passed by the State Legislature on the 14th of May, 1872. | and the railway company; that sustained by the city to be By the provisions of the act, the New York and Harlem raised by a tax on real and personal property. A Board of Railway Company is directed to construct open cuts, bridges, tuunels, and a viaducct, at certain specified places, to lay temporary tracke, and alter the grade of the cross streets wherever necessary; the gas, water, and sewer pipes are or-

dered to be removed by the corporations owning them, and the Mayor and Aldermen of the city forbidden to obstruct, and uthorized to adopt and facilitate, the work; the total expense of which is to be borne in equal proportions by the city

Engineers was also created, who should have entire contro and charge of the work, receiving, in return for their services, $\$ 8$ for every day employed. In accordance with the re quirements of the act, a Board of Engineers was appointed consisting of Alfred W Craven, Allan Campbell, the Engineer of the l/epartment Campbell, the Engineer of the lepartment
of Public Works, Edward H. Tracy, and the Engineer of the Harlem Railway Com. pany, the late Isaac C. Buckhout.
Estimates, plans, and specifications were prepared and bids opened for the work in the same year. Of all the bids offered, that of Messrs. Dillon, Clyde \& Co. was selected, this firm contracting to do the work iu the manner required for the sum of $\$ 6,395,070$ or $\$ 285$ per running foot, which was pro portioned as follows:
Earth excavation and embankment $\$ 579,000$ Rock excavation in open cut..... $\quad 701,000$
Retaining walls
tunnels.
oundation wall
Granite coping.
Plark used in foundation.
Piling used in foundation.
Concrete.
 prain pipe.
Drain pipe
Brick work in arches, etc
Brick work
arches, etc.
1,013,000 $1,013,000$

100,000 | 100,000 |
| :--- |
| 238,400 | 134,700

r 70,000
182,200 182,200 182,200
23,800 300,200
6800 6,800
57,000 Bridge from 79th street, exclusive
parapet, coping, excavation
and drain pipe
ron bridges and approaches
Wrought iron
Iron railing.
Felting. .
Tempor
10 per cent for contingencies.
57,000
708,500
34,300
,000
4,100 384,000
388,000
49850 498,500

23,500 | 23,500 |
| :--- |
| 79,200 | 39,500

36,500 50,000
581.370 Total. $\$ 6,395,070$
Late in the fall of 1872, ground was bro ken and the work commenced by the contractors and their sub-contractors, under the supervision of the Board of Engineers al ready mentioned, with Mr. I. C. Buckhout of the Harlem Railway Company, as Superintending Engineer, Mr. W. L Dearborn, C.E., as Resident Engineer, Mr. F. S. Cartis, C. E., Principal Assistant, and a corps of four Division Assistants, Mesers. Geo. S. Baxter, C E., S. F. Dayo, C.E., Sevene Lee, C. E., and Milford Berrian, C.E. The names of the sub-contractors will be mentioned in connection with the work done by them.
We will briefly give the general plan o the work, and then pass to a detailed de scription of its, parts, premising that, for the drawings which we publish and for much valuable information, we are indebted to the courtesy of Mr. F. S. Cartis, the principal assistant resident engineer, and to Mr. Horan, the chief of the drafting depart ment.
In pian, the work consists of a four track railway, reaching from 42 d street to the Harlem river, a distance of four and a quarter miles, and, with the exception of that portion passing over the viaduct on the Harlem flats, everywhere sunken below the le vel of the street, and covered in with tun neling over as large a part of the distance as the grade of the road and the grade of the avenue will admit. On that portion of the line which is covered with tunnels, three kinds of tunneling have been used, depend ng upon the character of the ground and the difference between road grade and ave nuegrade. Thus wherever sufficient headway could be obtained, arched brick tunnels are used; wherever the headway was too small to admit of an arched tunnel, a fla top beam tunnel is used; and where the headway was too small to permit the use o the beam tunnel, open cuts, spanned at the street crossinge by iron plate girder bridges, sixty feet in width, were of necessity re sorted to. The third kind of tunnel re ferred to is the rock tunnel at 92d street. The reason for the use of these three kinds of tunneling will, perhaps, appear more evident by a glance at the accompanying profile, Fig. 3, which, being so greatly re ducsd, will throw into bold relief the vart ous grades used on the railroad and the ave nue, and the difference between them, and will afford a good idea of the various species of work involved. It will there be noticed that the grade of the road begins to fall gradually from 45 th to 48 th streets, and point to 57 th street it increases rapidly that from this point to 57th street it increases rapidich is the heaviest grade on the road. From 57th to 59th streets the grade runs level, then rises to 70th street through
a hight of 15 feet and 9 inches, is again level to 71st street falls between 71st and 73d streets 2 feet 4 inches, or 22.36 feet in the mile; is once more level to 74th street; rises 32.5 eet, or 539 in the mile, to 86 th atreet, at which point begin he long descending grade which crosses the viaduct and extends to 129 th street, falling in the distance 69.8 feet, after which begins the up grade, which reaches the street level at 133d atreet and Harlem Bridge.
At 56 th street the railway grade is $13 \cdot 6$ feet below avenue grade ; and at this point, the headway not being sufficient for an rched brick tunnel, a beam tunnel commences and extends to point 24 feet $9 \frac{1}{3}$ inches south of the south side of 67 th street. Here the railway is 25 feet below the street; and the ground rising rapidiy, a headway is obtained sufficient for n arched tunnel, which extends to a point 29 feet 2 inches north of the north side of 71st street, where the beam tunnels again begin and reach to 27 feet $7 \frac{1}{9}$ inches south of the south side of 80th street, where the ground commences to rise rapidly and the brick tunnels once more appear, ending at the beginning of the rock tunnel at 92 d strect. This tun. nel is about 550 feet long and is followed by the partly rock and partly brick tunnels, which end at a point 31 feet 6 inches orth of the north side of 95th street, and from this point to orth side of 96 th street extends a tapering tunnelformed by hree tunnels paseing into one. At 96 th street the differnce of grade is about 27 feet; and from this point, the land falls so rapidly to the Harlem flats that at 97th street the difference of grades is but 8 feet 2 inches, and consequently rom this point to 98th street extends an open cut, ending at he south end of the viaduct, which reaches thence to the middle of the block between 115 th and 116 th streets,or a little over 717 feet short of a mile. [We shall continue the subect in our next and future numbers with various illustrations of the works.]

Correnpmatufe.

The Crystalization of Carbon.

To the Editor of the Scientific American

You refer, on page 247 of your current volume, to a new ea of making artificial diamonds by crystalizing carbon. It strikes methat the almost constant co-occurrence of native platinum or gold with diamonds is not merely fortuitous, and these metals may have something to do with the crystalization of carbon. It is a sufficiently proved fact that, at very high temperatures, chemical a finity is much modified, and perhaps disappears; the same modification may be a result of high pressure. Undoubtedly, in former geological ages, the atmospberic pressure was much higher than it is now, as is proved by the fact that liquid carbonic acid is nclosed in rock crystale. But a great pressure is also produced by a high column of water; and this may be one of the circumstances under which carbon is now crystalizing n the form of diamonds
Let some one try a series of experiments, in which chloride of platinum, $\mathrm{Pt} \mathrm{Cl}_{2}$, or gold may act under the highest possible pressure on a suitable hydrocarburet (containing a maximum of carbon and a minimum of hydrogen), and see If such a decomposition as the following is possible
$2 \mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{m}}+\mathrm{mPtCl}_{2}=2 \mathrm{mHCl}+\mathrm{mPt}+2 \mathrm{C}$,
in being greater than m , whereby Pt would fall down as a regulus, and C would crystalize as diamond
If this be Nature's process of forming diamonds, the mu riatic acid is of course washed away and deposited elsewhere in muriates; while the native metal and the diamonds are retained in the place of formation or carried along by the mechanical action of water. The highest preasure may be obtained by compressing water a ta temperature of over 392 Fah., if only a material can be found for a vessel that can endure this pressure. It being desirable that the wall of the vessel are translucent, perhaps rock crystal or fluor par could be used. But as the hydrocarburet is lighter than water, some means must be found to hold it, close to the bottom of the vessel (perhaps by means of a bladder, through which exosmosis takes placs), in contact with the solution of chloride of platinum. Perhaps some liguid other than wa ter may be desirable; but it must be lighter than the hydro carburet, and not affect either the latter or the solution of platinum.
There is another series of experiments: It is generally known that air dissolved in water contains more oxygen than atmospheric air. Now, ozone is a modification of oxygen produced, probably, by a denser formation of the atoms. The oxygen of the air in the water is probably turned into ozone by a high pressure, which would decompose the hydro carburet by taking away the hydrogen and leaving the carbon, which would crystalize in the liquid. This process may have taken place where no platinum is found associated with diamonds. According to my opinion, it is worth trying whether one of these processes, or perhaps both combined will have the result, so long sought for, of crysta'izing car bon before our eyes.
W. Thiese.

Rochester, N. Y.
Professor Tyadall and the Buddhist Philosopher. To the Elditor of the Scientific American:
In your issue of October 3, page 208 of your curren volume, under the caption "Candle Flames and Streaks of Cloud," you quote the Buddhist philosopher: "It cannot be said that he (Buddha) ishere or there; but we can point him out by the discourses he delivered. In these, he lives;" and ou add: "Science has no further word to offor."
Both the ancient philosopher and the modern professor have erred in making the destiny of man analegous to [the transmutation of the correlated forces, heat, light, elec
tricity, motion. There is another law which Science cannot disregard. Life, whether vegetable or animal, does not necessarily become "extinguished as the flame." It becomes latent in the seed. It is there ready to resume its normal law of growth whenever the proper conditions are presented. It would be in accordance with strict deduction, from observed facts in the vegetable, to expect that the animal also, when planted, would return to its renewed form. This expectation is constantly disappointed as to the lower animals and generally as to man. But another series of facts must be also weighed by Science. A large part of our race has always expected a continued existence; and this ex. pectation has been confirmed by human testimony to the ris ing from the dead of a certain Man who also raised others
from the dead; and after thus proving his right to know, He declared that all others would eventually be raised to life again, having been planted (as it were) in the ground. Sci ence must of necessity inquire: 1. Whether the facts of this resurrection and thisassertion of a competent witness are duly proved according to the rules of evidence. 2. Whether the statement that growth may be resumed, after cessation for a great length of time, accords with this law of latency as found in plants. Science cannot concern with this as a matter of faith; but it cannot dieregard facts duly proved by credible and competent witnesses. Taking up the subject in this line of hard logic, we believe it is to be shown be yond reasonable doubt that the destiny of man is not to melt
into the "infinite azure," nor "to be extinguished as the into the "infinite azure," nor "to be extinguished as the
flame," but to live againand to participateagainin the affairs of this world. The mode of his return to life and the manner in which he will participate in the future woyld's affairs are not subjacts for discussion here. A belief in the resurrec. tion of a material and organized body leads one very far from the ortbodoxy of the churches; but it brings the ascertained facts of Science and the literal words of Scripture into an harmony that does not seem to have been suspected by the scientists or the doctrinaires.
E. x .

Lunar Acceleration

To the Editor of the Scientific American:

There are good reasons why astronomers do not accept the uheory of the above named phenomenon, published by your correspondent, Mr. John Hepburn, on page 260 of your current volume.
It has not yet been demonstrated that the sun's orbitis any thing like a circle or an ellipse; but there is every reason to believe that his orbit is of a more complicated character, that it is without any period, and is not confined to any one plane. It is believed, also, that his motion is comparatively so slow that the change of direction of his course in 25.800 years amounts only to a small fraction of a degree. Unless your correspondent can prove the fallacy of our fundamenta theories of dynamics, he dare not maintain that the sun is rotating in a circular orbit without a central body whose
attraction is many times greater than the resultant of all attraction is many times greater than the resultant of all
attractions from the rest of the so called fixed stars. Withattractions from the rest of the so called fixed stars. With
out the sun's orbit be in the ecliptic, and of a circular or elliptic form, it is as absurd to speak of a retrograde motion as it is to speak of an above and below, of a before and behind, of a right or left hand side of the Universe.
There is no doubt but the travel of the terrestrial poles and the precession of the equinoxes have a common cause. If we depict the travel of either pole, as observed on a stellar globe, we find that for any one time both poles occupy directly opposite positions, and that the phenomenon can be produced by no other motion than a gyration of the earth's axis, of which the precession of the equinoxes is a necessary sequence. This being an established fact, I am unable to see what the alleged retrograde motion of the sun has to do with the explanation.
The period for a complete revolution of the recession of the eclipses is somewhat less than 19 years, and that of the precession of the equinoxes about 25,800 years, which is apparently not quite the same rate, as your corresponden
states. Evidently the two phenomena have not a common states. Evidently the two phenomena have not a common
cause, though they are results of the same principle, and have long ago been satisfactorily explained and experimentally demonstrated by the gyroscope.
Your correspondent subsequently takes refuge in a hypothetical sind rather exorbitant increase of the motion of the sun, which no astronomer can take for granted on this ground only. Next he confounds increased with increasing motion. A rotation that makes 31° for $30^{\circ}, 62^{\circ}$ for 60°, and 93° for 90° is simply increased, not acceleratej, as it would be if it would make 31° for $30^{\circ}, 64^{\circ}$ for $60^{\circ}, 99^{\circ}$ for 90°, according to the laws of accelerated motion. Lastly, he commits th mistake of referring the angle he found to the diurnal, instead of the annual, rotation of the earth. If he makes his calculations in accordance with the laws of dynamics, he will find no agreement whatever between his theory and the observations of astronomers.

I am afraid that the question is still oper.
Philadelphia, Pa.
Hugo Bilgram.

The Potato Bug.

To the Bditor of the Scientific American:
Several paragraphs in relation to the potato fly (cantharis vittata) have appeared in the Scientific american, and are now going the rounds of the press. It is strange that an insect well known to the medical profersion for the last nincteen years, and which but twen'y years ago amounted, in extearive districts of this country, to almost a scourge, should now have become so great a stranger. Under the head of "Potato Flite," the United States Dispensatory says (I quote from the ninth edition, page 1:1):
"Within the limits of the United States are several species of cantharis, which have been emploged as substitutes for the c. vesicatoria, and found to be equally efficient. Of hese, only the c. vittata has been adopted as officinal.

The potato fly is rather smaller than the c. vesicatoria, which it resembles in shape. Its length is about six lines. The head is of a light red color, with dark spots upon the op; the feelersare black; the elftra or wing cases are black, with a yellow longitudinal stripe in the center, and with a yellow margin; the thcrax is also black, with three yellow lines; and the abdomen and legs, which have the same color, are covered with a cinereous down. It inhabits chiefly the potato plant, and makes its appearance about the end of uly or the beginning of dugust, in some seasons in great abundance. It is found on the plant in the morning and ovening, but during the heat of the day descends into the soil. The insects are collected by shaking them from the plant into hot water, and are afterwards carefully dried in the sun. They are natives of the Middle and Southern States. * * If the potato fly has been found more speedy n its effects than the cantharis of Spain, the result is, perhaps, attributable to the greater freshness of the former. It may be applied to the same purposes, treated in the same oreign insect Black River Falls, Wis.
E. S. Wicklin.

Aniline Black Dyes.

Tacthe Editor of the Scientific American:
Of late years the importance of aniline black to calico printers and dyers has steadily increased, and I think it may be of some interest to your readers, among whom you must have many printers of fabrica, to know aomething of the est methods of printing it and the rationale of the process. Aniline black is produced upon cloth by the application of a mixture of a salt of aniline with a chlorate (usually chlorate of potassa) and generally a little sulphide of copper. Now the great causes of trouble in the process are the following:
I. Injury to the doctors (scrapers) and rollers by crystals of chlorate of potash.
II. Weakening of the cloth by the action of the acid.
III. The great difficulty of getting a steam color.

The first of these difficulties is avoided by the French printers by using chlorate of baryta instead of potassa, and in England by the use (in some worke) of chlorate of soda, a very much more soluble chlorate than that of potassa, and
one which can be procured perhaps as cheaply. The two one which can be procured perhaps as cheaply. The two
last difficulties are insurmountable or nearly so, and it has last difficulties are insurmountable or nearly so, and it has chlorbored ouse an aceriment that acetan ilide is formed, which gives no black color with oxidizers. . By carefully aging in very damp rooms, the second diff culty may be surmounted; but the third, the production o a sufficiently cheap aniline black to steam without tendering he cloth is not yet a solved question.
M. B. C. G. Boston, Mass.

Cribbing in Horses.

To the Editor of the Scientific American:

Noticing an article and illustration in your valuable paper sometime ago, on the subject of cribbing in horses, I send the following plan of eradicating the habit:
Cribbing is caused in the first place by some foreign sub stance being pressed between the teeth, or by the fron teeth growing too close together, thus causing pain. The horse, to avoid this, instinctively pulls at anyhard substance, hus spreading the points of the teeth, and by that means affording temporary relief. To remedy this fault, it is only necessary to saw between the teeth with a very thin saw this relieves the teeth of all side pressure, and effectually onds the trouble. The gulping of wind and the gurgling in he throatare effects that will cease with the removal of the

Elmira, Ohio

1. Соок.

Improvement in Gas Retorts.

To the Editor of the Bcientific American:
I have a wrinkle to impart to those of the gas fraternity who use clay retorts. It is well known that clay retorts, when irst fired up, are very open and porous, causing considera ble loss in the yield of gas; and the same thing happens when they become coated with carbon on the inside and have been recently burned out. If those who use such re torts will, when they are new, coat them (both in and outside) with a solution of silicate of soda, of the consistence of or dinary sirup, the difficulty will be entirely removed. It i hardly necessary to add that the coating should be done beore setting, and allowed to dry thoroughly.
Frankfort, Ky.
M. L. Jones.

[For the Sclentinc Am CRUCIBLES

The excellence of a crucible depends on the ready expan sion and contraction of the ingredients of which it is made The bes: crucibles are composed of the following compositions, which are of two kinds, namely, with and withou plumbago.

withott plumbago.

Three parts by measure of the Stourbridge best crucible lay, two parts cement, consisting of old used-up fire bricke, and one part hard coke. These ingredients must be ground and sifted through a one eighth inch mesh sieve; the sieve
must not be finer, otherwise the pot will crack. This com. must not be finer, otherwise the pot will crack. This com-
position must be mixed with sufficient clean cold water, trodden with the bare foot to the consistency of stiff dough,
and allowed to stand for three or four days well covered with damp cloths, to admit of its sweating and the particles of clay becoming thoroughly matured. It is then ready for use, and must be blocked by hand on a machine, Dr. Ure, in bis "Arts and Manufactures,'" gives drawings and methods of working the machine.
Owing tothe coarseness of this com position, the pot cannot well be thrown on the potter's wheel; and in no instance an it be made by pressing.
The crucible must not be burnt in a kiln, but merely highly and thoroughly dried before being placed in the furnace for use. For brass and copper melting, it will stand one good hard day's work; but care must be taken to replace the pot again in the furnace after the metal has been poured. If the pot be not allowed to go cold, it will last for several days. It will, with the greatest safety, stand one melting of wrought iron. The cost, when made on the steel manufacturer's own premises, is about forty cents per pot, each pot holding from 100 to 120 pounds of metal.

hessian crucibles.

Good Hessian crucibles are composed of two parts of the best German crucible clay and five parts pure fine quariz sand. This composition must be sifted through a one eighth inch mesh sieve; it is then tempered and trodden with the bare foot, as before described. When ready for use, it is pressed into different sizes of crucibles, which, when thoroughly dry, are placed in the kiln or furnace and burnt hard. another composition.
Two parts best Stourbridge crucible clay, tbree parts cement ; sift through a one eighth inch sieve. Temper us before described and block by hand on the machine. When thoroughly dry, it is placed in the kiln and burnt hard. These crucibles are principally used for melting gold and silver, and also for dry analysis.

The best and most perfect fire clay for crucible making is nearly always found in the pavement of coal. Some of the Pittsburgh fire clays, and those found to exist in the pavements of some of the Penneylvania coal mines, are excellent fire clays. But the variouscompositions cannot be described, as they are as numerous as the different kinds of clays.

> WITH PLUMBACOO.

The Birmingham soft tough pot cunsists of two parts of the best Stourbridge crucible clay, three parts plumbago, and one part cement, consisting of old used-up crucibles ground and sifted through a one eighth inch mesh sieve.

ANOTHER COMPOSIIION.
Four parts of the best Stourbridge crucible clay, three parts plumbago, two parts hard coke, and one part cement, consist:ng of old pots ground and sifted as before. Where old pots cannot ba had, the above composition must be burnt hard, ground, and sifted. The scales or chippings of the insides of gas retorts are far superior to the best common hard coke. But where scales and chippings cannot be had, hard coke is the best substitute. All the ingredients of this composition must be sifted through a one eighth inch sieve (but not finer), tempered, and made as before described. When thoroughlydry, it is placed in the kiln and annealed, but not burnt hard. This composition makes a pot (for meltiog the hardest metal) which cannot be melted at any pitch of heat, nor can it be cracked with the most sudden heating and cooling. It is regularly known to stand fourteen and sixteen meltings of iron, even wrought iron. I have often made it to stand more than that.
Any steel manufacturer can make the pot on his own premises at a cost of $\$ 120$ or thereabouts, the pot holding from 100 to 120 pounds of metal.
J. D.

Houston, Texas.

Utilization of Silk Rags,

According to Les Mondes, one of the wealthiest English velvet manufacturers, Mr. Lister, worked his way to success by years of patient labor in search of a way to utilize silk rags. He began by buying up all such waste at less than a cent a pound; and up to the year 1864, he had expended theimmense sum of $\$ 1,312,500$ in fruitless efforts to find a process. Nothing daunted, Mr. Lister continued bis experiments; and within the past ten years, he has discovered a way of making the refuse into fine velvet. He carries on this industry at Manningham, Eng., in an establishment which employs not merely 4,000 workmen, but 283 travelers inall parts of the globe, whose sole business is to buy the silk waste. The factory is said to have cost nearly $\$ 3,000,000$.
The practice of patenting imitations of articles of standard excellence is growing in favor at the Patent Office. A patent lately granted is for producing an imitation of Russian sheet iron. This is done by hammering the sheet between anvils and hammers that have indented surfaces, so as to give the sheet a mottled appearance. Another patent is for an imitation Swiss window shade, in which the lace work is imitated by stencils.
John Latrd, M. P.-The death of Mr. John Laird of Birkenhead, Eog., occurred on the morning of Thurgday, October 29. He was the son of William Laird, of Greenock, Scotland, and was educated the Royal Institution, Liverpool. He was well known as an enterprizing and successful ship builder. We shall probably publish a portrait of him next wetk.

Sulphate of Copper Optics.-If we receive the solar light refiested by a large crystal of sulphate of copper upon a sheet of platinum or tin plate, placed at a small distance copper upon the part which recaives the reflected light

