Sticutitic gmmitian.
MUNN \& CO., Editors and Proprietors. poblished meerly at
NO. 37 PARK ROW, NEW YORK.

GOVERNMENT AID TO SCIENTIFIC INVESTIGATION.
Those who had the good fortune t, bea: the closing lec ture of the saries delivered by Professor Tyudall in this country will not soon forget the eloquat tribute be paid to scientidicinvestigators, intent on the discovery of truth regarilepa of its beariog on practical ends, or the earnestnees with which he insisted on the public duty of supplying them witb $m \cdot a n s$ for their work.
The appeal was as plausible as eloquent. At first sight nothing would seem more r asonable twan that the public at large, whose iudebtedrers to Sceoce is so great, should do something towards supporting those wbo carry on the work; or that any mears which should honorably relieve original a vestigators of the daily dirudgery of parning a living, and at the same time supply them with the fullest apparatus for their researches, would immensely increase their productions.
But when we remember that in every age there bave been plenty of acientific men who have had at command all that mon+y or position could give, yet have remained comparatively barren, while the great discoveries, more espe cially the original viaws opening up nex lines of thought and giring new directions to human industry, have ueually come fiom seemingly less favored workers, we cannot escape the surpicion that original thinking is quite as likely to be hindertd as helped by easy cirsumstances. Besides.the best work in Science has rarely been done by men eit ont or very closely allied with the ruling clique of their day freedom from class projudics being an essential condition of independent thinking
Nodoubta good deal of honest work migbt be furthered by aiding the rigbt men at the right time: but euch men are rarely the ones that would be reacbed by public enactment even if it were possible for them to maintain intellectual in dependence in concection with pereonal dependence. Radi cally new trathe are inevitgbly unpopular, and none bu popular men would derive much assistance from the public funds. The endowment of Ncience would the refore act very much as the endowment of religion has always done, by creating a class of nominal " leaders" whose instincts would be opooeed to progress. Having risen to place and powe by the adrocacy of certain views, how could they give thei countenance to men laboring so overt brow such views?
Run over the list of names-from Copernicus to Darw:nof those whose influence has been greatest on the progress of human thougbt. How long would their owness have been allowed to continue their work at public cost, in the face of popular clamor against their heresies? Had Profes eor Tyndall's plan been adopted a few hundred years ago, the wor'd would etill be flat, the center of the Universe, and only fix thourand yeara old.
In applied Sciente, the case is equally ptrong. How long would Fulton have been allowed to squander public money n his "crszy" attempt to propel shipping againet wind and ith "boiled water"? Or Seeph-neon, in the equally wild project of drawing wagons acrofa the land at the ex.
| travagant rate of twelve miles an hour? What administra tion could sustain the sarcasm of the opposition party after supplying Draper with money to wate in foolish experi ments for painting with snnshine, or Morse with means to develop his in pious scheme of annihilating time and spac, What commit iee of wise men, having to render an account of their expenditures, would have dared to aid the experimente of Goo year in rubber, Young's attempt to make candle out of shale, Bessemer's scheme for making steel direct from tbe ore, or any one, in short, of the great achievements whicb, until the events proved tbeir practicability, were accounted visionary, if not imporsible, by practical men?
There is anotber fullacy underlying Profecsor Tyndall's proposal-one that he has strikingly exemplified in his own person quite recently-and tbat is the assumption that abundant and complicated apparatus is required for, or a least helpful in, the work of diacovery. In some cases i may be; but ordinarily it is quite as apt to absorb the ex-
perimenter's attention so tbat he mirses the point of the perimenter's attention so that he mieses the point of the
phenomena entirely. Tha's was a brave array of steamers, fog whistles, artillery and the like, which Profassor Tyndal took down to the coast to study the effects of different at mospberes on the tranemiseion of sounds; but he had scarce ly published the results of his ccstly observations when Profeseor Reynolds made known a few experiments with a hadd bell which upset entirely the conclusions the govern ment-aided observer bad eo jubilantly arrived at.
As a rule, the greatest diecoveries are made with the sim plest apparatus, the keye which have unlocked the grander mysteries of the Universe being mental rather than material or, if material, have proved effective through eimplicity and ekillful bandling rather than becauee of their complexity.

FOUR FOOTED MOTION

The present exhibition of paintings of tbe Royal Academy in Englaod contains a picture, by Mies Thompaon, entitled "TLe Roll Call," which depic's a muster of soldiers on the day after a battle.
From the drawing of a horee in the pain'ing, a very inter esting diecussion has arisen, extending even to eminent na. turalists, regarding the motion of four footed animals whil walking. The Lorse, in the picture, is represanted wolk ivg, and has its loft forelegraised, bent, and nearly extendtd its right forel-g on the ground and perpendicular to the ite rig't hiudleg on the ground and well bact. With Profesenr Garrod's able elucidation of the aubject, purbiehed in extenso in Nature, as a guice, the problem quickly lose its perplexing fiatures.
Lat two men be supposed to place themsel jes so that the hinder one hay his hands on the shoulders of the man in font,and that both walk in step-S are's prison gait. Reverting this to the horse, we bave the amble, a mode of progression natural t, the giraffe, but coly acquired by apecial train. icg in the Lorse. Again, suppose the two men to put the ppositu feet forward aimultaneously, in otber worde, to walk out of step. This will exemplify the trot. Suppose, how diagonally opposita feet beiog set down at the same moment, imagine the first man to begin bis step a little in advance, so that, by tbe time the forward man has got his right leg entirely raised, the rear man bas just begun to lift his, al tbough they kesp the came number of steps. Then the se quence of steps would not be right front and left hind, left front and rigbt lind, coupled; but right front, left hind, left front, right hind, separate and distinct. Professor Ga
has a rimple and graphic way of expressing this, thus:

A

The dark daehes mean the times of contact of the right foot, the dotted lines eame of the left foot. The two upper horizontal rows refer to the fore legs; the lower, to the hind. The dotted lines, beginning exactly where the continuous ones end-considered horizontally-indicate that one foot is lifted exactly when the other is put down.
From this it will be scen that, in walking, the horse never has more than two legs on the ground at a time. Draw a vertical line through any portion of the diagram, as at A, and it will be clear that only two of the horizontal foot lines are cut. The same line shows the picture referred to in the beginning to be correct, with the exception of one elight error. Following line A down, we find the frat dotted line at the top, meaning the left fore foot, not cut; hence it is off the ground. The next line is divided equartly in the middle, and hence the right fore foot must be firmly planted. Tbe otted line below is just met at its beginning, consequently the left hind foot is about to commence its step; and the
nextline being at its rear endindi cates that the right foot has just finisbed, and is being removed from the ground. If tbe reader will compare this with the foregoing description of he painting referred to, he will find that the correspon. dence is complete, excspting as regards the right hind foot, which, instead of being on the ground as represented, abou!d, according to our diagram, be just leaving it. This also would be in accordance with the rule that no more tban two lege can be down at a time, al.d thus the mistake which the ar ist makes in fixing tbre would be avoided.
We would commend the diagram herewith presented as a very simple guide for artists and draftemen generally, as, by
following its indication, they can hardly fail to depict the orse correctly. A general idea of the position of the anima being first settled upon, it is only neceseary to draw perpen dicular lines at various pointe, and try the resulte until a suitable pose is nbtainfd. The figure very clearly solves a question over which many heads, wise and unwise, have often puzzled.

THE RAILWAYS OF THE UNITED STATES

The seventh annual "Manual of Railways of the United Stater," by Hency V. Poor, 68 Broadway, New York, ba just been publisbed. It is a work of over eight hundred pages, and contains a large amount of carefully prepared in formation, including official particulars of all railways in op eration, their extent, cost, capital, earninge, dividends, in debtedness, names of officers, directors, etc. The tabulated general statements concerning the American railway system fford valuable and instructive information
The inauguration of railways in this courtry may be paid o date from the year 1830, when railways were in operation to the extent of 23 miles. At the close of 1873 there were severty thousand, six hundred and fifty one miles of railwa in operation. This great increase, during the brief time o forty three years, is sometbing marvelous to contemplate The grand average cost is put down by Mr. Poor at $\$ 60,000$ per mile, or upwards of four thoueand millions of dollars in the aggregate. The total earninge were over $\$ 5!6,000,000$ and the operating exp: nees 65 per cont tbereof, or $\$ 343,600$ 000, leaving as ntt earnings the fum of $\$ 183.810,000$, out of which interest on bonde and stock dividende were paid. The average of the latter were $345 \mathrm{p} \cdot \mathrm{r}$ cent $n \mathrm{n}$ the capital stock the aggregate of which is one thousand nine hundred mil lions of dollars.
During the year 1873 the increase in railway construction was 3,916 milep, againet 6,167 miles f r $^{r} 1872$. Tbe $+x$ pendi ture for construction in 1873 is less by 50 per cont than in 1872. This eudden great contraction in paymente, a mount ing to more than $\$ 120,000,000$, was dieastrous in its effect upon the various branches of industry connected with rail way buildidg. But as aoon as Congreas ahall fix upon rome decisive pettlfm+nt of the national finnnces, whereby lower rate of iltereat for the Amrrican iudebredoess can be established, then ra'lway bonde willimprove in value, and a more extensive conutruction way be txper, d. As compared with Europe, the U, ited States are considerably in advance in tbe mattre of railway milerpe
Tbe aggregate of railways in 1873 in tbe various countries of Eurnpe was as followa: Germany, 12207 milen; Austria 5.865; Franca, 10333 ; Russia, 7.044; Great Britain, 15,814 Belgium, 1,201; Netberlands, 886 ; S witzerland. 820; Italy, 3,667: Denmark, 420; Spaid, 3401 ; Partugal, 453; Sweden and Norway, 1,049; Greeie, 100

United S'ates.
$\begin{array}{rr}\mathbf{6 3 , 3 6 0} & 282,456,742 \\ 70,650 & 40,232,000\end{array}$

SOME OF THE USES OF PAPAFFIN.

In addition to the properties which bave brought it intn such extensive uee for illuminating purpores, paraffin bas qualities which give it an excerdingly wide range of useful applications. White, clean, iucnrruptible, odorlees, tastelesp plastic, water repellent, a non-conductor of electricity, and but slightly affected by most chemical agents: it needs only to be better known to become the most variously useful o the hydrocarbons.
For waterproofing fabrics for wearing apparel, military equipment, and the like, it is mucb better than rubber, sinc it is odorless and does not become sticky with heat. Among the most gratefully acknowledged of the many gifte aent out to Livingstone in the wilds of Africa, were boots and blankets thus prepared, tbe one pabling him to travel through mud, the other to sleep in it with comparative comfort. For the waterproofing of tent cloths, ground sbeets for soldiers, and other articles of the sort, it has been found equally ser viceable.
A more generally useful application of paraffin is for the lining of casks and other wooden vesstle, to ktep them sweet and to prevent either the absorption of their content by the wood or their eacape through the pores. Already it has been largely applied to beer barrele, wine casks, and other vessels of the kind, with tbe bappiest results. It keeps them from becoming muaty and foul; and still more, by fill ing the pores and joints of the staver, it prevents the escape of the life of the liquor, carbonic acid gas. Water buckets, butter firkinp, and other wooden articles of domes'ic use might be similarly treated; and as the material is cheap, eapi I obtaint d, and earily applied, it can be tried on as large or small a scale as one may feel dieposed.
Being indifferent to most chenicals, paraffin serves the same purpose equally well in the labotatory of the cbemist and chemical manufacturer. In the manufactura of gun cotton, for example, wooden tants lined with parafin bave been used for holding the mixture of concrntrated sulphuric and nitric acids emplayed in that procesp, the protection of the wood being complete and laeting. Woodin boxes, pro tected in the same way, have been fimilarly employed in tbe construction of voltaic batteries. As a ron conductor of electricity, parafin is further useful, as an insulator, for which it is now extensi vely employr d in flectric telegraphy; also in connection with batteries for medical use, fapecially as an acid-proof coa'ing to insulated conducting wires. In surgery, it bas beenfound an excellent material for covering for eplints in cases of fracture.
Those truu bled with loosely fitting plates of artificial teeth, wing to absorption of the gums, can eapily remedy the de-

