THE SOUTHPORT AQUARIUM AND WINTER GARDEN. ${ }^{\prime}$ SULPHUR IN SICILY, AND ITS REDUCTION FROM THE A few miles to the sorth of Liverpool, on the Lancashire coast, England, is a newly grown watering place, Southport. Its beauty and salubrity have gained it renown among the inhabitants of the scores of manufacturing towns in its immediate neighborhood; and it has become a very popular resort, being within a short railway journey of the homes of many millions of people. The Southport folks have recently embellished their town with a building comprising an aquarium, a winter garden, a muaic hall, and a large covered promenade. The conservatory or winter garden, shown in our Fig. 1, is a large and graceful structure of iron and glass, and containa not only a fine collection of rare tropical and ther plants but also birds and animals making a nucleus for an extended zöological exhibition. This for an extended zoological exhibition. This
has been wisely entrusted to the care of Mr Frank Buckland, the friend of all living creatures and the editor of Land and Water.
The aquarium, Fig. 2, is excellently ar ranged, being mainly lighted through the tanks containing the specimens, so that they may be seen to advantage. It is a solid and imposing structure. The exterior of the building, with the entrance gates and a por tion of the grounds, are shown in Fig. 3.

The edifice," says Mr. Buckland, "must be inspected to obtain an idea of its beauty. In general outline it reminds us of the Crys tal Palace. One side only of this crystal palace is at present in existence, but there is ample space (now occupied by houses) to complete the other wing.
Adjoining the dome is a promenade, which at the night of opening was so full that it was almost impossible to move about. On the walls of this were exhibited some of Mr. Rolfe's fish pictures. Here also was exhibited a salmon caught by the rod in the Ness, 32 pounds in weight. I cast him. Mr. Rolfe painted him in his best style, and we conjointly had the pleasure of presenting him to the aquarium. He is represented as lying in a basket on straw, and the deception, to those who had never seen Mr. Rolfe's works before, was very satisfactory, the difficulty being to prevent people from tapping the fish to see if it was real. A glass case is being prepared for its reception.
The aquarium cannot be seen from above ground. The space underneath the winter garden is entirely occupied by an immense tank for sea water; it communicates with two other tanks which are used as occasion requires.
The sea water is supplied from the pub lic baths, whence it is conveyed by means of a pipe; abundance of water is available from this source. The aquarium itself is partly under the promenade and partly under the winter gardens. Under the promenade are twenty-two tanks, the light being let in from the top by day, and illuminated by gas at night.
The fish in the various tanks are as follows: Congers, ling and codling, mullets, father lashers, sea trout, wrasse, anemones and whiting, dog fish, gurnards, crayfish and crabs, whiting, rays and soldier crabs, soles, turbots and flukes, monkfish, topers, lobsters, king crabs, octopus, Maia squina. do and edible crabs, stickle backs and anemones, bass or seaperch, cod, salmon, great lake trout, and gold schlei or golden tench, and large dog fish.

SOUTHPORT, ENGLAND.-Fig. 1.-THE CONSERVATORY.
wood. The thickness of the sulphur deposit, in its frequestly recurring changes, often remains very constant, and indi cates an equally regular change in the conditions under which it was deposited; it almost reminds a person of the changing seasons. The fishes found in the sulphur mar enable us to recognize the sulphurous strata as formed by fresh water.
Parodi states that the average percentage of sulphur in the sulphur rock of Sicily is 12.5 per cent. When it contains less than 6 per cent of sulphur, it doas not pay for mining and smelting. In 1871, Sicily produced 150,000 tuns of sulphur, probably nine tenths of that produced in the whole world. This production is continually increasing. That this natural wealth does not prove a greater blessing to the country and its prosperity is principally due to the circumstance that in Sicily the proper ty on the surface cannot be released from that of subterranean treasure, and this circumstance results in a number of other evils, which do not permit mining to emerge from its great and almost inconceivable imperfection.
The namber of sulphur mines in Sicily is upwards of 600 , not more than half of which are worked at present; and of these, only about 50 are of considerable importance.
In looking for the sulpbur deposits, a soft kind of gypsum, formed by the decomposition of the sulphur bearing lime or calcareous marl, plays an important part. In geveral the sulphur is combined with gypsum, and the presence of the latter renders it probable that the former is near. To reach the depos its, inclined shafts are dug, having an incli nation of 25° to 50°, seldom steeper, and more seldom horizontal. Neither horizontal galleries nor vertical shafts are employed, since the former would not reach the sulphur soon enough, and the latter would require the use of some sort of machinery; and wood is lacking for this purpose, as also for timbering and frame work. Steps are cut into the inclined plane, and when it is not steeper than 45° the steps reach all the way across; but when steeper, two steps are cut side by side, alter nating with each other. The young laborers climb up and down these high, narrow, and slippery steps, panting, groaning, and sweat ing-carrying on their heads and backs heavy bags filled with sulphur ore. They make from 16 to 18 ascents and descents daily, to and from a depth of over 200 feet
By this pitiable method, at least a million tuns of sulphur ore are annually brought up into the light of day by boys and youths. Nay, too, the little drippings of water are colected in stone jugs, and brought up in the same laborious manner. The mine is almos always abandoned when it reaches the water culiar porous limestone in crags and ridges. On the top of the level. The temperature in these is vory high, 111° Fah latter is a foraminiferous marl of marine origin, after which renheit, and, owing to the moisture in the air, it is al follows a stratum of tripoli, upon which is a stratum of cal. most unendurable. The diggers (picconieri), owing to the careous marl, which is in some places more argillaceous, in heat, work naked, or only wearing a small apron. The sul others more calcareous. This is the stratum which contains the sulphur. The sulphur formation is generally covered over with immense masses of gypsum, on which again is a foraminiferous marl. Then follows the pliocene formation, blue clay, and yellow breccia.
It is probable that the quite extensive deposits of salt, found in widely distant portions of Sicily, were formed a the same time as the deposits of sulphur. The rock
phur rock is so soft that it is cut out with a large instrumen like an ax. The roof of the mine is supported by pillars, so that a considerable portion of the ore is left standing, to se cure the structure. In order to obtain the mass of the pil lars, they are weakened more and more, until, at an unex pected moment, the roof falls. The fallen and broken mass is left for a time, until it adheres together: shafts and pal leries are then dug through it to get at the pillars. Wha

Fig. 2.-THE AQUARIUM.

Fig. 3.-EXTERIOR OF THE BUILDING.
There are also some very handsome table tanks and pine sticklebacks, prawns, and Norway lobsters. Orders and regulations have been laid down by the board as to feeding the fish, cleaning the tanks, etc. There is a seal tank, and some fine specimens of the sea trout

An Illinois editor returns thanks for a centipede sent to him by mail from Texas, 'it being," he saye, 'the first cent of any kind that we've received for several weeks."
deposits of sulphur are not usually of great extent and do not seem to be in immediate communication. The sulphur impregnates the strata of clay and limestone, ap. pearing either in irregular threads and veins, or in layers three to six feet thick, alternating with the llayers of rock, or in round concretions from 0.4 to 0.8 of an inch in diameter. Barytes and imperfect crystals of calxepar accompany the sulphur, and, more rarely, bsautiful crystals of colestine. Sometimes the sulphur strata, enclose whole stems of fossil
the sulphur-bearing strata lie one above another, there isa double set of pillars. Through errors in the ground plan and ignorance of mining surveying, it generally happens hat the pillars in the upper gallery do not agree with those in the gallery below. As the stone is oflen soft and brittle, it is no wonder that they frequently break through.
The condition of the sulphur miners is extremely deplorable. The manner of living in populous spots miles distant from each other, instead of in villages, is peculiar to that country, and the majority of the mines are far distant from,
human dwellings．Neithermanager nor contractor consider t a duty or necessity to erect a roof to protect their work men，so that they sleep in the open air in pleasant seasons， exposed to the damp dew；while in winter they sleep in the foul atmosphere in the mine itself，exposed to the danger of being buried alive．In cases of sickness，the unfortunates have no assistance，and the families of those who die，or are killed，are exposed to the greatest misery．As regards edu－ cation and moral instruction，the working classes are entirely neglected；there are no schools，savings banks，or associa tions for mutual aid．The consequence is that the society which grows up about the sulphur mines is in every respect an abandoned class，ripe fur crime．The mines are a refuge or evil doers from the whole island．
The sulphur is prepared throughout Sicily by melting the stone in calcaroni，where the combustion of a portion of the sulphur furnishes the necessary heat to fuse the remainder． The liquid sulphur drips down to the bottom，and flows out into molds intended for its reception．In building a calca－ rone，a spot is selected at the side of a hill，and a cylindrical furnace built，from 20 to 40 feet in diameter，and a few yards in hight．The walls are supported in the rear by he earth，and in front project in a semi－circular form．The hearth of the furnace has a double inclination，from the hill toward the front and from the sides toward the middle，so that the liquid sulphur collects in one place，and tbrough a perforation in the inner wall it reaches the outlet．The bot－ tom is pounded down hard like a threshing floor．The inte－ rior is filled with sulphur ore，the larger pieces being thrown in just as they are，and the smaller ones are formed into cakes，so that the melted sulphur will flow down through it more readily．When the cylinder has been filled，the pieces of sulphur ore are heaped up in a cone above the mason
work，and covered with the burned pieces from a previous work，and
A calcarone will hold from 175 to 1,750 tuns．In charging the furnace，several vertical flues are left open，which serve in part for kindling the fire，and in part to keep up the com． bustion at the beginning of the operation．The pile is ig． nited by throwing burning wood or bundles of straw down these openings．When the whole mass gets to burning，all the openings are closed；and the operation，which lasts from two to four weeks，according to size，is àttentively watched， and the combustion controlled by the cover on the heap． The temperature is kept at a proper hight，above 240° Fah．， since sulphur melts at 240° ，and remains a thin fluid up to a temperature of 320° ．The melted sulphur is drawn off through a hole a foot wide and two feet high，in the front of the furnace，which is previously stopped with clay．The sulphur is run into wooden molds，the bottom and sides of which are moistened so that the sulphur cake will not adhere so tightly．
This method of obtaining sulphur is attended with a grea deal of loss；experience shows that the highest yield of a calcarone is $\% 0$ per cent，although it does not usually exceed 50 per cent of the total awount of sulphur．The crude sul－ phur is worth from $\$ 180$ to $\$ 2$ per 225 lbs．，so that the fuel consumed is worth at least twice as much as English coa would cost in Italy．
In producing sulphur in Sicily，only those resources to be found on the spot are made use of ：no wood for framing，no machinery for raising the ore and water，no coal for smelt－ ing．Any one who would attempt to introduce any improve－ ent in mining or reducing the sulphur would encounter great difficulty，arising rhiefly from relations of proprietor ship，and in the social status of the country．Legislation is he only help．Notwithstanding the immense store of natu－ ral sulphur on the island，it will be seriously impaired，by the progress in other countries which now make oil of vit riol from pyrites，unless some change is effected in the stat of affairs．

THE FAIR OF THE AMERICAN INSTITUTE．

The American Institute Fair is proving remarkably suc essful，if we may judge from the large crowds which con－ tantly throng the building．The display is unquestionably the best that has been made for many years；and since it in cludes a number of industrial processes carried on in pre－ sence of the visitors，itcalls forth a much morelively interest than it wouid were it restricted to mere exhibition of com－ pleted products．At one portion of the hall，ivory turners are at work，making biliard balls and carving ornaments ；at an－ other a newspaperoffice is shown in full operation，from the ditor vainly endeavoring to seize vagrant ideas－a dificult ask，and one we should unhesitatingly decline under the he circumstances，for we doubt if we could work with bevy of bright eyed damsels staring at us－to the finished sheets deftly piled by the swift－running press．There are tailors cutting out garments by machinery，brush makers manufacturing brushes of all kinds，scroll saws cutting out wooden ornaments and trinkets，engravers making illustra－ tions similar to those in our pages，confectioners cooking candy，and even an old gentleman who cuts your profile likeness in black paper，and does it admirably too，in half a minute，for a small consideration．Up in the Art Depart－ ment arelargevolumes，each leaf of which shows an appli－ cation of one the numerous．tints imprinted on a well known chromo．By studying the pages the visitor can learn in a very short time just how the very handsome works of art which Mr．Prang exhibits are made，and how laborious the task must be．
Thereare a number of interesting shoemaking and leather－ working machinss in the main hall，and a superb display of leather．Hides tanned by the best American processes are brought in direct competition with those imported from Europe，and the special medals which are offered for excel
lence have tended to highten popular interest in the exhibi tion，apart from that excited by its partaking of the natur of an international contest．A new object of curiosity has been recently added in the shape of the winning boat of the Columbia crew at the Saratoga Regatta，last summer．It lays across the hall，gaily decorated with blue and white ribbons．The youngsters seem to be especially pleased with a variety of miniature steam machinery exhibited in opera tion．There is a steam fire engine which throws a needle－ like stream for several yards，steam propellers which travel quite rapidly about a tank of water，and a small machine shop，including lathes，saws，etc．，the tools all run by a tiny boiler．Mr．Hawkins，the Superintendent of Machinery，also aims at popularity among the children，for he has lately de－ voted his ingenious button mold machine to the manufac ture of some queer games，which are very interesting，and beside has produced skipping ropes of a remarkable and hitherto unknown pattern．

The Fair as a whole is admirable，and the exhibitors have fairly outdone themselves in the elaborate and tasteful plans adopted in showing their contributions．The management is open to improvement，particularly with reference to al lowing the woodworking people to howl their wares like country showmen，to the individual with the perfumery who squirts cold spray into peoples＇ears or eyes，and in regard to that ugly＇drapery on the roof ；and there are ridiculous adver tisements which talk about＂enormoas fish＂in that littl fountain；but generally，however，we find a great deal to praise and verylittle to condemn．
A recent stroll through the Machinery Department ha filled our note book with descriptions of a score or mor novelties，some of which below described will doubtless prove interesting．
the machine tools
of the New York Steam Engine Company are well worth critical examination．Many of them are in actual operation thus affording excellent opportunities for the mecbanic to watch their practical employment．There is a chucking and urning lathe，by which a hole can be bored or chucked 20 inches in diameter；and by means of a new slide turning rest，a pulley can be turned，baving a diameter of from 8 to 30 inches．This machine has a gap bed．In the upright drills there is a steel drilling spindle attached to a gibbed head which moves up and down with the spindle，giving the latter a very long bearing at every point．A number of ma－ cbines which have been illustrated in our volumes are ex hibited，notably a hand crank drill，a slotting machine，and gear－molding machine．The shapers have their cutting bars placed on edge in adjustable guides．The vibration or spring of the tool is prevented by placing the widest seciion of the bars directly opposite the cut．The box－boring ma－ chine is arranged so that either of two bars may be used in－ dependently．A side rest is provided for each bar，and four boxes in each rest may be simultaneously operated upon． The 9 inch bending rolls exhibited are so constructed as to be kept in constant contact with the plate，and their spring． ing at the centers is prevented．There are a number of other machines of which our limited space necessitates omitting mention．

THE BOILERS

employed to supply steam to the main engines，are of the Howard eafety type．Five tiers of tubes which incline up ward to the rear are connected to vertical sections by boring smallitholes in the extremities of the tubes and allowing the cast metal of the sections to flow in，forming a perfectly solid joint．The parts of the vertical sections are bound together by stay rods passing through and set up with brass nuts； and the caps opposite the parts where the tubes enter are similarly attached by rods passing length wise through the tubes．Above the second tier is a fire brick diaphragm，in rear of wbich the heat passes and then encounters anotber diaphragm，above the third tier．The products of combus－ tion are then conducted to the front of the boiler，whenc they return to the uptake．The three lower tiers of tubes are for water and the upper rones for steam，the latter through the disposition of the heat，becoming highly heated． There are three

CURIOSITIES IN THE MACHINE DEPARTMENT．
The first is a large tank provided with windows and filled with water．In this the Myers rotary engine is soon to ro tate a good sized propeller，and brilliant lights are to be placed so as to shine down and through the water．This is an ingenious way of loading the engineand，besides，showing its adaptability to marine purposes．The tank，however lookssomewhat fragile；extra riveting might improve it． Another application of the diamond to industrial use ound in the second of our trio of curiosities．It is

THE DIAMOND BAND SAW．

There is little in the construction of this machine，sav perhaps its extra heaviness，differing from that of the ordi nary woodworking tool．The blade，however，instead of being a single strip of metal，is a band covered with small straps of steel，the latter strung on the former，like beads In certain straps the diamonds－borts or carbons－are se－ cured so that three straps containing diamonds may come together，and then an interval to the next set occurs of som eightinches．There are of course other ways of arranging the diamonds，which need not here be described．The ma chine cuts a curve or scroll in stone as easily as the ordinary band saw goes through wood．A certificate published by the inventor，Mr．Herbert Cottrell，of Newark，N．J．，sxys that the blade cut through Newark brown stone，measuring 3 feet $2 \frac{1}{2}$ inches one way and 3 feet 3 inches the other，mak ing a superficial surface of $1,501 \frac{1}{2}$ squareinches，in 22 minutes

THE ICE CREAM MACHINE

of Messrs．Dixon and Tonstill is the last odd invention of the three．The prepared materials are dropped into a can arranged above like the oil reservoir of a bolt cutter．They flow through a tube into a horizontal cylinder which is placed in a tub and covered with ice and salt．Inside the cylinder is a helicodal knife，which scrapes the edges and also forces out the frozen material through one end．Both cylinder and knife are rotated by simple gearing．It is quite curious to watch the materialsenter one part of the machine and quickly emerge in a frozen condition from another，in he shape of excellent ice cream．

There are two

pipe cutting and threading machines

which deserve notice．One is that of the Chase Manufac turing Company，illustrated on page 131 of our last volume In this the pipe is held stationary in the vise，and passes through the center of a gear，the rotary motion of which is mparted to the die in the die box by means of guides，upon which the die box freely slides forward as the die passes upon the pipe．When cutting pipe，the tool post，with the utter，has an automatic feed．
The manufacturers of the other machine are N．W．Frost \＆Co．，of Cohoes N．Y．Theapparatus is in three pieces， readily taken apart and put together．One portion forms anexcellent vise；another is inserted above and carries the handle and a pinion；and the third is the gear wheel，in which the pinion engages，and which turns the dies and operates the feed．The machine does excellent and rapid work，and is very simpleand strong in construction．
the maxim automatic pumping engine
is a novelty recently added．It consists of a little steam boiler heated by gas，which warms and regulates its own feed and controls the fire．It runs a little pump，placed above，which is said to be capable of forcing from ten to twelvebarrels per hour to a distance of one hundred feet，at a cost not over 6 cents．

New Camera Lucida for Drawing

It is known that the construction of the camera lucida is founded upon the simultaneous perception of two images－ that of the object and that of the pencil．Various means hav been employed to arrive at this result．In that of Sömmering itis a metallic mirrorsmaller than the pupil ；that of Amici constructed on the principle of reflection on a plate with para lel faces；that of Wollaston，at present most in use，consist in a prism，of whick the edge，dividing the pupil in two parts，permits the object to be seen by the upper half，and simuiltaneously the pencil by the lower portion．In all these systems the fusion of the images is somewhat difficult to seize，especially for certain points of the reflected ionage Govi，Professor of Physics at the Royal University at Rome proposes to cover with a thin layer of gold the reflectiog surface of a prism，and to apply upon this，with Canada bal sam，a second prism with like angles．Although this laye of gold is sufficiently transparent to allow the luminous ray to pass，its power of reflection is considerable，a od it gives images of great brightness．We have thus a perfect mean of superimposing，without fatigue to the eye，two differen images－the one direct，and the other reflected．The princi ple is the a pplication of that property of thin plates－metal lic or otherwise－to transmit simultaneoully direct raye and to reflect rays which arrive obliquely from anothe source．

Dr．Robertson，of Georgetown，Mass．，thinks that the popular idea that hot or cold drinks are apt to crack the namel of the teeth is incorrect．He has ascertained by ex periment that it requires a change of temperature of 160 Fah．to crack the enamel of an ordinary tooth．The teeth re never subjected to such a great change as this in the use of hot or cold liquids．

The first passenger train making the complete circuit of St．Louis lately passed over the bridge and tbrough the tun nel．The regular locomotive being exchanged for one of the smoke consuming engines used by the tunnel company the train passed as comfortably as though traveling in the pen air．
The Saw Contest at Cincinnati．－In our account of the aw premium contest at the Cincinnati Exposition，the 16 good boards， 10×20 ，sawn in t wo minutes and forty－fou seconds，sbould be described as 16×20 ，makinga still greater esult than we reported．

The Canadian way of measuring a tree is said to be a ertain as it is grotesque．You walk from the tree，looking at it from time totime between your knees．When you are able to see the top of a tree in this way，your distance from the root of the tree equals its hight．
A Lawyer＇s Advice to a Pupil．－＂When the facts are in your favor，but the law opposed to you，come out strong n the facts；but when the law is in your favor，and the fact opposed to you，come out strong on the law．＂＂But，＂inquired he student，＂when the law and the facts are both against me whatshallI do？＂＂Why，then，＂said the lawyer，＂talk around them．＂

Leather Pulp．－A process of pulping leather in engines， imilar to those used for beating rags in a paper mill，is now in use in Massach usetts．By rolling it into sheets under con siderable pressure，a product of great tenacity，bomogeneity and closeness of texture is obtained，which is，moreover，per

