Sticutitic gmextican.

MUNN \& CO., Editors and Proprietors. poblished weerly at
NO. 37 PARK ROW, NEW YORK.

GOVERNMENT AID TO SCIENTIFIC INVESTIGATION.
Those who had the good fortune t, bea: the closing lec ture of the saries delivered by Professor Tyucall in this country will not soon forget the eloquent tribute he paid to scientidicinvestigators, intent on the discovery of truth regarilepa of its beariog on practical ende, or the earnestness with which he insisted on the public duty of supplying them witb m ans for their work
The appeal was as plausible as eloquent. At first sight nothing would seem more r asonable tban that the public at large, whose iudebtedrers to Sceoce is so great, should do something towards supporting those wbo carry on the work; or that any mears which shonld honorably relieve original in vestifators of the daily dirudgery of parning a living, and at the same time supply them with the fullest apparatus for their researches, would immensely increase their productions.
But when we remember that in every age there bave been plenty of scientific men who have had at command al that mon+y or position could gire, yet have remained comparatively barren, while the great discoveries, more espe cially the original views opening up net lines of thought and giring new directions to human industry, have usually come fiom seemingly less favored workers, we cannot escape the suspicion that original thinking is quite as likely to be hindert d as helped by easy cirrumstances. Besides.the best work in Science has rarely been done by men either depend ont or very closely allied with the ruling clique of their day, freedom from class prr judice being an ersential condition of ndependent thinking
No doubta good deal of honest work migbt be furthered by aiding the right men at the right time: but such men ar rarely the ones that would be reacbed by public enactment even if it were possible for them to maintain intellectual in dependence in conrection with pereonal dependence. Radi cally new trutus are inevitably unpopular, and none bu popular men would derive much assistance from the public unds. The endowment of Dcience would thr refore act veis much as the endowment of religion has always done, by creating a class of nominal " leaders" whose instincts would beopposed to progress. Having risen to place and power by the adrocacy of certain views, how could they give thei countenance to men laboring to overthrow such views?
Run over the list of names-from Copernicus to Darw:n of those whose influence has been greatest on tbe progress of human thougbt. How long would their ownese have been allowed to continue their work at public cost, in the face of popular clamor against their heresies? Had Profes eor Tyndall's plan been adopted a few hundred years ago, the wor'd would ptill be flat, the center of the Universe, and only six thousand yeara old.
In applied Scienre, the case is equally etrong. How long would Fulton have been allowed to squander public money n his "crszy" attempt to propel shipping againet wind and ide with "bolled water"? Or Steph neon, in the equally wild project of drawing wagons acroge the land at the ex.
| $\mathrm{t}_{\text {ravagant rate }}$ of twelve miles an hour? What administra tion could sustain the sarcasm of the opposition party after supplying Draper with money to waste in foolish experi ments for puinting with snnshine, or Morse with means to develop his impiousscheme of annihilating time and spac,? What commit iee of wise men, having to render an account of their expenditures, would have dared to aid the experimente of Goo year in rubber, Young's attempt to make candle out of shale, Bessemer's scheme for making steel direct from tbe ore, or any one, in short, of the great achievements whicb, until the events proved tbeir practicability, were accounted visionary, if not impoesible, by practical men?
Tbere is anotber fallacy underlying Profersor Tyndall's proposal-one that he has strikingly exemplified in his own person quite recently-and tbat is the assumption that abundant and complicated apparatus is required for, or a least helpful in, the work of diacovery. In some cases it may be; but ordinarily it is quite as apt to absorb the ex perimenter's attention so tbat he misses the point of the phenomena entirely. Tha, was a brave array of steamers, fog whistles, artillery and the like, which Profasaor Tyndall took down to the coast to study the effects of different at mospberes on the tranemiseion of sounds; but he had scarce ly published the results of his ccetly observations when Professor Reynolds made known a few experiments with a hrod bell which upset entirely the conclusions the govern ment-aided observer bad oo jubilantly arrived at.
As a rule, the greatest diacoveries are made with the sim plest apparatus, tee keys which have unlocked the grander mysteries of the Universe being mental rather than material or, if material, have proved ϵ ffective through eimplicity and ekillfulbandling rather than becaues of their complesity.

FOUR FOOTED MOTION.

The present exhibition of paintings of tbe Royal Academy in Englaod contains a picture, by Mies Thompaon, entitled "The Roll Call," which depicts a muster of soldiers on the day after a battle.
From the drawing of a horee in the pain‘ing, a very inter esting diecussion has arisen, extending even to eminent na. turalists, regarding the motion of four footed animals whil walking. The Lorse, in the picture, is represanted wolk ing, and has its loft forelegraised, bent, and nearly extended its right forel-g on the ground and perpendicular to the its rig't hiudleg on the ground and well back. With Profesenr Garrod's able elucidation of the aubject, purbished in extenso in Nature, as a guice, the problem quickly loses its perplexing f, atures
Lat two men be supposed to place themsel jes so that the linder one hay his hands on the shoulders of the man in font,and that both walk in step-S:are's pr:son gait. Revert ing this to the horse, we bave the amble, a mode of progression natural to the giraffe, but cnly acquired by apecial train ing in the lorse. Again, apppose the two men to put the opposith feet forward simultaneously, in otber worde, to walk out of step. This will exemplify the trot. Suppose, how diagonally opposits feet beiog set down at the same moment, imagine the first man to begin bis step a little in advance, so that, by the time the forward man has got bis right leg entirely raised, the rear man bas just begun to lift his, al tbough they keyp the eame number of steps. Then the se quence of steps would not be right front and left hind, left ront and rigbt lind, coupled; but right front, left hind, left front, right hind, separate and distinct. Professor Ga
has a simple and graphic way of expressing this, thus:
$\mathbf{A}^{\text {a }}$

The dark daehes mean the times of contact of the rigbt foot, the dotted lines eame of the left foot. The two upper horizontal rows refer to the fore legs; the lower, to the hind The dotted lines, beginning exactly where the continuous ones end-considered horizontally-indicate that one foot is lifted exactly when the other is put down.
From this it will be scen that, in walking, the horse never has more than two legs on the ground at a time. Draw a vertical line through any portion of the diagram, as at A and it will be clear that only two of the horizontal foot lines are cut. The same line shows the picture referred to in the beginning to be correct, with the exception of one elight error. Following line A down, we find the frat dotted line at the op, meaning the left fore foot not cut ; hence it is off the ground The next line is divided equaruly in the middle and hence the right fore foot must be firmly planted. The dotted line below is just met at its beginning, consequently the left hind foot is about to commence its step; and the next line being at its rear endindi cates that the right foot has just finisbed, and is being removed from the ground. If the reader will compare this with the foregoing description of he painting referred to, he will find that the correspon dence is complete, exct pting as regards the right hind foot, which, instead of being on the ground as represented, bbou!d, according to our diagram, be just leaving it. This also would be in accordance with the rule that no more tban two lege can be down at a time, al.d thus the mistake which the ar ist makes in fixing tbree would be avoided.
We would commend the diagram herewith presented as very simple guide for artistsand draftemen generally, as, by
following its indication, they can hardly fail to depict th orse correctly. Ageneral idea of the position of the anima being first settled upon, it is only neceseary to draw perpen dicular lines at various pointe, and try the results untila suitable pose is nbtainfd. The figure very clearly solves a question over which many heads, wise and unwise, have often puzzled.

THE RAILWAYS OF THE UNITED STATES

The reventh annual "Manual of Railways of the United Stater," by Hency V. Poor, 68 Broadway, New York, bas just been publisbed. It is a work of over eight hundred pages, and contains a large amount of carefully prepared in formation, including official particulars of all railways in op ration, their extent, cost, capital, earninge, dividsnds, in debtedness, names of officers, directors, etc. The tabulated general statements concerning the American railway system fford valuableand instructive information
The inauguration of railways in this courtry may be said tate from the year 1830, when railways were in operation o the extent of 23 miles. At the close of 1873 there were seventy thousand, six hundred and fifty one miles of railwa in operation. This great increase, during the brief time of forty-three years, is sometbing marvelous to contemplate The grand average cost is put down by Mr. Poor at $\$ \mathbf{6 0 , 0 0}$ per mile, or upwards of four thoueand millions of dollars in the aggregate. The total earninge wereover $\$ 5!6,000,000$ and the operating exp:nses 65 per cont thereof, or $\$ 343,600$ 000 , leaving as ntt earnings the fum of $\$ 183.810,000$, out of which interest on bonds and stock dividends were paid. The average of the latter were $345 \mathrm{p} \cdot \mathrm{r}$ cent $n \mathrm{n}$ the capital stock the aggregate of which is one thousand nine hundred mil lions of dollars.
During the year 1873 the increase in railway construction was 3,916 milep, against 6,167 miles frr 1872 . Tbe $+x$ pendi ture for construction in 1873 is less by 50 per cont tban in 1872. This eudden great contraction in pasmente, a oount ing to more than $\$ 120,000,000$, was dieastrous in its effect upon the various branches of industry connected with rail way building. But as soon as Congress ahall fix upon rome d cisive rettlem+nt of the national finnncer, whereby lower rate of iltereat for the Amrrican iodebedoess can be established, then ra'lway bonde will improve in value, and n more extensive conutruction way be $+x p$ ere +d . As compared with Europe, the U, ited States are considerably in advance in tbe mattry of railway mileape
The aggregate of railways in 1873 in the various countries of Eurnpe was as followa: (Germany, 12207 milen; Austria 5,865; France. 10 333; Russia, 7.044; Great Britaio, 15,814 Belgium, 1,201 ; Netberlands, 886 ; S witzerland. 820 ; Italy 3,667: Denmark, 420; Spaid, 3401 ; Partugal, 453; Sweden and Norway, 1,049; Greeie, 100
$\begin{array}{ccc}\text { Railroads in } 1873 \text { in Eurnpe.63,360 } & \begin{array}{c}\text { Mopulation. } \\ 282,456,742 .\end{array}\end{array}$
United S'ates.
$\begin{array}{rr}63,360 & 282,456,742 \\ 70,650 & 40,232,000\end{array}$

SOME OF THE USES OF PAPAFFIN.

In addition to the properties which bave brought it intn such extensive uee for illuminating purposes, paraffin bas qualities which give it an excerdingly wide range of useful applications. Wbite, clean, iucnrrup ${ }^{\dagger}$ ible, odorless, tasteless plastic, water repellent, a non-conductor of electricity, and but slightly affected by most chemical agents: it needs only to be better known to become the most variously ust ful o he hydrocarbons.
For water proofing fabrics for wearing spparel, military equipment, and the like, it is mucb better than rubber, since it is odorless and does not become sticky with heat. Among the most gratefully acknowledged of the many gifte aont out to Livingstone in the wilds of Africa, were boots and blankets thus prepared, tbe one pnabling him to travel through mud, the other to sleep in it with comparative comfort. For the waterproofing of tent cloths, ground sbeets fo soldiers, and other articles of the sort, it has been found equally serviceable.
A more generally useful application of paraffin is for the lining of casks and other wooden vesstls, to ktep them sweet and to prevent either the absorption of their content by the wood or their ercape tbrough the pores. Already it has been largely applied to beer barrelp, wine cacks, and other vessels of the kind, with tbe bappiest resulte. It keeps them from becoming musty and foul; and still more, by fill ing the pores and joints of the staver, it prevents the escape of the life of the liquor, carbonic acid gas. Water buckets, butter firkine, and other wooden articles of domestic use might be similarly treated; and as the material is cheap, eari y obtaintd, and earily applied, it can be tried on as large or mall a scale as one may feel dieposed.
Being indifferent to most cheaicals, paraffin serves the same purpose equally well in the labotatory of the cbemist and chemical manufacturer. In the manufactura of gun cotton, for example, wooden tantse lined with paraffin bave been used for holding the mixture of concrntrated sulphuric and nitric acids emplayed in that procese, the protertion of the wood be'ng complete and lasting. Woodın boxes, protected in the same way, have been fimilarly employed in tbe construction of voltaic batteries. As a ron conductor of electricity, parafin is further useful, aa an infulator, for which it is now extensively employrd in flectric telegrapby ; also in connection with batteries for medical use, fapecially as an acid-proof coa'ing to insulated conducting wires. In surgery, it bas beenfound an excellent material for covering or eplints in cases of fracture.
Those truu bled with loosely fitting plates of artificial teeth, wing to absorption of the gums, can earily remedy the de-
a lighted candle or otherwise, replacing the plate while the paraffin is yet warm. Being clean, tasteless, plastic at a low temperature, and unaffected by saliva, this substance will be found much superior to wax or any other material for the use, a few drops rightly placed making a perfect fit with a plate otherwise unwesrable.
In the laundry, parafinin rubbed on the hot flat iron imperta a beautiful gloss to starched goods, greatly lightens the la. bor of ironing, and leaves no greasy stain. For this use it is much superior to spermaceti. Friction matches are now prepared with paraffin in place of the sulphur formerly emploged : it burns without odor and goes out instantly, great ly reducing the dangers of accidental fires. Dissolved in naphtha, parafin has been applied with excellent effect to decaying brick and stone work, flling the pores of the brick or stone and putting a stop to the destructive action of the weather. Fine wood work exposed to the elements might be protected in the same way. Heated with sulphur to a moderately high temperature, paratio is decomposed, with the evolution of aburdance of sulphuretted bydrogen. A ateady and copious flow of this indispensable reagent in the laboratory is thus easily and cheaply obtained.

REFRIGERATING MIXTURES AND THEIR
 PHYSIOLOGICAL EFFECTS

All solid bodies when becoming liquid, all liquids when assuming a gaseous state, absorb heat. The chemical compounds known as refrigerating mixtures are based on one or the other of tbese changes of condition. The Carlé ice ma cline, it will be remembered, operates tbrough the liquefac tion of ammoniacal gas and the re:urn of the eame to a gaseous condition. At the moment of vaporization of the liquid, a lowering of temperature takes place, sufficient to
cause the formation of considerable quantities of ice. Hydrated sulphate of soda and hydrochloric acid, and ordinary ite and palt, are examples of sreezing mixtures, of which perhape a ecore mora could be cited, the effects of all of whict are well known to cbemists.
There is one of this class of compounds, which, although not a stranger to the chemlial laboratory, has recently been found to possess grater frigorific capabilities than any other mixture yet diecovertd. We allude to ica and sulphuric acid, into the properties of which M. Berthelot, of the French Academy of Sciences, has recently made some interesting investigations.

It is well known that, in winter, crystals of hydrated sul. phuric acid ($\mathrm{S}^{2} \mathrm{O}^{1}, \mathrm{H}^{2} \mathrm{O}+\mathrm{H}^{2} \mathrm{O}$) are easily obtained. These M Berthelot mingles with ice, and be calculates the resultant cooling, fitst, from the ice liquefied. and second by the acid aleo liquefying and the diepngag-ment of heat due to its mingling with the water. On using 1.7 ounces of acid and 4.5 ounces of water, the investipator calculates the fall in temp arature to be $125^{\prime} 6^{\prime}$ Fah. If the misture be made, not at the ordinary temperature, but at eay 68° Fah., the mercury should fall fully 140 , so that ai the end of the experiment the thermometer will mark $-112^{\circ} \mathrm{Fah}$. These are calculated results, but M. Berthe lot is of opinion that, according to his theory, he will be able to reach -148° Fah., and perhap aboolute zero, about - 516° Fah.
Subatances when brougbt to such extremely low temperatures act very energetically as a rule upon tbe body. So l lified carbonic acid at a temperature of $-111 \cdot 6^{\circ}$ produces serious burns when compressed between the fingers, is jur ing the skin in a manner similar to a red hot iron. Late
discovery has, however, found that this frigorific effect varies strangely with the nature of the cold object which i brought in contact with the exin or mucous membrane. Mel. sens, a well known Belgian chemist, has recently called the at tention of the Academy of Sciences of Belgium to the fact that brandy, frozen to a temperature of from 22° to 31° below zero Fah., by means of a mixture of ice and chloride of calcium, can be eaten wich. impunity and possesses a flavor superior to that of the liquor in its ordinary state. The temperature of any alcoholic beverage may thus be reduced without the material hurting the tongue. A wooden spoon must be used, as a metaj jne burns the mouth very quickly The investigator says that not until the liquor is cooled to $76{ }^{\circ}$ below zero is any sensation of cold ex rerienced ; and it has been eaten at - 95°, causing no more uneasiness to the eator
than a mouthful of rather hot soup. It is remarkable that brandy at 95° placed on the arm, makes only a slight irrita tion, while ether paste or solid carbonic acid burns briskly. The only explanation which seem 3 plausible regarding these exceptional conditions would appear to be that the alcohols, when thus rendered extremely cold, remain enveloped in a certain quantity of vapor which hinders their contact with the organs, in like manner as a layer of steam prevents the contact of a drop of water with a heated plate. M. Melsens if, we understand, prosecuting further investiga tions, the results of which will doubtless throw more ligh on the curious phenomena.

PROGRESS OF THE FIRELESS LOCOMOTIVE
On the New Orleans and Carrolton Railway, they employ the new fireless locomotives to draw the cars from Napoleo avenue to Carrolton. 3h miles. From Napoleon avenue to Canal street, in center of New Orleans, horses are still in use.
The company are njw running eighteen of the fireless lo The company are nうw running eighteen of the fireless lo
comotives, with much success and economy. General G. T. comotives, with much success and economy. General G. T
Beauregard is the president of the company. The fireless locomotive has been heretofore illustrated and described in the Scientific American, haring been used to some extent in this vicinity. It is now employed in Brooklyn, N. Y., on the East Now York \& Canarsie railway. It consists of a hot water tank, which is charged with very highly heated water at the starting station, and the steam which
rises from the water is used to drive the engine in the asual manner. No fire is required in connection with the locomo.
tivo, but it depends solely for its power on the supply of hot water with which it was originally charged. The object i to provide a substitute for horses in the propulsion of street cars, and to get tid of the gas and other objectionable features of the ordinary steam locomotives. The fireless loco motives of the Now Orleans and Carrolton Railway Company have each a pair of $4 \frac{1}{3}$ inch cylinders and 11 inch stroke fitted with link motions and slide throttles. Each machine bas one hot water tank 3 feet in diameter and 6 feet long steam dome 12 inches in diame ter and 18 inches high. The tanks are so thoroughly jacketed, with felting, asbestos com position, and wood, that they only lose 3 pounds of steam ressure per hour from radiation. A locnmotive charged with hot water at 6 A. M., and left standing until 9 P . M 15 hours, will then yield steam pressure sulficient to move alf a mile or more.
The water is supplied to the tanks of the locomotives from stationary boilers located at Carrolton, and each machin makes a round trip of seven miles upon one charge of hot water. One minute is required to charge each locomotive The water is supplied at a temperature of 375° Fah., which produces a steam pressure of about 175 pounds to the inch a starting, which becomes reduced, by the time the machine has run 7 miles, to from 40 to 50 pounds. The chargin soilers are arranged in t wo batteries of two bollers each, an these boilers are 26 feet long and 3 feet diameter, built of he best materials. Two boil re only are required for use a once. These fireless loconotives, as substitutes for horses,
are found to effect a saving of si a day for each street pas senger car. The new machines are easily worked, and giv much satisfaction. The engineer who works the locomo tive is also conductor of the car. He simply stands at one end of the car, with one hand on the throttle lever and the othe on the brake. The patent fare boxes are ueed to receive the fares. The frelesa locomotives draw their cars at the rat of 8 or 9 miles per hour.
NEW LAW CONCERNING COPYRIGHTS FOR LABELS.
Heretofore it has been the practice, under the copyrigh law, to grant certificates of copyrights to every applicant on furnishing a priated copy of the title of his book, work, or print of any sort ; and under this pracice it has become cus tomary for medicine dealers and others to file in the title of labels used upon bottles and otber articles of merchan dize. This has pioved to be a very convenient and economi cal method of obtaining a registration, though it was not considtred to be of much value. At its recent session Congress passed an amendment to the copyright law which changes the place of r -gistration for labels from the library Congrees to the Patent Office; and raises the official fee n label copyrights from one dollar up to six dollare. Tbe immediate effect of this increase of price will be to reduce the number of copyrights taken; while another feature o the bill, that which provides that the Commissioner of Pat ents shall only grant copyrights for labels that are not trade marks, will doubtless serve to introduce official red tapeism vexation and delay into the business of obtaining copyrights, from which it has heretofore been free.
This last provision of the bill appears to authorize the Commiseioner to refuse copyright for a label, provided tha officer takes a notion tbat such label is a trade mark. If held to be a trademark, the applicant must pay $\$ 25$ in order to apply for trademark registration; and the application for a trademark will be then officially examined, subject to th usual liabilities of rejection.
The examinations and opinions of the Patent Office in re spect to trademarks or copyrights are not what the peopl require. They want a simple, quick, and free method of obtaining registration for labels and patterns of every kind, with liberty to contest before the courts, in the usual man ner, all issues pertaining to infringements. This is aleo wha is necessary in respect to patents. When will our legislator learn that the true and proper way to encourage authors and inventors, thereby promoting the progrese of usefularts, to make the matter of registration simple and easy, instead of surrounding it with the perplexities and expenses of off cial inquisitions?
The new law goes into effect August 1st. Tbe following the text of the bill
a bill to amend the laf relating to patents. trad MARKS, AND COPYRIGHTS
Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, That no person shall maintain an action for the infringement of his
copyright, unless he shall give notice thereof by inserting in the several copies of every edition published, on the title page or page immediately following, it it be a book; or if a map, chart, musical composition, print, cut, engraving, pho tograph, painting, dra wiog, chromo, statue, statuary, or mod el or design intended to be perfected and completed as a work of fine arts, by inscribing upon some visible portion thereof or of the substance on which the same shall be mounted, the
following words, namely: "Entered according to the Act of following words, namely: "Entered according to the act of
Congress, in the ytar brarian of Congress, at W ashington;" or, at his option, the word "copgright," together with the year the copyright was
ontered, and thit name of the party by whom it wastaken out. thus, "coprright, 18 -, by A. B."
Sec. 2. Thai for recording and certifying any instrumen Congress shall receive from the pers ins to whom the service is rendered, one dollar; and for every copy of an assignment one dollar; said fee to cover in either case a certificate of the record, under seal of the Librarian of Congress; and al
fees to be received shall be paid into the Treasury of the iess to be rece
United States
Sec. 3. That in the construction of this act the words eng rav ing, cut, and print shall be applied only to pictorial illustra
tions or works connected with the fine arts ; and no prints o
labels designed to be used for any otherarticles of manufac
ture shall be entered under the copyright ture shall be entered under the copyright law, but may be
registered in the Patent Office; and the Commissiontr o registered in the Patent Office; and the Commissiontr of
Patents is hereby charged with the supervision and contro of the entry or registry of such prints or labels, in con fornity with the regulations provided by law as to copy right of prints, except that there shail be paid for recording which shall cover the oxpense of a turni minark six dellars which shall cover the expense of furni hint a copy of the
record, under the seal of the Commissinner of Patents, to the party entering the same.
Sec. 4. That all laws and parts of laws inconsistent wit the foregoing provisions be, and the same are hereby, re pealed.

SCIENTIFIC AND PRACTICAL INFORMATION.

EW meat preserving process.

M. Sacc bas obtained excellent results by using acetate of oda in powdered form. The meat is placed in a barrel and he acetate placed in, when it is left for forty eight hours Thus prepared, the meat, it is said, will keep for any length of time, and may be prepared for cooking by soaking for 12 ours in water, to every quart of whicha quarter of an ounc f sal ammoniac is added.
new relations of planetary orbits.
Professor Daniel Kirkwood announces the discovery of me remarkable relations of the asteroid orbits to those of he larger planets. Neartbe close of tbe last century, Lalace noticed a relation between the mean motions of Jupi or's first three satellites ; and from the results ob:ained by hat astronomer, it occurred to Professor Kirkwood that sim ilar relations might probably be found in the zone of minor planets interior to the great masses of Jupiter and Saturn The invertigation has led to interesting discoveriep, whic the author promises shall soon be published in full. As pecimens of the correlations detected, he states the follow ing:
1.

1. Five tlmes the mean motion of Concordia minus nine teen times that of Jupiter, plus fourteen times that of Saturn, equals zero. 2. Five times the mean longitude of Concordia minus nineteen times that of Jupiter, plus fourteen imes that of Saturn, is equal to a semi circumference, or no hundred and eighty degrees.
These discoveries, while tending to tbrow light upon the ganesis of the solar system, may, according to Professor Kirkwood, be explained by the nebular hypothesie of Laplace or equally well by the accrettion theory advocated by Proctor, so that they do not tend to confirm the comparative trath of either supposition.
curious experinient in electro capillahity.
M. Bécquerel notes another interesting experiment in elec ro-capillarity. A tube of glass is closed at one of its extremities by a membrane of collodion. With the tube is
placed some sulphate of copper, and it is plunged in monoplaced some sulphate of copper, and it is plunged in mono-
sulpbide of sodium. Crystallized copper is deposited with. in the tube, and sulphide of copper outside. Erentually the nembrane becomes dissolved and dipappears, but without interruption to the phenomena of deposit. The crystaline crust takes the place of the collodion without interrupting the functions. It becomes constantly thicker, metallic copper continuing to form on one side, and the sulpbide on the other. It is suggested that this experiment may be of im. portance from a geological or mineralogical point of view.

> REFLECTING POWER OF FLAME.

Recent experiments by M. Sorel prove that carbon retains its reflecting capacity even at the highest temperatures. A sunbeam becomes reflected by diffusion and is polarized in exactly the same manner, whether it falls upon a brilliant lame or upjn smoke.
A gimple method of removing the teeth of children. The operation consists in simply slipping a rubber ring over hetooth and forcing it gently under the edge of the gum. The patient is then dismised and told not to remove the appendage, which in a few days loosens the tooth and causes it to fall out. Grown children, who shrink from the shock and pain of the dental nippera, may also have their teeth removed by means of the rubber, which is a mild form of treatment.
adulteration in india rubber.
The Bulletin Thérapeutique says that, in order to uee old and worn out pieces of india rubber scraps left from factoies, manufacturers having easy conecifnces wash the material first in a solntion of hen, when dry, pulverize be beated to a certain degree, forms a homogeneous mass, in beated to a certain degree, forms a homogeneous mass, in
which the fraud cannot be detected. The mixture is, how. ver, weak in tenacity and elasticity, and is unfit for surgi. cal use, while dangerous for belting or other industrial employments.

strength of glabs tubes.

M. Cailletet bas found that a tube of thin glass, $20 \frac{1}{2}$ inches in length and $\frac{8}{4}$ of an inch in diameter, was cruehed by an exterior pressure of 1,155 lbs. to the square inch, while sim. lar tubes were burst by an interior pressure one half less, In making use of very thick glass, capable of resisting a pressure of four or five hundred atmospheres, he found the glass to sustain no permanent change of form. Upon this act, he proposes the construction of a very sensitive and very simple manometer.

THE roadway of the great ateel bridgeover the Missiesippi is finished and a train has passed overit. The
ing of the structure will take place on July 4.

