IMPROVED STEAM ENGINE.

The novel form of steam engine herewith illustrated ope rates upon the compound principle; but ins:ead of having its bigh and low pressure cylinders separate, the former is placed within the latter. The smaller cylinder, into which live steam is adwitted, constitutes also the piston head, and is moved both by the entering steam reacting against an auxiliary stationary piston placed within, and also by the expansive force of the steam which is used in the provious stroke, which is allowed to pass into the outer and larger cylinder. This will be rendered clear by the following detailed description of the engravinge.
A is the small cylinder which constitutes the piston head of the engine, and which is cloeed at both ends, and travels in the large cylinder. It connecta with the piston rod, passing through the the piston rod, passing through the
right hand evd of the latter, as right hand evd of the later, as shown. B is the auxiliary piston,
which is perfectly mot'onless, aud which is perfectly mot onless, a ad
is secured to a hollow rod which is is secured to a hollow rod which is
fastened, as shown, in the cylinder fastened, as shown, in the cylinder
heud, and connects with the pipe,C, through which the steam enters, as indicated by the arrow.
The head of the auxiliary piston is hollow; and leading out at each end of it are porte, D, which are provided with a rocker valve, to which is attached theoperating rod, E, extending out through and beyoud the piston rod. At each end of the bore of the cylinder, A, and of the bore of the cyhnder, A, and 'ead:ng to rotary valves, from which pass other conduits through ths next adjacent end plate and opening into the main cylinder. Each of the rotary valves is so constructed that, when either is in the position shown on the left, it will open communication between the port, F, and the adjacent passage, the two forming a bent or V ahaped conduit. When resolved in another position, the valve will, as represented on the right, close the port, G, and eatablish communication, by means of the other passage, throughfrom the main cylinder to the annular space around the head, A and between the flanges of the latter.
The two valves just described have bent arms, H , extending from them, as shown in dotted lines, Fig. 1, and in the transverse eection, Fig. 2. These arms are connected by a rod jointed to both. Another arm, I, Fig. 2 , is attached to the inner end of a shaft, which shaft is arranged within the exbaust passage leading out of the main cylinder. The object of this shaft and bent arm mechanism is to trip each of the valves connected with the arme, H , at the proper time, which it is caused to do by suitable apparatus operated ly the engine in connection with the exterior crank. Similarly the rod, E , moving the rocker valve on the auxiliary piston, is also properly actuated to travel back and forth as is neceseary.
The operation of the machine may now be readily followed. Steam being admitted into the small cylinder or piston head,A the latter will be drawn in one direction length wiee the large cylinder. On the head arriving at the end of such movement, the valves are tripped so as to open communication be t ween the epace that receives the live steam and that part of

the main cylider next adjacent to the end of the same to ward which the piston head has advanced. It will be ob served that in Fig. 1 the head has just finished its stroke to the port, F, has opened a way through the latter and into the large cylinder. At the same time the rocker valve in the auxiliary piston is tripped so as to cut off admission of steam to the epace into which the steam first entered, and to allow the steam to operatefrom the reverse side of the piston. This is clearly shown in the engraving. The head will now travel is clearly shown in the engraving. The head will now travel quantity of steam but by the pressure of the first amount expansively in its rear.
The first quantity of steam, on escaping from the head into the main cylinder will expand in both while the former is in motion, and, by pressing against the outer surface of one end of said head, will there exert a greater amount of force than it will on the stationsry piston, B. Hence it is the excose of pressure which operates to drive the head.

The space in front of the latter, it may be supposed, con tains steam used expansively in a previous stroke. This must be withdrawn from the front of the head and exhaust ed, an operation accomplished by the valve, in the passage, G, becoming placed as shown in Fig. 1, thereby establishing connection with the right hand or forward portion of the cylinder and the annular space around the head, which, as represented in Fig. 2, connects directly with the exhaus port.
Among the other advantages claimed by the inventor, for this machine, over the ordinary compound engine, is a small er loss by radiation. The heat radiating from the steam en er
tering the hollow piston rod aids in keeping the outer cylin -
M. Toselli, an ingenious Italian ing bell.
ised a vised a novel diving boll, an engraving of which we present herewith, by means of which he can proceed to the bottom and rise at will, and travel around while submerged, or a the surface, with perfect safety. He has already descended several times to the bottom of the Bay of Naples, a depth of $2 £ 4$ feet, and finds the device admirably adapted for sub marine exploration, for coralor pearl fishery, or for the clear ing of sunken ships.
As shown in the illustration, the apparatus is a kind of urret divided into four compartments. The bottom division A, contains lead, and serves to hold the bell in vertical posi tion. B can be filled with water b pening a cock communicating from without, or may be rendered entire ly empty by aid of the pump. Con sequently this chamber serves to augment or diminish the weight of the machine and to determine its up and down travel, serving the same purpose as the natatory vessels in fish. In the large compartment, C, the operator and the observer ar tationed; and finally, F is a reser voir, into which air is compressed in a quantity sufficient to last during the time which the bell is to be submerged. I is a cock which admits air from this chamber into he main compartment. G is the pipe for carrying off the foul at mosphere, which communicates with the tube, H , and a float, g. The lat ter has a valve, $l l$, to prevent en rance of water. The bell hasa rud der and a screw, not shown in the

DAVENPORT'S IMPROVED STEAM ENGINE

der warm, while, by jacketing the latter, there would be The shart the use of double crank and connecting rods. aaving not only the wear and tear necessary to overcome back pressurein th amaller cyllnder, but also the extra expense of construction The invention can be applied to any ordinary engine by re moving the cylinder and substituting the one described. Patented January 1, 1867. Further particulars may be ob tained from the inventor, Mr. S. F. Davenport, Hallowell, Me

THE GRAVITATION COMPASS.:

A new mariner's compass, remarkably devoid of compli cation in its various parts, has recently been invented by the Earl of Caithness, F. R S., of London, and patented in the United States. The ordinary compass is mounted upon gim bals. that is to say, upon two axes at right angles to each other, for the purpose of allowing the compass box the power of swinging freely in all directions, the necessary result being that the bottom of the compass box is kept, by the force of gravitation, parallel, to a great extent, to the plane of the horizon, while its mountings move in various direc tions, as influenced hy the motion of the ship.

The essential feature of the Caithness compass is that, in stead of its being mounted upnn gimbale, it is mounted upon the top of a pendulum, which ewinge in a ball and socket joint. The gimbals of the ordinary compass are intended to give the compass box the power of moving in a true circle but they do not absolutely give that power, and never can since there are two points in the performance of the circle, in which there is a slight catcb, which tends to make the box oscillate. first to the right and then to the left, or vice versấ, as the case may be.
The new Caithoess compass consists of a ball close underneath the compass box, working in a socket fixed at the top of a conical support. The pendulum is about two feet in length, and is attached to the small ball, which has thus the power of giving a perfect rotation. It works in a per fect circle, and it does not matter how much the sbip rolls. The Earl of Caithness calls it the gravitation compass, because the pendulum always points to the center of the earth. He saye that it will bear very great rolling and pitching o the vessel-in fact a roll of more than thirty degrees
In the course of a voyage across the Atlantic, made about the middle of Octobar last, in the Java (Captain Martin), by the Earl of Caithness, he tried experiments with the compres on a large scale, the result being that the maximum vibration of the compass card was about a quarter of a point, while heavy standard compasses on board gave much large vlbrations. - The Engineer.
M. Neyreneuf has ascertained by experimenta that negative electrioity attracts flame, which pooltive electricity ropels.
llustration, the screw being worked by a hand crank by one man, and driving the machine at the rate of about 25 fee per minute.
M is the manometer, which indicates exterior pressure and hence the depth of submersion. N is another manome er, which shows the pressure of condensed air in the cham ber, F. R is a life line connecting the bell with the ship This contains a wire by means of which telegraphic de spatches may be sent to the instrument, $Q \quad U$ is the man hole, allowing access to theinterior of the machine and closed with a double door. V are heavy glass deadlights, and Z is a seat.

The ingenuity of the inventor will be made apparent by considering the simple way in which M. Toselli avoids the dangors common to machines of this class. Thue, should the tube, H, which carries off foul air, break or choke, waye would be pumped immediately out of B, the bell would ascend, and meanwhile the bad atmosphere would be allowed to escape through the extra pipe, f. In case the electric wire in the life line should part, preventing the passage of sig nals, the machine would again ascend and communicate with the vessel through the speaking trumpet, L J . If the line remained intact, the bell could be instantly hauled to the sur face by those on the ship, in case of a breakage of the hy draulic pump, on aignal being transmitter. If pump, wire and life line sbonld all break down at once, then the opera tor woald unscrew a nut and freo the lead underneath, when he would immediately ascend to the surface. Einally, if by
some extraordinary circumstance the ship should break the line and lose sight of the bell, or if the vessel itself should sink, the operator would firet, by unscrewing a nut within cast his bell loose from the life line, and would then ascend. As soon as he reached the surface, he would be enabled to view his surroundings by means of a camera obscura at r; and by revolving the same by its tube, W , he could sweep the entire horizon. Lastly, having determined his course ho could proceed in the proper direction by means of his screw and rudder.

Corxespoudence.

Notes from Washington,

To the Editor of the Scientific American:
Congreas has adjourned without enriching the lobby so much as usual. In fact it is generally conceded that our Solons have left Washington with cleaner consciences, in this respect, than any of their recent predecessors, and that there never were fewer jobs put through by any Congrese for many years past. The patent lobby fared especially badly, not a single extension case, so far as I can learn, hav ing passed, notwithstanding all their efforts. Whether thi is owing to a slight spasm of returning public virtue, the approaching elections, the efforts of the press, or fear of the Grangers, is more than I can tell; but probably all these in fluences had their effects, and so the work of the lobbyists went for naught, although they mustered pretty strongly the last days of the session, trying, both by persuasions and threats, to forward their respective schemes. One of these -a seeond Geoige Francis Train-even went so Jar as to threaten the Sanators and Representatives with the opposi tion of the Internationals, of which he represented himself as a high officer, if they did not pass the extension case fo which he was working, and that he would take the stump against the members of the committees on patents, if his efforts failed. Of course the Senators wereimmensely fright ened at this fearful threat, but somehow they yet live, an have gone home without helping the client of Train secundus.
The bill to reorganize the Patent Office also failed, and a bill, introduced a few days siuce by Mr. Conger, amending Suctions 23, 25, 33, 53, and 64 of the Act of 1870, as a sub stitute for the first bill, likewise failed to pass. The onlyact completed, so far as I can find, relating to the Patent O円f ce is one introduced by Mr. Wadleigh, which allows the usual sentenc 3 indicating that a work is copyrighted to be substi tuted by the words "Copyrighted, 18-, by A. B.," fixes the fees for recording or furnishing a copy of an assignment of a copyright at one dollar, and enacts that labels shall not be copyrighted, but registered at the Patent Office, for which a fee of six dollars is to be charged. This act takes effect August 1, 1874. The object of the change in the first sec tion is to allow the use of the short sentence on small work of art, photographs, etc., that would be defaced by the use o the long rig anarole now employed.
Many curious schemes have been brought before Congress some of which never got any further than the committee rooms, among which may be classed the application of some wquld be philosopher for an appropriation to test his method of artificially producing rain; and another case where an in ventor wanted a law enacted that every election district in the United States should have his patent ballot box, to receive the votes for President, Vice President, and member of Congress, at a cost of fifteen dollars for each box. The committee to whom this case was referred contented them selves with recommending its adoption to the different State authorities, and so nipped this pretty little scheme in the bud. I endeavored to find out this patent, but could find none under the name of reputed inventor; but judging from the description I received, it must have been similar to one patented in 1853, and used in your city some years ago, as wassaid to be composed of iron and glass. Occasional.

Levees on the Mismismippi

To the Edditor of the Scientific American:
Please tell your readers who reside on the banks of the the lower Mississippi that the proper way for them to build levees is to build them on an average a mile back from the banks of the river on each side. They will thereby show a little respect for the river, and give it an opportunity to discharge the waters of the vast valley which it draiss; and will secure the remainder of their country from periodical overflow.
This line, a mile back from the river, should not follow the meanderings of the stream, but should average a mile on each side. In places where there are high banks on one side, as at Vicksbargh,the river should be permitted to over flow the low ground on the opposite side for two miles; and if, for any other reason, as at New Orleans, it would be im practicable to permit the river to overflow on both sides, a similar space on the opposite side should be left for the river to spiead itself a little whenever it might have business of importance to transact
Sioux Rapids, Iowa.
W. t. Crozier.

White Ants.

To the Editor of the Scientiffc American

The white ants of the torrid zone are somewhat smaller than the large black ants, which are sometimes troublesome here and are rather voracious, eating their way through wooden box to obtain sugar, of which they are very fond, and of which they will consume a large quantity
But the white ants of the torrid zone throw the black one entirely in the shade as regards varacity. Pernambaco
(South America) is on about the 8th southern parallel; and theinhabitants build houses and make furniture of the na live wood, which is hard and heavy, and proof against these ants. In one instance, a family moved from the South to Pernanbuco, taking their housebold goods with them. Among he rest was a mahogany bureau with white wood insid work, as usual. This bureau, containing linen and cotton goods, was placed in a room but little used, and was not vis ited for some days. The lady of the house unlocked an upper drawer, and to her astonishment the front piece, of mahog ony, fell to the floor, and on looking in she discovered tha the inside work was nearly all eaten out, and her goods were in one common mase, resting on the floor, in a mixed condi tion but otherwise uninjured. The depredators bad depart ed, but were soon discovered cutting out the interior of an ther piece of furniture. They proved to be the white ant the torrid zone

Truman Hotcheiss.
Stratford, Conn

The Weatinghouse Brake

To the Editor of the Scientific American:
I notice in a recent number of Enyineering an illustrated article upon the Westinghouse brake, commending the sim licity and equable action of ita lever arrangement, etc Whatever merit, of simplicity or otherwise, there is in it use of levers, it certainly has (in common with almost all th brakes now applied to cara) the defect of giving vory unequal tress or pressure upon opposite wheels of the truck

Let $k f j i$ represent the lever that operates the brake blocks, o. I use the delineation and letters employed in the article referred to. The lever is held up by a pulley at k, wich travels back and forth on a rod, as shown. Power i applied to the lever at the point, f^{\prime}, through the medium of he rod, $f^{\prime} f$, in the direction indicated by the arrow, one pai o the brake blocks being operated by the rod connected to he lever, at j, and the other pair by the rod connected at i, he pull being in the direction indicated by the arrows, and the leverage three to one, that is to say, the distance from to j is one fourth of the distance from i to k. Hence a pull of 500 lbs., applied to the rod, $f^{\prime} f$, will cause a pull of 1,500 bs. upon j, and a pull of only 1,000 lbs. on the rod i.
This unequal stress upon the brake blocks may not be very serious matter, but it is a universal characteristic of the lever arrangement now applied to car brakes. The fault might be easily mended by connecting the rod, j, to the sus pending bar of the brake block 3 a little above the usual point ad the rod, i, a little below the usual point, as at Worcester, Mass.
F. G. Woodward.

Astronomical notes.

Obbervatory of yabsar College

For the computations of the following notes (which are pproximate only) and for most of the observations, I an indebted to students.

Ponitions of Planets ror July, 1874.

Mereury
At this time, June 20th, Mercury can be beautifully see fter sunset, below Venus, and a little further north.
On the 27th of June, Mercury will be at its greatest elong ion, east of the sun. July 1, Mercury sets at 9 P. M. July 31 , Mercury sets at 6 h .25 m . P. M.

Venue.
Venus, which has been so beautiful all through the month of June, increases in apparent diameter, bat sets a ittle earlier in July
July 1, Venus rises at 7 h .11 m . A. M., and sets at 9 h 33 m . P. M. On the 31 st , Venus rises at 8 h .17 m . A.M., and sets at $9 \mathrm{~h} .00 \mathrm{~m} . \mathrm{P} . \mathrm{M}$.

Mars is very unfavorably situated. It rises early in the morning, and sets at 7 h .42 m . P. M., or nearly with the sun, on July 1. On July 31, Mars rises at 4h. 14 m . A. M. and sets before 7 in the evening.

Jupiter.

Jupiter's diameter is becoming perceptibly less, and it set before midnight. It comes to the meridian, the position best adapted to good observation, in the afternoon, so that wo have only a few hours of darkness in which to watch its hanges.
July 1, Jupiter rises at 10h. 51 m . A. M., and sets at 11 h 15 m. P. M. On the 31st, Jupiter rises at 9 h .15 m . A. M and sets at 9 h .26 m . P. M.

The month of July is the best of the year for observation on Saturn; and although Saturn is very low in altitude, it will bean intereating object
July 1, Saturn rises at 9 h .29 m . P.M., and sets at 7 h .21 m A. M. July 31, Saturn risen at 8 h . 25m., P. M., and seta
at 5 h .12 m . A. M. It is among the small stars of Capricor us. Saturn does not attain an altitude of more than 31 during the month.

Uranue.
Uranus rises in the morning and sets early in the evening nd is therefore not well situated for observation Neptune.
This planet can be seen only by means of a good telercope. It crosses the meridian in the morning at 7 h .15 m . on the 1st, at an altitude of 58°

The Comet.

Clouds have prevented good observations upon the comet. It is bright enough to be seen very easily with the naked eye, and with an opera glass is a beautiful obj ct. On the 13th of June an observation, made during partially cloudy weather, gave R.A. $7 \mathrm{~h} .4 \mathrm{~m} . \pm$, Dec. $+69^{\circ}$. At that time its apperent motion was very slow.
It does not set, and is very readily found. On the 13th it made a nearly equilateral triangle with the pole star and the brighter star of the pointers. The same position would enable one to find it as late as the 18th of June, and probably it has not changed its position very much. To the eye, it is an elongated hazy star. With a glass, the nebulous center and the streaming train are very interesting objecte. It passes the meridian at present (June 21) at 1 h .20 m . in the morning, below the pole.

Sun Spots.

The record is from May 15 to June 16. Fourteen views have been photographed during this interval. Spots have generally been very small, only two groups appearing which contained good sized apots. In some instances the changes rom day to day have been very marked; in others, only such as result from the sun's revolution on its axis. The daily motion of one group is shown for five daye from May 27 to June 1. While the group as a whole remained recognizable, there was a decided change in the arrangement of the con here was a decided change in the arrangement of the cone re beautifully marked in one of our p.ctures which hap. are beautifully marked in one of our p.ctures which hap-
pened to be very clear. The same picture alao shows the pened to be very clear. The same picture alao shows the
mottling of the sun's surface, which is usually shown when both the weather and photography are good. Very bright facule accompanied a group which was near the eastern limb on June 15. They were less prominent on the next day as the group was more distant from the limb.

Barometer and Thermometer.
The meteorological journal from May 17 to June 20 ives the highest barometer, June 15, 30.27; the lowest barometer, June 1, 29.58: the highest thermometer, June , at 2 P. M., 86°; the lowest thermometer, May 20 and May 22, at 7 A. M., 50.5°

Amount or Rain.

The rain which fell between the evening of May 17 and he afternoon of May 18 amounted to 028 inches.
The rain which fell during May 20 amounted to 0.17 nches.
The rain which fell during May 25 amounted to 0.48 aches.
The rain which fell during the night of May 31 and the morning of June 1 amounted to $0 \cdot 45$ inches.
The rain which fell during the night of June 3 amounted 0.16 inches.

The rain which fell during the afternoon of June 12 mounted to 0.15 inches.

spectrum of the comet

Father Secchi has observed the spectrum of Coggia's comet, and finds the lines of carbonic oxide and carbonic acid very brilliant. The same astronomer notes a curious phenomenon which recently happened in Jupiter's first satellite. The atmosphere at the time of observation was quite clear, and the diak of the planet, while plainly defined, presented a slightly wavy surface. As the satellite neared the edge of Jupiter, and had advanced so that a distance of bout one of its diameters separated it from the same, the ob. erver was surprised to see the diek apparently extend itself oward the satellite, touch it, and then retract. This to and ro motion continued until the satellite was completely ob cured by the planet, a period of four or five minutes. Fa. ther Secchi suggests that if similar undulations of the solar disk take place at the time of the passage of Venus, there will bestrong elements of uncertainty in the obsorvations, and that it would be desirabie to employ means which will educe to a minimum these effecte of atmospheric oscilla tion.

Fatty Matters In Cast Iron.
An experiment made long ago by Proust revealed the fact that fatty matters can be extracted from cast iron when the latter is dissolved in certain acids. M. Cloez has recently separated these materials in a pure state, and their analysis eveals the interesting fact that they consist of carburets of hydrogen of the series $C^{2 n} H^{2 n}$, and present all the terms hereof at least from $\mathrm{C}^{6} \mathrm{H}^{6 \prime}$ (propylene) to $\mathrm{C}^{16} \mathrm{H}^{16}$. This is a veritable organic synthesis, realized by the aid of substances purely mineral,and is sueceptible consequently of important applications. In the Science Record for 1873 will be found n account of the extraction of similar matters from me teoric iron.

The Sandy Hook boiler experiments, which have been uspended eince December last, will be resumed about the beginning of August. The recording instruments used last ear were found to vary considerably in the forme made by ifferent makers, and careful tests are now being corducted in order to ensure absolute uniformity and correctnese of in. dications.

