe bed, and its alides finely scraped to a astiace plata; or the restitself beiog fitted and adjasted to the crose side of the saddle. If, when the nu and eciew of the crose a ide are placed in position, the nut is discovered to bicd aea nst the grove (of theraddle) along which it moves (ithe out bing too thin to prrmitof any more bing taken off it) thersis no alternative but to plane the groove in tie saddle deeper, which operation will cause the gadde to warp, d strying its fit upon the lathe bed, and the truaners of the Va of the cross slide, and that to such an ex ind as to e matimes require th m to be refitted.
The + $\mathrm{v}^{\prime}+\mathrm{ff} f \mathrm{cts}$ of this tension may be reduced to a mini mum by tatiog the castings from the sand and placing them in a bayp in some crovadient part of the foundery, and cover ing them with pad kapt in that place for the pur oose: and by $r \boldsymbol{u} u_{i}$ hing out all the parts of the work which are to br cut at, on cbucking before finiehing any one part.
P.etod ri ga are turned larger than the bore of the cylinder Which ib y are intanded to fit, and, as before stated, sprung into thacylioder. Tue amount to which they are turned larger depents upon the form of split intended to be given to the ring; it it be a straight one, cut at an angle to the face of the ring, which is the form commonly employed, the diame ter of the ring may be made in the proportion of one quar
ter inch per foot larger than the bore of the cylinder, suffiter inch per foot larger than the bore of the cylinder, suffi-
cient boing cut out of the ring, on one side of the split, to cient being cut out of the ring, on one side of the split, to
permit the ring to soring in to the diameter of the cylinder, w 'en the riog $\mathrm{m} \cdot \mathrm{y}$ be placed in the cylinder and filed to fit, takirg care to keep the ring true in the cglinder while revolv. ing it to mark it. But if the ring is intended to be of the form bera illustrated, the ring must be made of a larger proportiona'e diameter, the proportion depending upon how much the enda of the ring are intended to lap each other, the lap being from a to B, in Fig. X.

Fiu. K.

There is more work entailed in giving a piston ring this form of oplit, but it is undoubtedly superior to the plain one. A oother plan to givespring to a piston ring is to turn it to the same diameter as the bore of the cylinder, and then to pene it all rouvd on the inside face (that is, the bore), the result beiog tbat, when the ring is sawn in two (which is all that is necessary in this case), it will spring open and be of a larger diameter. When, however, it is placed in the cylinder, it will require to be sprung together again to the diameter to which it was turned (the split being open to the width of the eplit cut by the saw), so that it will not require much, I aty, filing to fit it to the cylinder,

LATHE WORK.

When bolte and plates are employed to hold rough w:sk, care must be taken to place the plates over thoas paris of the work which touch against the chuck or face plate against which the work is bolted; or the pressure of the pla'es on he work will spring it, and when it is taken out of the latise (or other machine) it will spring back to i:s original position, and the part that has been cut will be no longer true, causing in many cases a great deal of unnecessary vis t work. If it is not practicable 10 so place the plates, then 1 hore parts of the work which stand off from the face plate or ctu k should be kept from aprir girg by having weages driven be tween them and the plate, which is of great importace in light work.
The plates (or clamps) should be so placed that the ends gripping the work travel in advance, the bolts being kept as close to the work as possible and the packing at the other end of the plates, as shown in Fig. 42. $a \operatorname{a}$ rtpresents the ctu $\cdot \mathrm{k}$ plate, B is the work, C C are tie plates, and D D are the parking pieces. Heavy cart iron work requiring much turning to be done to it between the centers should
bave wrought iron plug bave wrought iron plugs centers put into the wrought iron; because centers, if of cast iron, cut, and soon run out of truth. Before boring o turning work that is chucked if there is sufficient room put a rod of iron between th centers to counteract any end play there may be in the spin dle of the lathe. In applying a steady rest, be careful not to put an unequal strain on the work by screwing any of the jaws tighter than the others, or it will spring the work out of the straight line, in which case the cut taken by the tool will not be parallel. When there is sufficient room, use a boring bar with a small tool in it for boring holes; for the extra strength of the boring bar enables the tool to take haavy cut, which a borivg tool having a slight body would not do, in conss quence of the springing.
If work chucked in a lathe is much heaviar on one side rhan on the other, bolt a weight on the chuck (near the light side of the work) sufficiently heavy to counterbalanceit, oth er wise the centrifugal force generated by the revolutions of the heavy side of the work will cause it to revolve eccentric ally, and to be in cons q quence turned untrue.
In turning a cone on anything which is beld between the centers of the lathe, tbe dog or clamp used to drive the work must be so placed as to be able to move to accommodate the varying angle of the center line of the work to the centur line of the poppet head of the lathe, as illustrated in Fig. 43.

The dotted live, a, represen the c nter line of the work; B B are the lathe ceriters. C 's the ceuter line of the popps head of the latbe, D D is the chuck plate E is the position of the center inge of the dog or drioing clemp at one nide of the lathe conter, add F is its position whea the lathe hap made one half of a revolution; from which i; will be par ceived that the tai, stock of the lathe, briug coved out of th center line of the headstock of the lathe, the end of the dog or clamp which is driving the work adeances townrd and recedes from the chuck plate at every revolution, and liberly must therefore be given it to move in that manner.
In boring brasses for journals, place a piecs of slieet tin in the joint of the brasser, and bore th• m the thickness of the tin too large, which will make them fit well on the crown when the tin is taken out; for brasses bored with the jointe close together always bind on the sides, and will lot fit down on the crown without being filed.
The same end mby be attained by boring the brespes a trifle too large, so that filirg a little off the faces of the joint will let them together and down on the crown; but the above described plan it the best.
The amount of sbrinkage to be allowed for contraction, on holes in cast iron of two or less inches bore, sbould be so litt'e that,the outside callipers being gaged to touch theshaft very lightly and the inside callipere or gage to touc' the bole only sutficiently to feel the toucb,you cau jast fee plainly between the two when they are placed or gaged ingetber
For larger sized bores, proportionately increased allow ance should be made, so that a hole of 12 in ches diameter will bave less than $\frac{1}{6} \frac{4}{4}$ of an inch of ahritkage. Wrought iron may be given a little wore sbrirkage, and steel one half less in the case of the 12 inch hole.

EXPANSION AND CONTRACTION.

Much labor and expense may often be saved by employing the principles of exp naion and contraction to refit work For ins'ance, supoose a bolt has worn loose: the bolt may be hardened by the common pruesiate of potash process, which will cuuce i^{2}, to increase in siza, both in length and diameter. The bole may be also hardsned in the same way which will decrease its diam ter; and if the decrease is more than ne ossary, the hole may be ground or " lapped " out by mean not quite true, are a triffe too small, or have been hardened
and cannot therefore be cut by a tool. A lap may be simply a piece of rod copp $\cdot \boldsymbol{r}$, or an iron mandril with tin or lead cast ar sund it. The diameter of a lap sbould be turned to be an easy fit at bothends in the hole and a trifle larger in the middle, so that the hole which it is interded to grind will fit ightly on the middle of the mandril, the latter being about hree times the length of the former
The operation is to place the lap through the bole which it is togrind and then between the centers of the lathe; then, while the lathe is running at a bigh speed, supply the lap with oil and grain emery, moving the work back and forth along the ap until it will pass casily fromend to end, when the lathe may $\mathrm{b} \rightarrow$ stopped and the lap indented with a cold chisel, and supplied with oil and emery, and the grinding opera'ion proceeded with as before. The work should be held upright and on each side of the lathe alternately, so that its weight ball not cause the grinding to be excessive on one side of the hole. Only about $\frac{1}{64}$ of an inch of abrir kage can be obtained on a holeand bolt by hardening, whicb, however, is lighly advantageous when it is sufficient, because both the hole and the bolt will wear longer for being hardened.
For closing long holes, boxes, etc., the water process may be employed, as represented in Fig. 44. $a a$ is the section of

wrought iron square box or tube, which is supposed to be made red hot and placed suddenly in the water, B, from its end, C, to the point, D; ihe result is that the metal in the water, from C to D, contracts or shrinks in diameter, and compresses the hot metal immediate'y above the water line, as the small cone at D denetes. If then the box or tube is lowly immersed in the water, its form, when cold, will be as described in Fig. 45, that part from C to D maintaining its originsl size. and the remainder being smaller.
It must then be rebeated and suddenly immersed from he end, E, nearly to D, until it is cold, and then slowly low ored in the water, as before, which will contract the part from D to C, making the entire length parallel butsmaller, both in diameter and bore, than befure it was thus oparated pon.
Small holes to be reduced in bore by this process should be filled with fire clay, and the faces nearly or wholly covered with the same substance, so tbat the water will fret cool the circumference, as shown in Fig. $46 a$ represents the hole, B the circumference of the washer tup Fig. 46. posed to be operated on, and the dotted line. C, the fire clay filling the hole and nearly covering the face; so that the part not covered will cool first, and, in contracting, force in wards the metal round the role, which is preven:ed from cooling so quickly by the cley and therefore gives way to the compressing force of the outeide and cooler metal. This principle may be made ure of for numerous purposes, as for reducing diameters of the tyrs of wheels, reduc ing the eize of wrought iron bands, or for closing-in connecting rod straps to refit them to the block $\in \mathbf{n d}$, the mode of operation for which is, in the case of a rod whose strap is held by bolts running through the block and strap, to bolt the strap on the rod to prevent it from warping, to then heat the back of the strap, avd (hnlding the rod in a vertical position) submerge the back of the strap in water to nearly one half its thickness.
If the bolts are not worn in the holes, or if the strap is one having a gib and key,they may be merely put into their places without placing the strap on the rod. Even a plain piece of iron shrinks by being heated and plunged into water, but only to a sl'ght degree, and the operation cannot be successfully repeated. Eccentric rods which require to be shortened, say $\frac{1}{64}$ of an inch, may bs operated on in this manner, in which case care must be taken to immerse them evenly so as not to warp them.

Prizes for Essays.
The Academy of Arts, Science and Belles Lettres of Caen, France, offers a prize of eight hundred dollars for an earay on the subject of the functions of leaves in the vegetation of plants. A dissertation on the present state of science on this question, including the results of personal experiment, showing new facts tending to confirm or modify the doubt ful points in theories now admitted, is required. The papers must be submitted before January 1, 1876.
Another prize, of one hundred dollars, is offered by it a Academy of Sciences of Rouen, for a treatise on the advintages to be obtained by the conservation and improvement of cider by the employment of the processes of heating now applied to wines, The award will be made during the com. ing year ${ }^{\text {f }}$

The testing of oils, in a simple mode, has always been a desideratum. Miss Kate Crane, in the American Journal of Pharmacy, gives an account of a series of experiments instituted by her, which tend to show that much reliance can be placed on the cohesion figures produced by dropping oils on the surface of clean water. In her experiments, a single drop of oil was allowed to fall from a burette held at a distance of four inches from the surface of a dish of clean wa. ter. The time required for the production of certain figures was carefully noted, as it appears that several oils will produce very similar figures ultimately, if sufficient time be given. Oil of turpentine spreads out instantly and begins intestine motions, and lastly forms a beautiful lacework. Oll of cinnamon forms a figure not more than half the size of the above. In a few seconds, small portions are detached and separate into distinct drops. Oil of nutmeg forms a large figure instantly, the edge showing a bsaded line. Poppy seed oil spreads instantly to a large figure, retaining an unbroken form for a few seconds; then boles appear round the edge, and soon the whole surface is broken up with curved lines. Cod liver oil spreads into a large film; a little way from the edge small holes appear, and in a minute or two the surface is studded with them. These gradually enlarge, assume irregular shapes, and become separated by branching lines. As these oils give different figures and behave differ ently when mixed with one another or with lard oil, this method may be of very great use in the preliminary testing of suspected oils.

A NEW DETACHABLE HORSESHOE

The improved horseshoe represented in the annexed illus. tration is so constructed that it may be put on or removed from the hoof without requiring the labor of the blacksmith. When constructed of malleable iron, its cost need not be over half that of the ordinary shoe, while it is much more durable, there being no wearing out of the rim, if that portion be constructed, as it easily may be, of steel. The inventor suggests that the device is especially adapted for use in the army, and that i.t might be made in various sizes, and thus issued, nothing further than a rasp, in the hands of a cavalry soldier or artilleryman, being needed to fit the shoe to the horse's hoof.

The invention, as shown in section, in Fig. 3 of our engraving, is made in two parts, A and B , fastened together by dovetails, C , at the heel, and a screw, D , at the toe. The lower part has toe and heel calks, and the foot of the horse rests upon its upper side. The portion, B, forms a metallic rim around the hoof, covering the edge of the same, so that

Fiy. 7

fial 2

when the parts are screwed together by screw, D, the shoe is firmly held. By placing a cloth or rubber cushion beneath the foot, the fit of the shoe may be tightened, and of course, by loosening the screw, the shoe may be easily removed.
Exterior views of the device, from above and from underneath, are given in Figs. 1 and 2. By its use, the horse's feet are left in their natural state, only requiring to be rasped off occasionally as the hoof grows. The shoes may be removed when the animal is turned out to pasture or when in the stall.

The inventor states that the entire shoe, ready for use, can be made for from twenty to thirty cente, and that, even if it be provided with a fancy polished rim of brass or other metal, its cost will not be so great as that of the common shoe.

Patented tbrough the Scientific American Patent Agency, August 25, 1874. For further particulars address the inventor, Mr. Luther W. Griswold, Marshalltown, Marshall county, Iowa.
a Valuable Gift.-The Cincinnati Gazette states that Twumas H. Yeatman, Efq., has presented to the Young Men's Christian Association Free Library, of that city, a complete set of the volumes of the Scientific American. They comprise thirty bound volumes, and extend from 1859 to 1874 This is a rare and valuable gift.

WILLANS' THREE-CYLINDER ENGINE.
We illustrate herewith an ingenious and very neat arrangement of three cylinder engine, designed by Mr. P. W. Willans, of Greenwich, England, which is now in use for driving a fan, etc., at the works of Mearrs. John Penn \& Co., of Fig. 1.

Greenwich, an establishment with which Mr. Willans is connected. In the engine in question three cylinders are used, and each cylinder is single-acting, receiving its steam upon the upper side only of the piston. The connecting rods are attached directly to the pistons, and actuate a threethrow. crank shaft.

Each piston serves as a steam valve and controls the sup ply of steam to one or the other of two remaining cylinders. There is a steam chamber in each piston and a port in its side (see Figs. 1 and 2). Steam is supplied from the boiler by means of a hollow rod passing through the top of the Fig. 3.

cylinder into a steam chest. When the piston has reached about three fourths of its downward stroke, the steam por in it ovtrlaps a port formed in the side of its cylinder, and seam then passes to the top of another of the cylinders when, on the other hand, the piston has reached about one half its return stroke, it uncovers the port in the side of its cylinder and allows the steam to escape, from the cylinder
into which it was previously admitted, into a casing round the cravk sbaft, from which the exbaust steam is taken either to a condenser or to the air, as the case may be
In an engine which is required to run only one way round the port in the side of each cylinder passes direct to the top of one of the other cylinders; but where it is desired to re verse the engine, as in the one illustrated, the ports to the top of each cylinder and those to the sides of each cylinder meet in a three-way cock (see Fig. 2); and this cock, by con necting the port in the side of any one cylinder with that to the top of either one or other of the other cylinders, revers es the engine. It will be seen that the wear upon the connecting rods and crank shaft bearings is always in one direction, namely, downwards, so that no moderate amount of wear affects the working of the engine, and the whole ma chine is perfectly noiseless. The tubes through the tops of the cylinders, besides forming guides for the pistons, allow a great number of revolutions to be made without any loss of power in stopping and setting in motion 8gain, theamount of dead weight in motion being small; and the pressure upon the three tubes keeps them in equilibrium, but still maintains a constant pressure upon all the bearings. All the lubrication is done through a steam lubricator on the atean chest (Fig. 1), and whatever oil is wasted in the cylinder passes down to the bottom of the casing, and lubricates the lower ends of the connecting rods as they pass round. The upper ends of the connecting rods receive their lubrication direct from the steam chamber in the piston by way of amall holes drilled through the bottom of the chamber. As the stroke of the engine is so large in proportion to the width of the steam ports, the latter are opened and closed very quickly, and there is little or no back pressure in the cyliodere. By some slight modifications the evgine may be made com pound, and the crank sbaft may, if necessary, be kept cat side. A plan of the arrangement is shown in Fig. 3. When there is a casing round the axle, the feed water may $b_{\theta} h \in a t e d$ by being pumped tbrough pipes passing through, that casing We have examined the engine at work at Messre. Penn's (8ays Engineering, to which we are indebted for the engravings), and havefound it work with admirable steadiness a very high speeds. Some indicator diagrams have also been taken from this engine, showing a very good distribution of the steam. The whole arrangement is, as will be seen, very simple and compact, and there appears to be a wide field fo the application of such an engine.

IMPROVED CORK-SOLED BOOTS.
Represented in the annexed engraving is a novel plan for making boots and shoes with cork soles, which, judging from some completed articles which the inventor has submit-

ted to us, is an invention both valuable and timely. A very thick but very light sole is provided, which effectually keeps out the cold and wet of winter, and in summer shields the foot from the excessive heat of the sun-baked pavements. The device is as easily repaired as the common sole, and it use in bad or rainy weather would obviate the wearing of overahoes, to most persone a disagreeable necessity
In Fig. 1 a view of the finished boot is given, from which it will be seen that there is no detraction from the neat ap pearance of the covering. In Fig. 2, a sectional view of the sole shows the mode of attacbment of the various portions of the same. The upper, A, is attached to the inner insole, B, by a seam. C is the cork, which is made in two layers, superposed, this construction preventing dampness passing hrough, however thin the material itself may be. Around the edges of the cork is placed a band of sole leather, D, covered with fine calfskin, E. This coverand the upper edge of the band are sewn in with the upper to the inner insole. By a second seam the upper, the lower edge of band, D, the cover, E , and the welt, F , are attached to the middle sole, G . The upper is taken up in both seams, giving great strength and firmness to the sole. The outer or main sole is secured to the welt by a third seam in the ordinary manner.
Patented through the Scieatific American Patent Agency, une 16, 1874 , by Mr. E. A. Brooks, of 1,196 Broadway, New York city, who may be addressed for further particulars, is

THE BUILDINGS FOR THE CENTENNIAL EXHIBITION. between the long lines of exhibited articles, will be mainly|ments for the person. 4. Furniture and manufactures of

The Commissioners who have charge of the arraugementa 30 feet wide.
the Coldial Erlibition to be held at Pil dalphi i or the C 1876, have recently given to the public definite details of the buildings to be erected in Fairmount Park for the purpose. The structures are five in number, the Main Building, the Art Gallery, and the Machinery, Agricultural, and Horticultural Halls. We publish herewith views of the first two, which give an excellent idea of their general appearance and proportions.

30 feet wide.
The foundations for this structure, which promises to be admirably light and convenient, as well as graceful in appearance, are to be piers of masonry, the superstructure consisting of wrought iron columns, with roof trusses of the same material.' The columns are to be of rolled channel bars, with plates riveted to the flanges, and the roof trusses are straight rafters, with struts and tie bars. The columns are to be 24 feet apart ; and timber paneling, to the hight of
general use in construction and in dwellings. 5. Tools, implements, machines, and processes. 6 Motors and transportation. 7. Apparatus and methods for the increase and diffusion of knowledge. 8. Engineering, public works, architecture. 9. Plastic and graphic arts. 10. Objects illustrating efforts for the improvement of the physical, inellectual, and moral condition of man.
In the Main Building will be located portions of all of the above departments, except No. 6, which will be placed in the

The Main Building is to be 1,880 feet long and 464 wide, covering 2002 acres of space. The whole will consist of one floor only, except in the projections and towers, where galleries, giving additional space, will be provided, adding 1.45 acres to the available area. The great length of the building has rendered advisable the breaking of the roof lines by the addition of three transepts or cross avenues. The roof is chiefly of the hight of 70 feet from the ground, the towers at the corners being 75 feet high. The central portion, 184 feet square, rises to an elevation above the rest of the building, and is surmounted by four towers 120 feet high. The central avenue will be 120 feet wide, with another, 100 feet wide, on each side of it. The passages for promenade,
seven feet, is to be filled in between the outer columns. Above the paneling, glass sashes are to rise to the top of the building, portions of the sashes being removable for the pur pose of ventilation.
The engineers and architects of the structure are Messrs. Henry Pettit, Consulting Engineer of United States Centen ial Commission, and Joseph M. Wilson
Every product exhibited in any part of the entire Exhibi tion will be considered as belonging to one of the following ten departments: 1. Materials in their unwrought condition mineral, vegetable, and animal. 2. Materials and manufac tures, the result of extractive or combining processes. 3 Textile and felted fabrics. Apparel, costumes, and orna

Machinery Hall, and No. 9, to which the Art Gallery will be especially devoted.
The departments will be arranged in parallel zones length wise of the building, the zones being of different widths, according to the bulk of the products exhibited in the par ticular department. The States and countries exhibiting will be arranged in parallel zones crosswise of the building, these zones also being of different widths, acccrding to the amount of space required for the exbibits of each country. Between each department and each country will be passage ways distinctly marking the limit of each. The result of this dual system will be that any visitor or student, desiring to compare the products of the same kind from different part

of the world, may do so by passing through the building lengthwise, keeping in the zone devoted to the particular de. partment; and any one desiring to examine only the product xhibited by any particular countiy or State may do so by passing through the building cro
the art gallery
is of a highly ornate design, and is intended to be the best and handsomest building yeterected on this continent for the purpose. It is to be constructed of granite, glass, and ron, and will be thoroughly fireproof. Its dimensions are 365 feet long, 210 feet broad, and 72 feet high, with a dome urmounted by a figure of Columbia, rising to 150 feet from he ground.
The Central Hall will be 95 fest long, and the Pavilions, ne at each end of the building. will be 45 feet. The Pavil ons will be connected to the Central Hall by arcades, each 90 feet long by 40 feet high.
The lighting arrangement, the most important point in the construction of an art gallery, appears to be thoroughly effi cient. From the east and west sides of the Central Hall ex tend the galleries, each 98 feet long, 48 feet wide, and 35 feet in hight. These galleries admit of temporary divisions for the display of paintings. The center hall and galleries will altogether, form one grand hall 287 feet long and 85 feet wide, capable of holding eight thousand pereons, nearly wice the dimensions of the largest ball in the country. From the two galleries, doorways open into two smaller galleries, 88 feet wide and 89 feet long. These open north and pouth into private apartments which connect with the pavilion rooms, forming two side galleries 210 feet long. A corridor 14 feet wide opens into e series of private rooms. Mr. H J. Sch warzman is the architect, and Mr. R. J. Dobbins the on'ractor.
It will be seen that the Commissioners have duly appreci ted the magnitude of their undertaking, as well as the ad visability of sppealing to modern taste, culture, and refine ment. If these two structures, the erection of which is be ing vig rous'y prosecated, are finisbed as they are represented in our engrevinga, and the other three are equally worthy of their noble purpose, we shall as a nation, have something to be provd of in our Centennial Exbibition, and among ou best extibits will be the buildirgs themselves.

the franklin instituie exhibition.

UMPS.

The huge water tank in the southeastern corner of the bai dilg atcracts crowds of visitors. Clustered around it is o be fouud almost every variety of ateam and band pump. All the stram pumpe are in operation, and together diecbarge monense quantities of water. amrng the extibitors weno tue Potter \& Hoffman, C. A. Cmde\& Co, William Cramp \& Sous, Henry C Hall \& Co (pulsomet, r pumps), Cooper,Jone C Cadoury J H Biilington \& Co., and last, but not l-ast Thomas Shaw. Tue pump shown by this gentleman is ne of the largest ever extibited, a ad deserpes erpecial no tic \uparrow. He calls ir a compoavd propeller pump, and he claim. for it esp cially simplicity of conetruction: it contains no valves, and con*ists essentially of but three pieces, namely. the column pipe, shaft, and propelier; therefore it is econo mical, costing much less than any other equally powerful pump. Ite enormous power is a feature peculiar to it. The one exhibited is a 20 inch pump, and lifts 10,000 gallons per minute; with a greater speed it can lift 14,000 per minute. A 7 inch pump yields 1,000 gallons, and an 8 inch pumps 1,200 gallons, per minute. It can be used either as a force or a lift pump; can be placed at ary angle; will lift sand, mud, sticks, and oirt off sunken lands without serious hurt The hight to which the water can be lifted depends only upon the power employed. A serious difficulty was at first xperienced in obtaining a bearing suitable to sustain with. out injary the enormous weight of the culumn of water, to gether with the shafts and propellers. This has, however, now been successfully met by Mr. Shaw's effective water bearing, which consists essentially of a cast iron beam rest. ng on the top elbow of the pump, upon which pillars are ecured, supporting a stationary disk carrying an ordinary tuffing box, penetrated by the propeller shaft. A domerises from the stationary disk, and inside of this a second disk is ttached to the propeller shaft and revolves with it. Water is forced below these two disks, under a pressure equal to the weight sustained. In this way the entire weight of the evolving machinery and the greater part of the water col mn is supported on a film of water on which the revolving disk floats. When too much water is forced between the disks, the revolving disk is raised and the surpius allowed to es. cape. The water is raised into a large tank 16 feet long, from which the water falls 10 fest to the tank below. The pump is driven by a beautiful engine built by Neafie \& Levy, of Philadelphia.

IRON AND STEET.
The Union Iron Company of Buffalo exhibit a heavy 15 ach beam weighing 66_{3}^{2} pounds per foot, 52 feet 6 incbes ong, rolled in one heat; and a light 15 inch beam, weigh. ng 50 pounds to the foot, 60 feet 6 inches long, also rolled n a single heat.
The Midvale Steel Works, of Nicetown, Philadelphia, make a beautiful display of their manufactures of cast steel. Several cold twisted rails are exbibited, showing the excelent quality of the steel. Forginge of various forms are also o be seev. A steel axle made of Siemens Martin steel was submitted to the following tests: A weight of 1,640 pound falling 20 feet, was allowed to fall on the bar, placed on
bearings three feet apart. The bar was reversed after each a large number of their ptandard acales for different pur blow. The followivg d\&flections were observed: The first poses, as well as sca'es graduated to the Russian, Freach, blow produced a deflection of 7 inches; the second, of ${ }^{\prime 7}$ Chinese. Spanisb, and othrr stagdard scales. Messrs. Howe, nch in the opposite direction; the third, 68 inches in the opposite direction; the fourth, $1 \frac{3}{7}$ inches; the fifth, $5 \frac{1}{2}$ inches and the sixth, $2 \frac{2}{2}$ inches, each in the opposite direction.

HEATERS AND STOVES

In heaters and stoves a very large display is made. Liebrandt \& McDowell exhibit, among other novelties, the Radiant Parlor Cook, Our Mutual Friend, and the Great Centenial Range. Samuel Kirby exhibits the Phœnix Double Heater, which he claims to be one of the most economical nd powerful now in use. A small grate attachment serves as a consumer in cleaning clinkers from the fire. J. A. Lawson exbibits a combined self-feeding and surface burning furnace, called the Pearl. It is designed especially for the consumption of antbracite. Other firmsare adapted to bitminous coal and wood. Fuller, Warren \& Co. exhibit a ery beautiful open front Franklin stove, which they call the Howard. The cheerful, open fire is combined with economy and cleanliness. The Pennsylvania Heating and Ventilating Warehouse and Blacksmithery Works, of Philadel hia, exhibit one of D. Mershon's Sons' wrought iron air ight furnaces, adapted for all kinds of fuel. A novel appli cation of a regulator is made, by which the fire can be reg lated without going into the cellar. This is effected by sim ple lèvers and pulleys. Reynolds \& Son, of Philadelphia oxhibit their wrought iron airtight furnaces. Among umber of forms we note especially the Centennial Furnace arranged expressly for burning bituminous coal or coke. MACHINE TOOLS.
Unquestionably the most interesting feature of the Exhi bition is the display of machine tools. Among the prominen xhibits we notice those of the following firms: William Sel lers \& Co , W. B. Bement \& Son, Van Haagen, Shoper \& Bro aris \& Miles, E. Harring tou \& Son, ard many others. Asit wil e impoasible in the limited space of a single letter to do justice a.l there exhibits, we therefore stlect one of the most pro minent, namely, that of William S.llers \& Co., of Philadel phia. Among the many ingenious tools exibited by this firm nove attract more attertion, both from experts and nonexperts, than their automatic gear cutting and wheel-divid ing machine, and indeed justly so, for it is a marvel of in enuity. Its movements are pntirely automatic, no manua bor whatever bsing required on the part of the operator, ave tbe oiling of the machine. It is impossible to convey a clear idea, in a brief description, of the number of beautiful motions of the wachine. Thegradual ad vance of the cutter, its quick return and fiual stop, the automa'ic staring of the viding mecbanism which brings the wheel around to the sact position for the next tooth, must be seen to be fully preciated; aud when once seen, toere is a kind of fasciua inn about it that arakes a visitor spevd a lergth of timein x miling its beauties.
alongside of the gear cutter is one of their self-actin de lathes for turuing and screw cuttioe, the arrang m-d which secure great conveniencetor working. The top of erbears is a flatie eurface. The audde carrying the slide fest is guided on the front edge, the heads moviog between the parnliels. The cone pullfy is furoisbed with 6 ve stepa, giving fitteen rates of epesd, rising proportionally from the lo west to the most rapid. The feed movemertia especial]y novel. By means of an ingenious combination of frection dieks, inpented and patented by Mr. C. Sellers, the rate of speed is altered by the simple turning of a milled screw no atoppage or change being necessary. The imporiance of this feature will be iastattly recogniz-d
A nut shaper of entirely new design is also on exhibition all six sides of the nut are finished at the same time, b means of a peculiar arrangement of cutters. A continuous stream of oil is supplied, to the surfaces cut, by a pump be neath, run by the machine. Nats finiehed by this machine have a beautiful and characteristic appearance imparied to them. We also notice a radial drill, with adjustable arm capable of a five foot swing. The tool is so arranged tha the spindle can be accurately adjusted to any point of th lathe, thus avoiding the moving of heavy work. A section of the latter is suec ψ ptible of vertical adjustment, thus adapt ing the machine to the performance of small work. The pindle is driven by a belt running horizontally, giving th remarkably smooth motion so characteristic of the Sellers upright drills.
Another interesting feature of their exhibition is a lathe n which are two small grinding machines, one for drills and he other for straight edges and other hardened work requirng true surfaces. The drill grinder produces the required dge on the drill with no other labor than is needed to set in the required position. Though a small tool, it deserves especial mention. The slotting machine is also remarkable or the originality and excellence of its construction. A vertical adjustment to the connection of the slotting bar enables it to be easily set for different hights of the work The feed movements are readily controlled by the workman without leaving a position favorable for watching his work A number of otber novelties are exhibited by this firm, among which might be mentioned their improved forms of Gifford injoctors for feeding boilers, but want of space pre rents any further notice.
Messrs. Riehle Brothers make a fine dieplay of their scales and testing machines. They have on exhibition one of their 75 tuns upright testing machines for ascertaining the tensile strength of round, flat, or equare specim $-n$ of any material from 18 to 32 inches long; also one of Professor Thurston's new testing machines.
Fairbanks \& Ewing, of Philadelphia, have on exhibition

Fairbanks \& Co. also make a fine display
As an unusually fine apecimen of wood work, we note the Union table, made by Samuel McCracken, of Philadelphia. It contains some 35,000 pieces of wood. Among the varieties employed are the following: oak, pine, walnut, coco, tulip, amboyna, lance, locust, mahogavy, Hungarian and American ash, cedar, white holly, French walnut, satin and rose. The American eagle is in the center, surrounded by thirteen stars, and in circles beyond this are stars and other devices. On the whole, the effect is a happy one.

A Bullock printing press and a machine for making envel opes, both in actual operation, draw large crowds of the curions. Working models of Chambers' and of the Excelaio brick macbines are alko exhibited.
The exhibition of drugs, dyestuffs, and chemicals is on f the most attractive features of that portion of the building on the left hand side of the main entrance. The Penn aylvania Salt Works, Powers \& Weightman, Henry Bauer Jobn Lucas \& Co., Harrison Brothers, and Rosengarten \& Sons have exceedingly large displays.

Sheet Iron Gas Mains.

The Paris Gas Company have lately laid down a main 3.2 cet in diameter and 1,093 yards in length, from St. Maude to the Place du Trône. Hitherto sheet iron pipes covered with bitumen bave not been applied to mains of that dimen ion, and it was important to ascertain bow such pipes of moderate thickness would answer beneath the public roads, where they would be submitted to the permanent and acci dental pressure tending constantly to produce deformity
The company had already adopted sheet iron pipes of 2755 inches diameter, without any important deformity being pro duced,and it was only necessary to submit the 3.28 inches pipes to similar pressure to ascertain what effect it would produce, all theoretical calculation being deemed untrustwortby. A comparative trial was therefore made with the aid of an ap paratus planned for the special purpose. A pipa of 2755 inches diameter, of the ordinary thickness of 0.157 incb , and pipe of 328 fe t diameter, 0.197 inches thick, were laid in the ground in the mode adoptrd for the mains in Paris. the trencles having been dug in such a way that there was space of 10 inches between each side of the tube and that o the trench, and that the filling.in above each pipe abould be 3.28 feet in depth. The pipes in ordinary use are 1312 fee in leogth; but in order to spread the weigat over a large pur face, pipes 1968 feet long were adopted for the experiment and one end of each was left open to allow of access to the in'erior.
The trial was made by placing on the soil above them pigs f lead, from four up to twen'y tuns weighr, which were supported on a platform c мmosed of timber, aud having a surface of 86 square feet. Tbis platform was laid upon two pieces of timher, each 197 iucbes lotg ans 985 iaches wide and placed 690 fent apart, which represented the tyres of th wo wherls of one of the axlee of a locom tive of for'y tuns. Th + a pparatus for the indication of the d foratities produced consisted of a circular disk of pheat iron with ning radia rods, each supported by two small guidee screwed to the disk, and provided with a spiral spring wlich kept its oute ad pressed against the inner surface of the pipe. The gu'des of the rode were eacb provided with a eet eciew to hold the latter in plac while the a poparatus was b+ing placed ia the pipe. The only object of tiee rods at the lower part of the dibk was to mai tain the center of the late in the sais of the pipe, and when the appuratus was in place both the guides of these lower rode were fct+wed firmly to the ritk. Thus any alteration in the vertical diamerer was mearured som the center Io the certer of the diek was an operio 887 iuches in diameter, ficted with a pisce of iron coverted with leather, which carried a circular piece of paper. Eych iron rod on the upper part of the dik was fitted with a ointer held in a small tube by a spring, and provided with copper button. When the apparatus was in its place a fin ger was pressed on each button, and the position indicated by pricking through the paper, the leather bobind preventing the point of the neadle being turned. When a load was laid on the platform above, the position of the pointers was again pricked through the paper, and the difference between the two marks showed the amount of deformity produced. The esults obtained were then transferred to a diagram of the ame section as the pipe itself.
By comparison of the diagrams obtained, it was found that with a load of twenty tuns pressing on the pipes for 130 hours the 3.28 feet pipe had given way vertically to the extent of 2.85 per cent, and the smaller pipe of 430 pe cent. The conclusion was that a pipe 3.28 feet in diamete and 0197 inches thick offered greater resistance than a pipe 27.55 inches in diameter and 0.157 inch in thickness, which had already proved itself satisfactory in practice. It was ound by further experiments that, when a pipe had once been deformed by a heavy load, it only recovered itself to he extent of a fraction of an inch when the load was re moved. After these experiments a main 328 feet in diame er was laid from the gas works at St. Maude to the Place du Trône, and as the joints were made they were tried with compressed air under a pressure of 2.755 inches of the mer cury manometer, the pipes themselves having been previ usly tested under a pressure of 75 pounds to the squar inch. These trials revealed a few defects which were easily repaired. Since that time the main in question bas been in use constantly, without exhibiting anything contrary to the results of the several experiments which we have above re

Much time and attenting Iron. Kick, of Prague, to the subject of etching iron with acids His mathod is not a new one for arriving at a knowledge of the quality of iton or steel, having bsen used with some success for a long time, but the care with which the professor has conducted his experiments makes them exceedingly valuable.
Some kinds of iron exbibit what is known as the passive state, and are unacted upon by acids until this state has been destroyed by hea:ing. The surfaces thus prepared were inclined to rust very soon. After a eeries of experiments with nitric, sulphuric, and bydrochloric acids, and etching solutions of copper salte, Professor Kick found that a mixture of equal parts of hydrochloric acid and water, to which was added a trace of chloride of antimony, was the best etching addud a trace of chloride of antimony, was the to render the
solution. The chloride of antimony seems to solution. The chloride of antimony seems to render the
iron less inclined to rust, so that, after washing thoroughly iron less inclined to rust, so that, after washing thoroughly
in warm water, and applying a coat of dammar varnish, the in warm water, and applying a coat of
etched surfaca may be kept quite clean.
The smooth surface that is to be etched is surrounded with a ridge of wax an inch high, as is done in etching cop per plates, and the acid is poured into the dish thus formed. At a temperature of 55° to 65° Fab., the action soon begins, as shown by the gas evolved; in winter the etching is poor. The time required is from one to two hours, but the etching should go on until the texture is visible. Every balf boar the acid can be poured off without removing the wax, the carbon rinsed off, and the surface examined. If too much c hloride of antimony is added to the acid, a black precipitate will soon form, which can easily be distinguished from the carbon. One drop of chloride of antimony to the quart of acid is sufficient. When the etching is finished, the wax rim is removed, the iron washed first in water containing a little alkali, then in clean water, brushed, dried, and var nished. It in a few hours it bygins to rust, the varnish should be removed with turpantine, which will also take off the rust, and then varnish again.
The appsarance of different kinds of iron when etched is esseutially as followa: Soft or sinewy wrought iron of ex collent quality is attacked so equally by the acid, and so lit le carbon is separated, ever af cer several hours' action, that the suiface remsins bright and smooth. Fine grained iros acts the pame; the surface is still smoother, brat a little darker. Coarae grained and cold short iron is attacked mush more violen;ily by arid than the above. In ten mit. uter, espocially with the lattar, tion surface ia b'ack. After thiry miautes a black slime can b, washed off and the sur face will remain black in ppite of repeatcd washings, and exbibits oumerous little holes. Certain parts of the iron ard usually eason deepar, while othera, alchomgh black and porous, offer more repistance. By allowing the acid to ac or an bour or so, then washing, drying, add polishing witb file, a distioct pisture is obtained. Malleable cast irov, we know, rus's more easily than wrought iron, and it is in terasticg to know that the action of acids is also violent, the surface oeing atacked very violently. Gray pig iron ac's like sterl; the etched surfaces bave quite a uniform gray color. In pudded steel, the color, after etching and washing, is gray, with quite a uniform shade, and the lines are searcely disible. Cement steel bas a very similar appear anc;-, the lines being very weak. In Bessemer and cast steel the etched surfaces are of a perfectly uniform gray color, with $f \circ$, if any, uneren places. The softer the steel, the lighter the color.
On etching, the finest hair-like fractures are rendered prominent. A piece of steel, which looked perfect before etching, afterwarde exhibited a hair-like fracture through out its whole length. When different kinds of iron are mixed, the acid attacks that for which it has the greater af inity, whila the other is less acted upon than if it were alone. Etching is exceedingly valuable to all who deal largely in iron, as it enables them to determine with com parative accuracy the method of preparing the iron the case of rails, etc., as well as the kinds employed.

New Phosphor Bronzes.

Dr. Kunzel, whose name will be recalled as the joint discoverer, with M. Montefiore-Levy, of the well known phos. phor bronze, now announces the additional discovery that when phosphor bronze is combined with a certain fixed pro portion of lead, the phosphorised triple alloy, when cast into a bar or bearing, segregates into two distinct alloys, one of which is hard and tough phosphor bronze, containing but little lead, and the otker a much softer alloy, consisting chiefly of lead, with a small proportion of tin and traces of copper. The latter alloy is almost white, and, when the casting is fractured, it will ba found nearly equally diffused through it; the phosphor bronze alloy forming, as it were, a species of metallic sponge, all of whose cavities are occupied by the soft metal alloy segregated from it. This phenomenon of the segregation into two or more alloys of combinations of copper with tin and zinc has long been known; binations of copper with tin and zinc has long been known;
and from the fact that such separation is generally massive, and from the fact that such separation is generally massive, and not equable throughout the mass, it has been a source
of great annoyance to the founder. Dr. Kunzel, however, seems to have succeeded in causing the segregation to take place in uniform distribution throughout the casting, and has taken advantage of the properties of the product, which he obtains in this manner, to construct therefrom bearings of railway and other machinery.
In heavy bearings, such as those for marine evgines, the valusble properties of Babbitt metal, and similar anti friction alloys, are well recognized; but these, being generally tion alloys, are well recognized; but these, being generally
soft, are open to the grave objection that, where they are
subjected to considerable pressure, or even moderate pressure accompanied by continued vibration, they become distorted in form, and then fail to sustain the journals in their proper places. The device is, therefore, resorted to by the machinist of casting a hollow cage of hard metal, of proper form for the intended bearing, the cavities of which he hen fills up by casting into them the soft metal alloy,which thus forms the actual rubbing surface of the bearing. The hard metal cage thus supports the soft metal within, and prevents its distortion or escape, save by surface abrasion. Dr. Kunzel claims to effect the came result by the peculiar constitution of his new phosphorised alloy for bearings. This forms its own supperting cage for the soft bearing metal, which, as alluded to at the outset, separates from it in the process of cooling. He claims that these bearings combine the very smallfriction and non-abrasion of the jour nals with the firm resistance to pressure and stability o form of bearings of hard metals. The test of practice, how over, alone can decide the value of these slaims, though hey seem very plausible.-Iron.

The Waste of Power in Cotton Mills

The winter session in connection with the Manchester Eng., Scientific and Mechanical Society was lately opened by a paper by Mr. Evan Leigh, C E., on the waste of powe in cotton mills.
During the course of his paper, Mr. Leigh said that it might naturally be thought that England would not allow herself to bs surpassed by any fortign country on any point relating to her principal and favorite manufac tures. On one or two points, however, England has been most decidedly excelled by inventions originating in America. He alluded to ring spinning and belt driving, both of which were eminently calculated to save power, and con sequent waste of fuel. Referring to ring spinning, he sa: that it had been introduced into England as an American invention more than forty years ago, but for some reason it
was not generally adopted by the English spionera. Per baps that, was owing to the recent failure of the Danforth throstle, another American invention of great promise, tha had been adopted by se reral spinners. Although the princi pla of the two frames was totally difforent, the Eoglish spin er was not to bs caught again, ro he fought ehy of the ring frame, and it was beliered that for more than thirty years oot one frame on that principla was used in Grest Britain The solid ad vantages of via method of apioning were, how over, du'y appreciatad in Am+rica, and the eystem was cul ivated un il the diffisulties and txact mechanical require ments attendiog its cons'ruction were thorougbly matered and the repult was the producti no of a frame that took only balf tle power of an ardinary flyer throstle, braides being ha lorkng practicaly at a much higner apred. A ania Mill, Biddeford, Me, Mr Leigh saw, Jast year, ginl aidding, apparen ly with ease, 1,344 spindles of these games, with tie front rollere rauning seventy revolution mer minute, spinning No. 26 yarn, al donnd it qui e com
con for such piecers to run 1,100 or 1200 spindles with so a on for such piecers to run 1,100 or 1200 spindles with so
little hurry that they bad plenty of time to avail themrelves of a seat which was provided for each spinver, on which she eat and leisurely watched the frames spon. He (Mr. Leigh) did not think that this arose from superior ability in the American, but simply that in foreign countries spinners are less jealous of one asother, and band themselves together to discuss and test scientifically all alleged improvements.
In Boston, Mass ,the Cotton Manufacturers' Association had a semi-annual meeting, at which papers were read relating to aew inventions in cotton spinning and manufacturing, and a discussion followed, in which each related the results o his own experience in testing any invention in question. In that manner, every particular subject was thoroughly venti 'ated, and the truth arrived at, establishing a safer basis for the investment of capital than would otherwise be the case Should opinions be divided as to the merits or demerits of a new thing, the question was adjourned to the next meeting,
and, if need be, a number of experts went round to the difand, if need be, a number of experts went round to the dif ferent mills and tested the machine in question impartially carefully measured by the dynamometer. A report followed, and another meeting generally settled the point
Going on to speak of the comparative advantages of belt and gearing, Mr. Leigh said that the proper application of driving belts to the machinery was a most important question. To be rightly applied, a main driving belt should move through 4,000 or 5,000 feet of space per minute, and
be sufficiently wide to drive all the machinery and shafting quite easily when running in a slack state. After a new bel had been once tightened up, it should work many years without wanting any further tightening, and would do so it made of good material and properly applied, saving in the meantime a large amount of power and all the grease and labor of putting it on, to cay nothing of the noise heavy gearing makes. The speaker then adduced some practical instances of the extent to which belt power might be used in connection with machinery, giving examples from the various mills he had visited in America, showing the dura bility and ease with which large belts did their work. The lesson taught by the big belt was imperative, namely, that with lar heard of strap-piecing, or wear and tear of belts, working with less power and steadier production all the while. The implest and best, and also the cheapest and most durable, method of driving by belt was to convey the power from the main driving shaft direct to each room by a separate strap
it from the other direct by a separate strap, apportioning the width of each strap to the power it was required to drive, and, whenev
extra width.

Schools for Engineers.

Within the past ten years, schools for engineers have in creased rapidly in this country. They are, to apeak exactly, eclectic schools, where most of the positive and some of the abstract sciences are made a part of the regular course. They are not purely theoretical in their instruciion, but have rorkshops attached, wherein the usual tools of a modern machine shop are found, and where substantial work is uadertaken and subsequently sold in open market in competition with that of the trade. These schools or colleges have teachers thoroughly skilled in their professions, many of them being themselves graduates of machine shops in the most honorable and praiseworthy sense, who have from hum. ble beginnings raised themselves to posts of importance and responsibility. Associated with these men are others of special prominence in the sciences they preside over, so that, by the union of practical example and pure theory, a student may graduate from any branch of science he selects.
It is scarcely necessary to say that such schools are of the very greatest importance to the country ; and in view of this fact, it is proper to remind young men that engineering, which is largely and carefully taught there, is a profession which greatly needs thoroughly educated men. There cannot be too many in it, for the future of this country is so vast, its resources so utterly undeveloped, that there will be need of all who have fitness for engineering pursuits. Civil, mechanical, mining, hydraulic, and architectural engineers will be in demand in the future, and will find ample room or the exercise of their professions without interfering with ne anotber. Nowhere can they find better facilities to become acquainted with the best modern practice of their callngs than in there industrial schoole. The ordioary colleges afford no such advantages as can be obtained at Cornell University and the Stevens Iastitute of Tecbnology at Hoboken, and nowe others. These are well appointed establithmente, with complete workshnps, where Science and the practical evelcpment of it go haod in 1 and: where the natures, peculiar qualities, atd modes of working various melals are shown io processes cartied on by the student bimself: not with a view of dabbling in the pursuit as a soct of experiment or recreation from dryir studite, but to produce works ichare valuable.
Professor Sweet, of Cornell Univeritity, for example, sent ut at one time circulare of face plater, etraigbt edgep, aud angle plates of guasanteed excellence and accuracy, sil of which wrre offored at low prices and made at the Universi'y workshops. It is notable also that, in the Steveor Institu'e t Techoology, for example, the terms for a course of any branch are so low as to be almost nom'val By tbe aunifi. cesce of Ejwid A. Stevene, who lefta large sum of modey to found the Irstitute, residents of New Jorsey are raceived as pupils at $\$ 75$ per yorar for inatruction orly, and nov residenis at $\$ 150$ With such facilities, it is to be hoped that the rule of-thumb engineers wiil gradually become extinct, and their places supplied by men who have a reason to ive for their opinions, and can tell wby they make a pieton rod six inches in diameter, or why they sink shatts where here are no surface indications to warrant them in the outlay.
The men who practised their calling without a thorough ducation in it were pioneers in the profersion, and are entiled to respect and consideration for their eminent services. Where there was no thoroughfare, thery boldly made one; where there were no precedente, they made preced - nts; they were a law unto themselves, and by their native talent and sagacity established works which more timid men would never have undertaken. They made few costly mistakes; and though they may have used a few tuns too much of iron or other material, it was cheap in the end, and experience bas to be bought in some shape. Now, however, that a more perfect and direct road to the acquisition of profeasional knowledge is open trrough these industrial colleges, it will be the fault of parents and guardians if the coming genera. tion does not reap the benefits of them.-New York Sun.

Effect of Ammonia Fumes on Flowers.

Professor Gabba has been examining the effects of ammonia on the color of flowers. It is well known that the amoke of tobacco will, when applied in sufficient quantity, change the tint of flowers; but Professor Gabba experiments by pouing little ammonia liquor into a saucer and inverting a funnel ver it. Flacing the flowers in the tube of the latter, he finds that blue, violet,and purple colored blossoms become of a fine reen; carmine and crimson become black; white, yellow; while particolored flowers such as red and white are char ged to green and yellow. If the flowers are immersed in water, the natural color will return in a few hours. Professor Gabba also found that asters acquire a pleasing otor when submitted to the fumes of ammonia.

A NEW potato, known as the white queen (reine blanche) is being cultivated in France. In good soil, from ten to fif'een tubercles are formed, many of which attain or exceed the weight of 22 pounds. The flavor is said to be very fine. Planted in February or March, it becomes ripe in July.

Engineering learns that a rolling mill at Columbus, O, has ecently contracted to furnish a large quantity of rails to a railroad company a . $\$ 52$ per tun. This is said to be $\$ 3$ per tun less than the price at which the same quantity of rails could be delivered from England to the same part of the
United States.

Edward Ealsey, San Jose, Cal.-Thats Invention consists in a plvoted and handled gravity latch, provided with a projecting pin or lug, and so at lached to a gate adapted to swing ti elther drection laterally that, when
the gate is belng swung shut, said latch will turn on Its plote, and the pin the gate is betng swung shut, said latch will turn on its pivot, and the pin
or ug ride up one of the tnellnes of a striker plate, which 18 fixed to the or ug ride up one of the tnclines of a s
post, and engage a notch formed therein.

Improved Seamless Rubber Nipple.
Dickinson, Brooklyn, N , Y -This
Niention
Charles B. Mlctinson, Brooklyn, N. Y..-This invention relates to the seamess ruber nipples employed upon the mout and neke of botthes
from which infants are expected to suck some liquid nour'shment, and con. sistst in an improved construction \approx hereeby they may be more conventently cleaned out dy a swab, may be more quickly taken from the mold, and be
able to shat out or exclude all passage way for the air when the child bites or closes Its gums upon it

Improved Process of Treating Natural Oils. Jultus Schubert, Parkersburg, W. Va.-Thts invention consists in com
bning, with a vessel in which oill to be purtied by the action of hot wate bining, with a vessel in which oil 18 to be purified by the action of hot water
of a heating coil having an exti plpe for any steam that may be generated This simple improvement enables the imparted heat to be restrained within a degree of temperature that will not
are precipitated with equal certalnty.

Improved Car Coupling.
John Carpenter, of Mariner's Harbor, N. Y.-The coupling link engage with jaws on the ends of two levers. The drawhead is made in two parts.
The levers extend back between the parts of the drawhead, and are hel. together by springs. Tne jaws lap past each other; but a space is left be tween the levers, in which is placed a spreading bar. This is on a horizontal rod, which passes through the drawhead. On the ends of the rod are
levers, attached by square sockets, by means of which the rod and opener levers, attached by square sockets, by means of which the rod and opener
are turned for spreading the jaws and uncoupling the cars. The coupling are turned for spreading the jaws and uncoupling the cars. The coupling
ink has springs, which allowit to be varted from the horizontal in elther direction, up or down or laterally,
mouth of the opposing drawhead.
Machine for Burnishing the Edges of Boot and Shoe Soles. Levi Hussey, New York city.-This is a machine for burnishing or polish-
 a serew rod which works through a stand. A spiral spring takes up an
slack of the screw, and always holds the gage evenly up to the polisher. Improved Raker and Loader.
Samuel D. Muse, Monticello, Miss.-This is a rake on a wheeled truck,
Smbined with a vehicle having a rearwardly tilting body, the former betng movable within the body of the latter. The object is to provide a simple movable within the body of the latter. The object is to provide a sim
and effictent means for gathering pine straw to be used as a fertilzer.
Improved Reed Organ Attachment.
Simon B. Shoninger, New Haven, Conn.-A voix celeste stop draw con-
nects with mechanism so as to slightly ralse the bar of the octave coupler, nects with mechanism so as to slightly ralse the bar' f the oetave coupler, tave below, giving the reed just enough arr to sound, but not quite on the same pttch as when the coupler stop is drawn out. The coupler bar is
divided so as to operate both sections when the lower section is used, but
lmproved Car Coupling
Gillman H. Ames, Fort Fairfield, Me.-In this invention, the drawhead is provided with an upper and lower chamber, in the upper one of which is a
coupling bar having lateral projections whitch secure it to the drawbar. These projections work in siots in the sides of the drawbar, which hav an upward and somewhat receding direction. The coupling bar within the
head of the drawbarrests on hook-shaped feet. The slots in the drawhead, in whith the projections on the coupling bar work, serve a fourfold pur pose, mamely: 1 . They let the bar rise to allow the coupling barof the oppo pose, amely :. Tney et eouter hook, the sald hook immediately dropppo-
site car to pass under the ond
down into the slot in the end of the approaching car. 2. They give the bar tendency to draw downward, thus preventing the cars from betog casually uncoupled. 3. They allow the draft to be raised to fit higher cars of
the old style. 4. They give the bar a receding motion when it comes ower chamber is a link, fastened by a pin, to adapt the same drawbar to be used with the ordinary drawbars.

Improved Stockinǵ Supporter Clasp.
Rachel Eberle, New York city.-This invention applies specially to
catch which takes hold of the stocking, which catch is attached to the en of the supporting strap. Button holes in the top of the stocking are thu obviated

Improved Sofa
Springfield Store, N. \mathbf{Y}., a
William Livingstone, Springfield Store, N. Y., assignor to Denzer, Medius $\&$ Co., New York city. This is a movable head plece of the sofa or ounge, which moves in sultable supporting slldes on the matn frame, and mediate space between the head plece or back is provided with flexible a the a reck and covered by a pivoted ace piece.

Improved Washing Machine.
William Hilton, Agency City, Iowa.-Half bearings rest upon the jour als of the roller. Upon guide pins attached to sald bearings are placed colled springs. The upper ends of sald pins pass up through ends of a
wooden spring, to the center of which is attached a guide pin, upon which is placed a colled spring. The upper end of the pin passes through the cen ter of another wooden spring, which rests upon the coiled spring, and the ends of which pass through slots of the standards. Several holes are
formed in the standards to recelve holding pins, so that the tension of the springs, and consequently the pressure upon the clothes, may be regulated at will.
Improved Screw Press.
Cyrus W. Crenshaw, Athens, Ala., assignor to himself and J. M. Towns end, same place.-Tue screw has a semictrcular groove. The nut also has a semtctrcular groove, instead of the usual thread, and, bestdes, has a circu-
lar spiral channel connecting each end of the sptral groove. whtch has a hollow sp'ral flange to provide for the passage. Balls, with which th which the screw rolls, fastead of sliding on threads, to lessen the frow on Which the screw rolls, fnstead of sliding on threads, to lessen the friction
When the screw turns do wnward, the balls roll down tnto the channel and return to the to pof the nut, those being forced down by the screw pushing thoie in the channel up to the top; and when the screw t
balls roll up in the groove and pass down in the channel.
Improved Quilting Attachment for Sewing Machines.
Willam F. Nuil, Biandinsville, Ill.-The quilting rollers are arranged beam, so that they can be readily lifted out of their bearings, and the hangers of that beam are so pivoted to the frame that the beam can be
readlly swung up to pass over the head of the sewing machine to allow o passing one of the quilting rollers under the arm and behind the needle bat and presser. The friction ts applied to the quilt rollers by the lever, tightentng pulley, and belt, and the pulley has teeth working in holes in the
belt, and also a dividing wheel on its axis to govern the shifting of the utlt on the rollers for graduating the spaces between the seams, by mean of arms on the wheel, and a stop spring for arresting and holding the
John M. Stamp, Washington, D. C -The objecter. rovide a means of easily threading the needle of a sewing machine. I onsists in the pecultar construction of a hook which passes through the
ye of the needle and seizes the thread, the sald hook being attached to eye of the needie and seizes rely small evough to allow tts passage through
shank, which in of a
the eye, and the hook being so cut away on both sides as to reduce the the eye, and the hook being so cut away on both sides as to reduce the
thirkness to that of a knife's ecege, so that the thread will bend short and gides of the hook when m sssing through the eye of the needie

Willam Sanduln, Minder, Leve Chis scraper, the tower edge of whith so formed as to ft upon the colter of the plow, 1s provided with two lugs,
one of which rests agalnst the land side of sald colter, and the other upon its upper side. The scraper is so formed as to gulde the soll and weed removed by it back to the mold board of the plow, along which they pass,
and arecovered by the soll. Upon the rear end is formed a shank, which

Improved Sun Dial.
David B. Scofield, Auburn, Oregon.-This is an adjustable, pivoted, grad uated san dial, having the upper edges of the meridional gnomon straight and a northern face pro,
the time upon the face,

Improved Middings Purifier.
John T. Wright, Richmond, Va., and Elkansh Bateman, Howardsville, Va.-This invention relates to certain improvements in middlings puri
fiers. It consists in the combination of a polygonal reel having bolting cloths of different degrees of fineness and ribs attached forming buckets with the diagonally set vanes of a fan by which a blast is made in the direc and roof in the top of the casement and a compartment in the end of the same, whereby the lighter and more worthless particles of the middlings
are separated from the heavier grains, and the latter left in a petter condiare separated from the heavier grains, and the latter left in a better condi-
ton for regrinding.

Improved Life Preserving and Diving Apparatus.
mprovements in life-preserving and diving apparatus. It consists in the ecullar construction of a floating air receiver in combination with an elas netallic tubes for the purpose of preventing the collapse of the hose when subjected to the pressure of the water.

Improved Lubricating Compound.
Charies F. Benedict, Rtchmond, Va.-This invention consists in a process of preparing a lubricating grease for car axle journals by first boillng oil or fatty matter untill it losesits spongy appearance,next bolling the result-
ant in a solution of sodă and carbonate of lime until it saponffies and thickens up, and finally passing it through a grinding mill: also in a new artcle of manufactu

Improved Fifth Wheel.

Paul La Belll, Monroe, Iowa.-This invention relates to certain improve ments in fifth wheels, designed to do dispense with the use of kingbolts and
perch plates, and make a neater finish. It consistsin an upper plate having perch plates, and make a neater finish. It consststs in an upper plate having
a flange bent around for the donble purpose of forming a guide and a stop.

Improved Clothes Wringer.
Leander Becker and Stephen M. Smith, Yorb, Pa.-This invention relates roved frame consists of three pleces: the piece forming the he lower roll, the piece forming the bearing of the upper roll, which is pivoted to the first plece, and a third centrally pivoted lever, at one end of which is a clamping screw for attaching the wringer to the tub, and at orming the bearing of the upper roll, by means of which arrangement the Improved Pocket Book.
Gabriel Jasmagy, Brooblyn, N. Y.-This is a pocket book, the partition ing of the latter, provided with as many projecting loops of a band or trip as there are partitions of the pocket book. These aredrawn through lits of the lining, and pasted between the double partition walls.

Improved Machine for Mining Coal.
Michael Wright, clinton, Pa.-In thts device the stock will turn on its fastening screws, and the drill on the trunnions, so that a hole may be
bored in almost any direction. The operating crank is made in two parts, othatit can be lengthened or shortened to adapt it to the strength of the perator. This machine is especially designed to be operated by hand, but her power may be applied.

Improved Car Axle Box and Lubricator
I. Brosius, Richmond, Va.-Thts invention consists in别 gate with exclsions at the lower end, and placing in the gulde groove the
riangular blocks or inclined strips, so that the gate does not require to be eld by hand, wedge,or other device, but will rest in position until the jouriso in forming a box or projecting plate on the inside of axle box and he end where thejournal enters, so as to prevent the lubricant from being plashed out at the joint: also in making an annular recess or groove in the axle, and near the journal, for the purpose of recelving an elastic ring thatserves to form a packing to prevent the escape of the lubricant,and to exclude grtt and dirt from working into the axle box: also in making the ece that is intended to hold the lubricating fabric up to the journal of a ngle longitudinal metallic plate spring, so that it may be readily bent to ned by the screw in front, and be prevented from lateral play by a simple late or cross bar which may have a turned-up end. In order to cause the plate
lubricating fabric to silide readily with the journal in passing from one
gage of road to another, 1 is attached to a plece or holder which is slotted, gage of road to another, it is attached to a plece or holder which is slotted,
with subjacent dovetail tenon, and thus allowed to slide wilhin the dovetailed groove or channel of the bent plate. It also consists in pivoting the cally ad just 1ttelf to and bear alw spring, so that the fa length of the jour cally.

Improved Railway Switch.

Nathan F. Carter, Orford, N. H. - The object of this invention is to cause the switch to be automatically shifted in advance of the engine by a device on the engine under the control of the engineer. The switch ralls are conected a a switch bar, to which is applted a toothed rack, with which a aid wheel being geared with a toothed bar for being turned by it. This or betng worked by the locomotive, and it gears at each end with upright shafts. Each upright has an arm, with one of which a cam on the locomeive is to come in contact as it advances toward the switch to set the bar in motion for shifting the switch. The switch bar carries a locking bolt
which dropsinto a hole immediately after the ralls have been shifted to Which drops in to a hole immedlately after the ralls have been shifted to
hold them fast while the cars pass, and arrangements are provided which hold them fast while the cars pass, and arrangem
afterward lift the bolv out and free the switch.

Improved Water Lievator.

 which they are actuated. The channel at one side descends to a cavity, be which the water flows, and then rises to the place of exit for the water. mmediately after passing the exit, and lodged on the wheel, to be carried water agaln, when triction until they return to the point where they take the channel. The machine is designed to afford a stmple and cheap means raising water short distances for irrigation, drainage, and the like.E. Mortimer Deey, New York city.-Tbis invention relates to improve ments in parior coobstng stores of the kind for which a patent was granted to same inventor July 16, 1872, being a fre grate with a top, which may be used for cooking, and may be converted into a self-feeding top, and a couple of ovens behind the grate, one betng above another. The back plate
rests on the front edge of the bed plate, and has corrugationis in 1ts front face which correspond with passages through the bed plate, wer which is fa register to open or close them at will, for causing the draft to pass down through the fire grate or through the back, as may berequired. The upver oven may be readily removed for the application of a false top plate with pot holes in it for use in supporting cooking pots and the like. A pot hole
the top, and under the removable top, is fitted in a circumscribing groove for preventing the escape of gas,

Improved Device for Suspending Pictures.
Charles Mason, New York city, assignor to Carl Most, Greenville, N. J -This invention conslsts of a suspension cord, which is passed through he side staples of the picture frame, and then through a hollow tapering or ribbed surface. The ends of the cord are drawn through the central and side perforations of the key, andformed in a knot below, to be easily ad -
justed by drawing back the key, being then firmly locked in position in justed by drawing back the key, being then firmly locked in position in
the socket. e socket.

Robert H. MeGinty, Moulton,Tex.-This is an improvement on the fence or which the same inventor obtained letters patent dated October 14, 1873. The posts are connected and supported at their top ends by wires. At cettain distances are placed bractng posts in pairs, having their lower
ands spread apart and their upper ends beveled and brought together, and astened by bolts. The supporting wires connect with these bracing
posts. Short stakes are drlveu into the ground, from which stay wires extend and connect with the bracing posts. The supborting wires cross ach other between each two of the posts.
Improved Corn and Feed Mill.
Lauritz Meland, Iowa Falls, Io wa.-This mill is intended merely for
rinding corn and feed, and is adapted to be driven by horse grinding corn and feed, and is adapted to be driven by horse power. The
operation is as follows: The grain is first cracked as it falls between cylinders at one end, and is carried against a blade and then pulverized beween the cylinders and case, while, at the same time, it is gradually transerred to the discharge openings at the upper and lower sides of the chamer containing the cylinders. The latter have corresponding acute-angled rabout to the about to their middle.

Improved Crank.
William Heury Phillips,Bridgeton, N.J.-The end of this shaft is made to recelve a round crank and a square crank. The crank is made tn two parts.
One part is fitted to the round portion of the shaft, and the other part is made open, so as to fit on and enclose three stdes of the square portion. The open part will readily slide on the other portion sufficiently far to detach the openend from the square of the shaft. The motion of the open
part is limited by a mortise and pin. The crank handle is also in two sections, one attached to one partand the other to the other, each being a semictrcle, and forming an entrre round handle when the shaft is being each other when they are not grasped by the hand. This crank may be used in perfect safety, as no serious accident can happen should the handle slip om the hand in elevating.
Improved Vehicle Spring.
Milton Newell, San Francisco, Cal,-This consists of
Inted at each end to arms of a transverse rockshaft, and carriage body a spring with an arm of the rockshaft at the opposite connected anner that the revolving action of the weight of the body on the rockuced without any forward and backward or side motion whatere pro he apparatus employed is all of a simple and cheap character.

$$
\begin{aligned}
& \text { Improved Seed and Grain Drill. } \\
& \text { iry. Gibson City. Di.-In this seeder, there ar }
\end{aligned}
$$

Improved Seed and Grain Drill.
Asa Canterbury, Gibson City, Ill.-In this seeder, there are sharp, deepiy furrowing wheels and curved spouts to drill the grann, reversely curved
spouts to drlll the grass seed on the nearly filled furrow, and small blunt heels that press the pulverized soll to and shallowiy over the grass seet.

Improved Machine tor Bending Bolster Stake Irons. Bernhard Jensen and Nicholas Huetter, Kenosba, Wis.-This is a machine
for bending bolster stake irons in cold state, for farm, lumber, and other for bending bolster stake irons in cold state, for farm, lumber, and other
wagons. It conststs matnly in the arrangement of a strongswinging lever with obliquely slotted end, and a bending roller pivoted to the main supportiog block, which is firmly set into a vise. An adjustable main roller for bending (in connection with the lever end and a curved guide frame
with stde extending curved supporting part) the bolster stake irons by the different operations of the machine.

NEW BOOKS AND PUBLICATIONS.

Manual of Metallurgy. By William Henry Green wood, Associate of the Royal School of Mines, England,
F. C. S., etc. Volume I., containing Fuel, Iron, Steel,
Tin, Antimony, Arsenic, Bismuth and Platinum, Illus trated by Fifty-Nine, Engravings. Price $\$ 1.50$. New
York: G. P. Putnam's Sons, Fourth avenue and 23d street.
The literature of metallurgy has long needed popularization, more on account of its diffaseness than its defictency. Mr. Green wood has suc-
ceeded, in the treatise before us, in condensing the labors of many writers wore or less precise and authentic, into a bandy book of reference, con talning well digested information and trustworthy formule. The work is esbectally adapted for students, for whom 1 its intended, being Volume I.
of No. 19 of Messrs, Putnams'Advanced Science Sertes

The International Review. Published Six Times a Xear. Volume I., No. 6. Annual Subscription, \$o
New York: A. S. Barnes \& Co.
We are pleased to observe that thts serial malntains its uniform excel
lence. The issue now before us contains a thoughtful and ortotnal ess lence. The issue now before us contains a thoughtful and original essay
by Pbilip Gilbert Hamerton, a ristng star in critical literature, as well as by Pbilip Gllbert Hamerton, a ristng star in critical literature, as well as
an exhaustive treatise on the iron resources of the United States by Profes sor J. S. Newberry, which we commend to the perusal of manufacturers and statisticlays.
Survey of the West of the Hundredth Meridian Report upon the Ornithological Specimens collected in 1871, 1872, and 1873. Washington, D. C.: Government Printing Office.
The Heathens of the Heath, a Romance, Instructive Absorbing, Thrilling. By William McDonnell, Author
of "Exeter Hall." Price, in paper, $\$ 1$; in cloth, $\$ 1.50$.
New York. D. M. Bennett, 335 Broadway.
Edology on Chief Justice Chase, delivered by W. M. Evarts, before the Alumni of Dartmouth College, N. H.
Price 25 cents. Hanover, N. H.: J. B. Parker. Annuaire de L’Universite Laval, pour L'Annee 1874-75.
Quebec, Canada: A. Coté et Cie.

Inventions Patented in England loy Americans.

 [Compiled from the Commissioners of Patents' Journal.] From September 30 to October 15, 1874, inclusiveCleiler Water indicator.-J. E. Watson, Loulsville,
Cleaning SUGar. ETC,-J. O. Donner, New Yorr city.
Crusier, mtc.-T.A.Weston (of Pailadelpha, Pa), Birmingham, Eng1asd
Floor Clote Fabric.-H. B. Meech (of New York city), Londoa, England
Floor Cloth Fabric.-A. B. Meech (of New York
Jotranal Bearing.- C. A. Hussey, New York clty.
LaMp -I. R. Forbes, New Orleans, La.
Loom -C. H. Chapman, Shirley, Mass.
Loom.-L. J. Knowles, Mass.
Lubricating Journal Box.-C. T. Pierson, Ramapo, N. Y
Muchlage brush. -C. Agen, ETC. - N. H. Edgerton, Pniladelphie, Pa
PENCIL CASES, ETC.-A. T. Cross, Piovidence, R.I.
Printing Machinery.-R. M. Hoe, New Yoris city.
Sewing Machine embroiderer.-R M. Rose, Willi
Steam Pomp, rto.- E. Cope et al., Hacillton, Oho.
Variable Exia पst for Engines.--0. Stewart, East Cspmbidge, Maeb.

沟usiness and zertinal.

The Charoe for Insertion under this sead is 81 a Line.
 "Workshop Receipts" for Manufacturers.

 Boiler Rolls and Shears Wante. . Car

 Sold Low-A Book and Documents, show-
tog tow to intronace Inventions. Planas and meth:

 Mann $\&$ ©....281 Howard St.,. Batim ore, Md.

 Blake's Belt, Studs are the most reliable

 gas. For particulars, adaress Providence steam and
Gas Pipe Compauy. Providence., R.

 please adrress E . Mann \& Son, Miltord, Mass.
The Improved American Governor, Send

 Saltumander Felting-Leading manufactu-
rers pronounce Salamand der Fellug the only y neestruc.

 Electric sells for Dwellings, Hotels, \&ce-

 M Chanicil Expert in Patent Cases. I. D.
 Price only throe dollare-The Tom Trumb

 Tingue, House \& $\mathrm{CO}, 69$ Duane $\mathrm{St}, \mathrm{N} . \mathrm{N}$.

Hydraulic Presses and Jacks, new and se-
cond band.Lathes and Machinery tor Pollshng and sufcond band.Lathes and Machinery for Porishng and Bur-
Ang Meails. E. Lyon 70 Grand Street, New York.
Deane P Patent Steam Pump-for all pur. Deane \& Patent Stam Pump-for all pur.
poses s Stricty frrs class and rellabie. Send for clrcular.
Forges (Fan Blast), Portable and Station.
ary. Eevstone Portable Forge Co., halladelphia, Pa. The "Scientific Amorican" Office, New York,
is nted with the Minature Electric Telerraph. By touchning 1tttle buttons on the desss of the managers, slinalis are sent top persons in the various departments
of tree establishment. Cheap and effective. Splendid of the establishment. Cheap and effective. Splend1d
tor shops, oflces, dwellings. Works for any distance. rice bs. F.e. Beacee
Yakers. send for free illastrated Catalogue.
Brown's Coalyard Quarry \& Contractor's Ap.
aratus tor holsting and conveying materials by iron paratus for holsting and conveytng materials by fron
cable. W. D. Δ ndrews $\&$ Bro., 414 Water St.. New York. For Surface Planers, mmall size, and for
Box Corner Grooving Machnes, send to A. Davis, Low Bor corne
ell, Mass.
ent
Lathes, Planers, Drills, Milling and Index

Eames Patent Molding Machines for Metal

Small Portable Engines, 2 to 12 H.P. Send
or Prices \& Catalogue. Tully $\&$ Wide, 20 Platt St.,N.Y. The Improved Hooddley Cut-off Engine-The
Cneapest, Best, and Most Economical steam-power in Cheapest, Best, and Most Economical steam-power in
he United States. Send for ctrcular. W. L. Chase \&

Peck's Patent Drop Press. For circulars,
address milo, Peck \& Co., New Haven, Conn.
Small Tools and Gear Wheels for Models. Portable Engines, new and rebuilt 2 d hand,
apecialy. Engies, Boilers, Pumps, aidd Machinstris Sinning Rings of a Superior Quality-
Whtitingrile
spinning King Co., Whitnsrile, Mass. Johr son's Universal Lathe Chuck. Address
Jot ambertvile Iron Works, Lambertvilie, N. J.
Best Philadelphia Oak Belting and Monitor

A. R. can copper iron castings by the protipe for black ink on p. 203, vol. 26, and for copyting tink
on p. 59 , vol. 25.-G. s. will fna directions for makting ax into sheets for tower making on p 50, vol. 30 -W.
 (1) H. L. B. . asks: Does the locust, that
(2) C. D. W. asks: How can I make chlor-
de of copper? A. Chlorde of copper (Cak cl) mat be Le of copper? A. chiortie of conper (Ca Cl) may bydissolving the oxlde or or carbonate in hydrochlortc
becta when on evaporation, it crystalizes in in reen nee diles. A concentrated solutlon of chloride of copper 1s
of a green color, but $1 t$ becomes blue on dllution ;and (3) J. Y. asks: What is meant by a mi-
croscope whtch magnthes 10,000 times? How large
 ordnary spectmen magnited 1100 dia meters, or 10,009
timgep in surface, would seem $3 /$ of an inch in diameter. Imge in surface, would seem $1 / 2$ of an inch in diameter.
If magntifed 10,000 dameters, it would appear 2 feet fin
diameter, wilich no microscone now made could 2. How large would a man appear through a spyglas s large as he would appear at a distance of $1 / 2$ mile
(4) J. H. asks: How can I keep protosul-
 amn or sealing wax. In thris m .
Doest the light injure canned frult? A. In sometin
stances it may be injurious. Upon some canned frut stances it may be tinjurlous. Upon some canned frutes,
light dioes undoubtedy
produce silght chemical light does undoubealy proace sight chemica
changes.

1. Wond
 1b. .ie cheaper? A. We should thnk that tallow at 8
cents would be preferable. 2 . Please give me a rectioe for makting hard soap wth tallow. A. Take freshly
slacked 11 me , sal soda, and tallow, of each 2118 ; ; d1s.
 in the lime, stirstig oceasionally for a few hoors ;atter ing the tallow thereln untillt is all dissolved. Cool 1

 makting ooap from common ashes.
(5) A. W. R. . asks: How can I get rid of
andruff in hair?
A. The most results follow the use of warm baths, taken daily and prolonged for an hour
or more, and the subsequent tunuction with a soothting and sheathinp pomae,
olntment of oxtde of zinc.
Is there
 of the great toe becomes enlarged, or when a new se
rcus sac ts formed upon the inner and postrior aspe of this bone, thed disease terrted a a bunton occurs. In
his aftecto inis aftection, the enlargement of the bursa 18 usuauly
secondary to an alteration in the enape and position of the great toe, which, tn consequence of the pressure oblique drection (that is towards the little toe), , so as
o lie over or under some of the contiguous digits in th1s way a sharp angle ts formed at the junction be tween the frrst phalanx and the meta tarsal bone of the
great toe. This angle, belng constantly pressed fupor
by the eoot, becomes frritated, and, for tits protection
the bursat that 1 s there La bursat that 1s there naturally situated becomes en er an and adventillous one forms. From tlme to time the bursa and the projecting angle become trrit
tated and und tated and intlamed, and the mortold action there set up
may run to suppuration of a very troublesome kina, thin, unheallty pus betnof formed, which to discharred
 sore. Treatment: In the treatment of this afection,
the first thing to be done is to change the direction of the toe by wearing properly shaped boots, made with
the tiner side of the sole stralght from the toe to the the enner side of the sole stralght from the toe to the
heel. If accidental inflammation be excited in the part, it must be allayed by the application of leeches,
warm foot baths, and poultictin; the cutaneous 1 rrita tlon that 1s 1 left may best be removed by patnting the
surface with a strong solution of nitrate of silver. The faulty direction of the toe may best be remedied b, using an ingentous contrivance, the action of whtch
consits 1 a drawng the tnverted end of the toe tin ward by the constant action of a slender steel spring." Erichsen. Should these means fall, consult a a eurgeon.
What will remove flesh worms? A. The fesh worm (acarus folliculorum) is supposed to be caused by a deficlency of expulsory power in the follicles and ducts
of the sebtparious glands, by condensation of the se. eret ton, which renders the expuls
For treatment, see p. 251, vol. 31.
(6) G. E. W. asks: Are there minute in normal coodititon, there are no parasites prees
they are found in some cases if it be diseased.
(7) S. M. asks : What is a good method of
whitening ferns? time to the actlon of sul.
burning a 1 ittle sulphur.
Is there anythng that will remove moles from the skin? A. "They are easly removed by the knife, care
belng taken to direct the inctisions in the line of the or dary folds of the skin. Better per haps is potass a jusa neovus; itdiffuses 1tself through the areolar mass, the disorganized tlssue dries ap 1 a a acab, and falls of tin
ten or fourteen days, leavirg very little trace of tis existence. This method of treatment 1s applicable
nevi (or moles) of small $\mathrm{tzzeonly}$.When of consider able extent, thee are beyond the control either of knife
or caustic." Wilson.
(8) B. E. D. asks: What ingredients are used to set the cilors in musilins, callcoes, etc., ,making
them proof againgt water? I wish to make colors on papers, such as marbled papers, waterproof. A. Insol.
uble colors are obtained by takling advantage of known chemical Changes; thus chromate of lead chrome yel.
low) 1 preciptated by dipping the stuff into solutions, low) 1 s preciptated by dippng the stuff 1 1 to solutlons
first of acetate of lead, and then into bichromate of potas8a. Mordants are bodes which, by thetr attra and also to the coloring matter. They are applied
first, but in domestic dyetng they are often mixed with the dyestuff. By the use of a mordant, a dye which
would otherw1se wash out 18 rendered permanent. would otherwise wash out 18 rendered permanent.
Some mordants modify the color ; thus alum brightens madder, glvinga 1 ight red, while iron darkens it, giving a purple. The princtpal mordants are alum, cubtc
alum acetate of alumina, protochlorlde of tin, bichlo-

(9) C. A. B. \& Co. ask: How can we make Wecan find no mention of any of these salts (except
(10) D. F. J. asks: 1. How can I make pa-
per anhere to whitewashed walls?
A. The usual and perhaps the best method is that of removing as muc of the whitewash as posiblie by scraping, and motsten Ing the will with water before applying the paper (pre
viousily coated with the paste). 2 . What is the besi
Vet method of rem orling old wall paper to prepare for new?
A. Moisten the paper with water for a short time,when (11) W. R. asks: What is the weight in diamond formerly belog ged to the Great Mogul, and egg.
(12) W. L. P. asks: What are the constitu-
entis of natural phosphate of llme? A . The composi thon varles much. That obtained from Snarum, Nor-
way, contained phosphortic actd 4155t, seequioxide of tron 1799 calctct oxlde 53.46 , and chlorine 2.66 , per cent. acta 4199 , calctct oxide 55^{95}, chlorine 0 0.0, , and fluorine 4.20 per cent. The phopphat tic limestone found in this
country would contain nearly the same as the above; certannly it would not vary much in the amount o phosphoric actid. It is found in Matne, New Haupshire,
New York, New Jersey, Pennsylvania, Maryland and New York, New Jersey, Pennsy lvana, Maryland, and
Dela ware. A shaft has been sunk near Hurdtown,
(13) G. F. F. asks: With what preparation
can I color white 1 tory chessmen red? e stained with the ordinary dyetng materials. The fory should frrst be steeped in a solution of bchloride
of tin as a mordant, and then in a hot oath of Brazil wood or cochneal.
What will remove
some pipe clay (the quantity will be easily determine neal making the experiment); on this (lay the sheet or
leaf and cover the spot, in like manner, with the cloy caf, and cover the spot, in like manner, with the clay
Cover the whole with a sbeet of paper, and apply for few seconds a heated iron box, or anys subsbtitute adopt-
ed by laundresses. On using inda ruber to remove the dust taken up by the grease, the paper will be found restored to 1ts original whiteness and opacity. This the use of turpentine.
(14) C. H. C. asks: 1 . Has there ever been melt? A. No. 3. Is there any substance that can be
putinto glass to render it flexille? A. Nothng, to our present knowledge, accompl1shes th1s, although
this (supposed) lost art has been much sought after
(15) H. J. asks: 1 . Will three boilers, each
 be rather too emall. 2. How heavy and how large should the flywheel of an engine of the above size be
A. Dlameter 15 nches, welght trom 70 to 80 lbs 3 . What A. Dlameter 15inches, welghtrom 70 to 8 Ibs. 3 . What
pressure would boullers of the above size stand? Tnes are ma.
nech.
(16) A. F. asks: Can any musician inform
me how a cornet can be lown completely out of tone?
 tea and set tit on to the stove to stef p. The cup keeps
 keeps smooth and free from scale. If I I se another cup
to boil water in, it will hecome covered with scale in
 hene the sense of feplitg. What is the cause or this
henomenon? A. The water undoubtedly contains a
 cales you speak of. But the presence of tea has a
ifferent effect. Tea contans tanin and other tances which exert, doubtless, an influence upon the olubility of the alkalies. In most cases they are very soluble, but, if an excess of the bases be present, rapld of the gallo tannic acid. 2. Weuld not a decoction of the gave tannic acid. 2. Weuld not a decoction of
ea prevent formation of scale in steam Doilers, if it was applited while they were nem, and also on the sur-
face of tea kettles? A. There is a preparation in mar ket, tannate of soda. used for this purpose, which prob-
ably acts in a similar manner. The decoction of tea
(18) J. A. M. asks: What is the quickest s A E, without the ald of the radue or diameter of
ither circle, by the application of the square, on the utside line A C, or the instde line ED? A. Suopose

ouwish to find a radial line at the point, A. Draw
ny chord, A F, and from the point, F, another equa chord, F G. Also connect the points A and G by a
tratght line. Place a square on the chord, A F, and raw a perpendicular line, Hi, at the middle point of
his chord. Then place the square upon the line A G his chord. Then place the square upon the line, A
and draw a perpendicular, $F \mathrm{~K}$, through the point, F and draw a perpendicular, F K, through the point, F
continuing it to L . Make IE equal to I L, and draw the
inne A E, which will be the direction in which to make the A E, which will be the direction in which to make
he cut. The same construction can be used for finding (19) Z. S. says: I should like to try Siemens' for 1874,pp. 61, 98. How is acetic aldehyde mace, and is is dry ammontacal gas made and passed through
it? A. Aldehyde may be obtained by the gradual oxiation of alconol in various ways. It is formed when the vapor of alcohol mixed with air is transmitted
through a porcelain tube heated to low renness, or when alcohol is acted upon by dilute nitric or chromic acid; owing to the effects of nitric actd upon the ele of the fulminates of sllver and mercury, and it is alfrom the dry distllation of lactic actd, or lactate of opper. Aldehyde 1s, however, usually procured by
ieblg's method cf distllling, in a capactous retort, a mixture of 6 parts of sulphurlc actd, 4 parts of alcohol
(spectic gravity 0.850), 4 of water, and 6 of finely pow. dered black oxide of manganese. The product, belng must be stopped when the distilate becomes actd. Since, however, it is in a very di-
lute and impure condition, it is to be rectified from an lute and impure condition, it is to be rectified from an
equal weight of chloride of calctum, in order to free it rom alcobol and water. This operation is repeated lmeand chloride of ammontum (sal ammontac) sepa rately powdered, and intimately mix; transfer to a re-
tortand gently heat. Abundance of pure ammonia, as tortand gently heat. Abundance of pure ammonia, as
a transparent: colorless gas, will begtven off. It should qutckli quickinme. The gas is allowed to pass through the 11.
quid in the usual way, which must be kept cool with ormed, which is the compound of ammonla and alde-
(20) D. W. B. asks : 1. How can I make alThere is a quality of iron or tron salt not attracted
by the magnet; it is called allotroptc, and ts soluble in wher. How is it made? A. There is no known oxide
water. How can oletc actid be made? A. The isolation of ulty. In order to obtain the pure acid, Varrentrapp recommends that almond oil be sapontifed with pota orwithsoda, and that the soap be decomposed with ydrochlorle actd. The mixed fatty actds are then to
be digested with half their wetght of fioely powdered
Wh twice thetr volume of ether for 24 hours, the oleat of lead is dissolved and separated from the othersalts.
The ethertal solution is to be mixed with dilute hydro. chloricactd, which decomposes the oleate The otly The ether ts to be expelled by heat
How can oll of brick be made?
made by saturating fragments of brick with brick is distilling at a red heat.
Can pyro-acetic splrit

Where can red resin be obtained? A. Ask any drug
ist or dealer in varnishes for it. As to the difficulty $\underset{\text { (21) } \mathrm{L} . \mathrm{K} \text {. L. says, in reply to F. H. B.'s }}{\text { netion as to which vessel has made the fastest. time }}$ cross the ocean: The In man steamer City of Brussels left Sandy Hook at 9.15 on the morning of Decem ber 4 no of 7 days, 20 hours, 22 minutes. She bas since (June 1872 crossed tn 7 days, 15 hours, 55 minutes. The Adria-
tie's best time, May, $187 \hat{k}$, was bet ween Queenatown and
(22) N. A. K. says, in renly to J. C.'s query arger sall on his boat than sou recommend. I have a s pointed at the bows, and made of pine boards. $3 /$ Inch
ind
hick, bent dry, without sawing. wide, hinged so that it will lay fiat to the boot when re he mast, 9 feet from the end of the boom to the gaft boom is 11 feet and gaff 7 feet. The boat will carry

COMMONICATIONS RECEIVED.

The Editor of the Scientific american acknowledges, with much pleasure, the receipt of original papers and contributions npon the following subjects:
On a Letter from Faraday. By H. W. C. On Alcohol. By J. D. P.
On a Miniature Locomotive. By F.S.
On some Special Tools. By W. P. P. On Diamonds. By G. H. W.
On the Potato Bug. By J. J. S.
On Demoniacal Possession. By W. S. H.
Also enquiries and answers from the following:
B.-D. E. J.-J. R.-P.-W. J. McG.-F. S. R.-A K.

- W. N. H.

HINTS TO CORRESPONDENTS
Correspondents whose inquiries fail to ap pear should repeat them. If not then pub lished, they may conclude that, for good rea sons, the Editor declines them. The address of the writer should always be given.
Enquiries relating to patents, or to the patentability of inventions, assignments, etc. will not be published here. All such questions, when initials only are given, are thrown into the waste basket, as it would fill half of our paper to print them all; but we generally take pleasure in answering briefly by mail the writer's address is given.
Hundreds of enquiries analogous to the following are sent: "Who sells a composition for removing ink stains from the hands and clothes? Who sells artificial butter? Who sells Martini-Henry rifles?" All such personal enquiries are printed, as will be observed, in the column of "Business and Per sonal," which is specially set apart for that pur pose, subject to the charge mentioned at th head of that column. Almost any desired information can in this way be expeditiously obtained.

Index of Inventions

Letters Patent of the United States aranted in the weer ending October 20, 1874,
and rach bearing rhat datr. [Those marked (r) are relssued patents.] Acid, et c., recovering, J. E. Stebel
Alarm repfiter, fire, J. O Alley...... Bule tre, M. T. Brown
Bag holder, Doctor
Beetive, C. Fouls
Belt, walwt, M. A. Cha
Bench, wash, F Way.
Bench, etc
Bench, etc. Wasb, Ever
Bracage, J Norwood

Boo -heat1 a at acameut, C. Angresius
Boot nill, B T. Marsha
Boor tark driver, Tromoson \& Burgh
Bo tr, makisg, C Cil as \& n ouoley
But. , salt. A B. Searles
Boxes, mak'ng, J. M Datis

Bust, scru hbing, E. D Miller...
Bubnts, cement fis, Brabats, cement
Brush uaral., H B Hood
Camera, J ano J. Huck...

Car axie, labricatitg F. Stucker
Car oa ket, ralway, a. K Fult
Car coup top, E H. Jaoney
Car, flevated rall way, J.M
Car, hano, M. Crossaun....
Carcilog ma hine, fet ding, B S. Roy.
Carrtige whe sprivg. H. M. Bidwel
Carrlage too rest, A. S Booth
Cartriage load r, w. W. Wincheste
Cha r, foldalug rucking, E. F. Russeil
Chair, rock ing, C. Brada...
Cbalr, rocking, C L Chadeasia
Chemical facing compound, J. E.
Cigar box, sampie, J. E. Emerick.
Clothes fiame, D. Cumming.
Copper pyittes, concentrating, F. A. H. La, Rue Corn sheiler, J. Rupp .
Cotton gin. B. B. Smith
Crane,
Cutitvator, w. L. Hopper
Dredge or splce box, W. S. How
Dress chart, A. M. Henville.
Electric conductor, insulated Electro-galvantic band, J. Bryan Elevator, E.Scblenker............ Elevator, water, J W. Westbrooks Embaiming desd bodies, r. H. Whttehou
Engine, locomotive truck, W. Mason... Engine, rotary steam, P. Eng 1 ish Engine, rotary steam, w. Haab..
 Fan and alarm, fly, H. F. Langew 1sche
Fence, farm, N. P. Beamon.......

FXTENNIONA GRANTED.
 30,158.-CAR Wherl -G. S. Bosworth.
$30,80 .-$ POMP - W. J Johnson.

DESIGNS Patented.

 , R04.-Horse Blanere fabrio.-G. R. Ayres, Pbll, Pa
TRADE MARES REGISTERED.

 208.-SALTs.-Salts Manuf. Co., Crab Orchard, Ky, 0 .- Perfumes.- Fisher \& Co., New York cty.

 2032- FRRTILIZRRS.-E. Wh1 man et al.. Baltimo
2,033-COTTON Өoons. Joy \& co.. Paseate, N J. 2.034.-Emery ${ }^{\text {Kherls, }}$ Lehtgh E. W.Co.,Wetss port,Pr
2.035.-Teas.-A. Man \& Co., San Francisco, Cal. 235.-Teas.-A. Man \& Co., San Francisco, Cal
036.-Shertinas.- Naumeag Cotton Co., Salem GUGEDULE OF PAMENT HEES. n each Caveat.....
on fllng each appication for a Patent (17 years). On appeal to Examiners-1n-Chief.
n appeal to Commintsioner of Patents. n application for Rextension of Patent. Ongranting the Extensio
on fillng a Disclaimer..................... napplication for Design (7 years)..

CANADIAN PATENTS.

 October 22 to 29, 1874.
,969.-J. L. O. Vidal, Parish of St. Louts of Lotbintère Lotbintère county, P. Q. Extension of No. 109.
"Charrue avec orellleà base é'argle à meme, ou rap"Charrue avec orelliea base e'argie à meme, ou rap
portee." (Improvements in plows.) Oct. 22, 1874 .
ano Willam Mutr, Montreal, P.Q. Extension of No
 94, called "Mur's Im
chine." Oct. 24, 1854.
7m.-R. W. Soper, London, MIddlesex county, Ont
Improvement on breech loading rifles and shot gu ns called "soper's Improved Breech Loading Riffes and Shot Guns." Oct 26, 1874.
972.-J. G. Scott, St. Thomas, Montmagny county
P.Q. Improvements on car.couplonger "scott's Safety Car Coupler." Oct.26, 1874 . 3.973. - William H. Collins, Whitby, Ontario county,P.Q.
Improvements in stone pipe couplers, called "Collins Improvements in stone pipe couplers, called "Collins Stone Pipe Coupler." Oct. 26.1874 . ments in a machine for wasting or separating the heavier ores or metals. called "True's Improved Van ning Macuine." Oct. 26, 1874.
975.-I. W. Neads, Toronto at5.-I. W. Neads, Toronto, Ont. Improvements on
boring bars, called ${ }^{\text {"Nead's Improved Boring Ber }}$ boring bars,
Oct. $66,1874$.
,976.-J. Nassien, Strazsa, Hungary, Austria. Improve ments in the manutacture of rock candy, called "Nassta
1874.
3.977.-J. p77.-J. Nassian, Strazsa. Hungary, Austrila. Im-
provements oa the proctes of clarifytog sugar, calle "Nas8ian's Process of Clantfying Sugar." Oct. 26, 1874. William Tucker, Tiskedale, Worcester county Mass., U. S. Improve ements on apparatus for drop
ping the cuts of augers and anger pits, cosled "Truck-
 Auger Bits." Oet. 26,18 , 4 .
9:9.-L. F Bally, Matuand,
tua. Improvemelts on pota o alıgeis, callea "Bai-

 ttc., called "B*nmore's 'atent com
Couaueting Iusket'ag." Oct. 26,1874 . ,981-J. Plummer, Londo: , Midalesex county, ont

V. Michell, Pickering Township, Ontario coun ty, Onc. Linprovements li macainery fur the purpos
of uuloadiug ro is, etc., from the wagon or o $\mathrm{h} \div \mathrm{r}$ car rrage when nated ht retn, cellea "Micnell's Self Root Unioader." Oct. 26, 187
S934-L. A. Dessaultes, MJntreal.,P Q., assignee of \mathbf{H}
H. d'a H. d'abrlseon. Ameliorailons dand les apparetls
equillbrer les meules de moullo.dits "Appurent d'Abrt Reon pour Equiliber les Meules ae Moula." (Im-
provements on apparatus for equillorating mill provements on appar
stones ${ }^{\text {Oct } 28,1874 .}$
Improvements in car
In Improvements in car Drake couplers, calitd "Scott"
Car Brake Selt-Acung Coupler." Oct. 28, 1874. ,986.-D L. Newcomb, Kenton, Harain county, O., U S
Improvements on aug Improvements on augcrs, sisfl couping, tube-lining settr',
combell Boring Apparatus." Oct. $\AA 8,1874$. ,987.-J.H. Cowherd and F^{\prime}. Cowherd. Brantford, Bran county, Ont. Improvement on eaves trough and ma-
chines for making the eame, called "Cowherd's Comchines for making the eame, called "Cowherd's Com
bined Eaves Trough Machine." Oct. 28, 1874. 988.-C. Kinney, Denham township, Oxtor Ont. Improvements on eash holders and fasteners called "Kinney's Improved Automatic Sash Holde
and Fastener." Oct 28,1874 . and Fastener." Oct 28, 1874.
3,989.-E. E. Evertt, Philadelpht wood, Rochester, Monroe county, N. Y., U. S. Im provements on bedsteads, called "Everitt's Parlo Bedstead." Oct. 28, 1874.
,990.-J. Munson, Collingwood, Slmcoe countr, Ont
Extension of No. 113, called "Munson's Dominion Hive." Oct. 29, 1874. s,991.- J. Call and J. T. Robinson, Richmond, Sogada-
hoe county, Me., U. S. Improvements on center boarde for vessels, called "Call's Flanged Cente
Board." Oct. 29,1854 . Board." Oct. 29, 1854.
U.S. Improvemenis on sew er's Improved Saw Gummer..'. Oct. 29, 1874 . ,993.- Wm. Tucker, Tiskedale, Worcester county, Mass.,
U. S. Improvement U. S. Improvements in machines for twisting auger
and auger bits, called "'Tueser's Machine for Twhstin Augers and Auger Bits." Oct. 29, 1874.

 Improvements in ollcloths, ealled "Wilder's Improved

gadvertisements.

 mor erecived andication ofice as early as Friday
 CHRISTMAS BELLS FOR 1874.

 1875.-Postpaid-\$1.60.

THE NURSERY.

 JO日N L. SHOREY
36 Bromfield Street, HE BLOW PIPE; a Guide to its use in the

 $W_{\text {arren }}$ Gale,
Toun surine lichinkiv DERRICKS \& TRAVELLERS, bovas RUS:, Rutland, Vt .

Mane fith
M $375{ }^{3}$

P. BLAISDELL \& CO.

 Reverse:M PATENT
bracket
and
seroll
mor
and

Moulding, Founding \&
Metallic Alloys.
The Practical Metal Workers' Assistant

The Moulder and Founder's Pocket Guide:

The Practical Brass and Iron Founder's Guide:

 Metallic Alloys

 HENRY CAREY BAIRD,

W00DW ARD's ARCH TECT

MACHINERY

iron \& wood workiva machinery Cold Rolled Shafting,

TMPORTANT FOR ALL LARGE COR?O.

FOOP LATHES WITH JIG
 PLANING \& MATCHING

 OTIS' Mand mimery

Portable ithan iniliviciombin.

A Rare Chance to Advertise

Cheapest and Best Mode of Introducing NEW MACHINERY AND INVENTIONS.

ToAdvertisers.

 Advertisers will bear tin mod that thing \qquad

ENGRAVINGS

A tew mustrations and deecriptions of machines or artucles of utulttr, whether they have already appeare address

MUNN \& CQ., Publishers,

 37 Park row, new york| |
| :---: |
| | |

agents wanted.

FOOT LIATHES

\qquad
Ho
Niagara Steam Pump. cian B

DJWCHINE

TITIITnI Whought

Planing und Matching

Iadies at Firme

H. WESLEY PERKINS, SCIENTIFIC" ENGRAVER

 31 PARK ROW,MAGNETS-Permanent Steel Marnet ot any torm or-Permanent steel magnet

SHINGLE \& BARREL MACHINERY

The Toll-Gate! Pr, Pricture sent freet AI BLAKE'S PATENT
 Stone and Ore Breaker
 F OR LEGAL ADVICE CONCERNING

Todd \& Rafferty Machine Co

[RON BRIDGES-CLARE, REEVER\& CO

 AIOMERR CHAICE!
Fifth and Last Gift Concert Public Library of Kentacky.

November 30, 1874.
drawing certain at that date. LIST OF GIFTS.

Established 1846 .

The Oldest Agency for Soliciting Patents in the United States
TWENTY-EIGHI $\overline{\text { YEARAS EXPERIENCE }}$ MORE PATENTS have been secured throug his agency, at home and abroad, than through any other in SIXTY THOUSAND inventors bave availed hemselves of Munn \& Co.'s services in examining their in ventions, and procuring their patents.
They employ as their assistants a corps of the most ex raftsmen that can be found, many of whom have been se ected from the ranks of the Patent Office,
MUNN \& CO
MUNN \& CO., in connection with the publication of th Scinatifig Merrican, continue to examine inventions, ssignments,att tend to to filing applications in the Pations, and paying the government fees, and watch the Patent ofic tep while pending before the examiner. This is don trough their branch office,corner Fand 7th Streets, Was giton. They also prepare and file caveats, procure desig prepared trademarks, and reissues, attend to rejected case rights, attend to interferences, give written opinions o matters of infringement, furnish copies of patents: in fac nforeign countries. Patents obtained in Canada, England, France, Belgium Colonies, and all other countries where patents are granted.
A special notice is made in the Scientific American of all inventions patented through this Agency, with the
name and residence of the patentee. Patents are often sold, in part or whole, to persons attracted to the inventio by such notice
A pamphlet of 110 pages, containing the laws and full diections for obtaining United States patents, also a circular
pertaining exclusively to Foreign Patents, stating cost for each country, time granted, etc., sent free. Address MUNN \& CO.,
Publishers SCIENTIFIC AMERICAN,
37 Park Row, N. Y.
Branch Ofricg-Corner F and 7th Streets

SUPER-TEATERS

Then Read it Again-Again.

Waltham Watches.

Cincimadi indsustial Exposition 1874,
For BEST MACHINIST'S TOOLS over all Competitors. $G O L D \quad M E D A L \mathbb{S}$

IRON PLANERS,

 Mill Furnishing.Worlzs

H. W. Johns' Patent asbestos roofing paint and cement. Patentee ans sion than tacturer, $\}$ H. W. JOHNS, 87 Maiden Lane, N. Y.

Machinery, ane Bros, Mrg. Co., chicago.

F Hor SALE-2nd hand Portable and Sta

PORTLAND CEMENT

Working Models

MACHINIST'S TOOLS,

 Machinists' TOOLS, M.I.Stearia Cugine Cb Fey

Buakivus potent univ bral ged

HARTFORD
STEAM BOILEP
Inspection \& Insurance
COMPANY
\qquad

Ner Mork
HUSSEY, WRLLS \& CO., office and works, prxs avente \& hth st $C A S T S T L E L$, Partuludng the "Grantle brant or rdee Tools. CAST STEEL TEETHI,

Thi DOP

SCIENTIFIC AMERICAN. FOR 1875.
the most popular scientific paper IN TRE WORLD.

THIRTIETH YRAR.

VOLUME XXXII-NEW SERIES. The publishers of the SCIENTIFIC AMERICAN Deg
o announce that on the first fay of January, 1875 a dew volume commences. It will continue to de the alm of the pubilishers to render the contents of the new
rolume more actractive and usetul than any of tit pre

To the Mechanic and Manuffacturers?
No person engaged in any of the mechantcal pursults
should thmb of dotng should think of dotng without the Solentiplo AurRi-
cas. Every number contaniz from sis to ten engravings ond. Every number contang from sis to ten engravings
of new machulues and in in ventons which cannot be found in any other publication.

It is the Most Popular Paper in the World! having the large citculation of nearly 50,000 per week
 Inventions, manotacturing estailishments, toois, and
processes. The Scientific american ts devoted to the interasts of Popular Sclence, the Mechantc arts, Manufac
ures, Inventions, Agriculture, Commerce. and the thaus trial pursuits generally; and it is vatrable sna nosiruc.
 By the new 1av, the postage must oe pata in advance
in New York, oy the publisbers ; and the subserthertien receives the paper by mal free of charge.
TERMS.
One copy, one yeas (postage ineluded) 3.23

 Remir by postal order, drait or expres,

MUNN \& CO.

