ASTRONOMICAL NOTES.

Observatory of Vassar College.
For the computations of the following notes (which are approximate only) and for most of the observations, I am indebted to students.
M.M.

Positions of Planets for November, $18 \% 4$.
Mercury.
Mercury rises on the 1st of November at 8b. :17m. A. M., and sets at 5 h .39 m . P. M. On the 30 th , Mercury rises at 5 h . 23 m . A. M., and sets at 3 h .33 m . P. M. It cannot, therefore, be seen in the early part of the month, and in the latter part should be looked for in the morning

Venus.

Venusis at its greatest brilliancy on the 2d of November, when it comes to meridian or souths at about half past two in the afternoon. It rises on the 1st at 10 h .22 m . A. M., and sets at 6 h .36 m . P. M. On the 30 th , it rises at 8 h . 2 Jm . A. M., and sets at 5 h .7 m . P. M.

It should be observed in the early part of the month, and can be seen, a very conspicuous object, in the southwest. Mars.
Mars is not well situated for observation. It rises on the 1st at 3 h .11 m . A. M., and sets at 3 h .21 m . P. M., coming to the meridian in the daytime. On the 31st, Mars rises at 2 h .48 m . A. M., and sets at 2 h .6 m . P. M.

Jupiter.
Jupiter is not well situated for observation; and according to the Anierisan Nautical Almanac, its satellites cannot be seen before the 5 th of November. It rises on the 1st at 4 h . 46 m . A. M., and sets at 4 h .2 m . P. M. On the 30th, Jupiter rises at 3 h .21 m . A. M.. and sets at 2 h . 22 m . P. M.

Saturn.

Although Saturn is very far south in declination, it is well situated for observation, and will richly repay any one who looks atit, with the aid only of a small telescope. The ring is so situated that the base can be seen both above and below its plane, and on fine evenings the division of the ring can be traced. A telescope whose object glass is two or three inches in diameter will show the ring, and possibly the largest satellite, Titan. With a large telescope, the other satellites are seen as very minute points of light.
Saturn rises on the 1st at $1 \mathrm{~h} .10 \mathrm{~m} . \mathrm{P}$. M., and sets at 10 h . 46 m . P. M. On the 30 th , Saturn rises at 39 m . before noon, and sets at 9 o'clock P. M.

Uranus.

Uranus rises at 11 h .22 m . P. M., and sets at 1 h .28 m . P. M. of the next day. On the 30th, Uranus rises at 9 h . 28 m . P. M., and sets a little before noon the nextday. As it is in northern declination about 17°, it attains a good hight, and can be seen on the meridian in the early morning.

Neptune.

Neptune cannot be seen without a good telescope. On 1st, it rises at 4 h .32 m . P. M., and sets at 5 h .40 m . A.M. On the 30 hh , it rises at $2 \mathrm{~h} .36 \mathrm{~m} . \mathrm{P}$. M., and sets at 3 b .42 m . next morning.

Sun Spots.

The record is from October 2 to October 19 inclusive ; but owing to cloudy days, photographs have been taken only on the 2d, 3d, 5th, 9 th, 12lb, 16th, 17th, and 19th. On the 2 d a group of spots, comprising three of good size and several smaller, was seen within the eastern limb and below the center. Pictures of the 3d and 5th showed the same group moving across the disk with the revolution of the sun on its axis. On the 9 th, the same group appeared just within the western limb, the three largest spots elongated and the faculæ very marked. Two pairs of small spots were also seen following the group, one above and the other below the sun's equator. On the 12th, all the spots seen in the last picture had disappeared except the lower pair, which had in creased in size. On the 15th, appeared another pair, of about the same size as those last seen, and a single spot just with in the eastern limb. On the 16 th, the same spots, with an other nearer the eastern limb, and on the 17 th still another at the east and lower. On the 19 th, no change was perceived except that caused by the sun's motion.

Barometer and Thermometer

The meteorological journal from Sept. 20 to Oct. 17 gives the highest barometer, Oct. $15,30 \cdot 36$; the lowest barometer, Sept. 29, 29•46; the highest thermometer, Sept. 25 , at 2 P . M., 73°; the lowest thermometer, Oct. 15 at 7 A. M., $27 \cdot 5^{\circ}$.

Amount or Rain.
The rain which fell during Sept. 20 amounted to 1.8 inches.
The rain which fell during the night of Sept. 28 and the day of Sept. 29 amounted to 0.42 inches.
The rain which fell during the day of Oct. 2 amounted to 0.11 inches.
The rain which fell between the night of Oct. 6 and the morning of Oct. 9 amounted to 1.5 inches.
The rain which fell during the night of Oct. 9 and the day of Oct. 10 amounted to $0 \cdot 21$ inches.

Effect of Gases in the Coxgulation of the Blood.

MM. Mathieu and Urban give the following conclusions as the results of their studies into the above subject: Blood deprived of carbonic acid by exosmose or by any other process does not coagulate until it regains the gas thus lost. The affinity of the blood globules for carbonic acid is evident. The coloring matter of the blood fixes the gas as readilyas it does oxygen. Both oxygen and carbonic acid gases are occluded in the red globules. The coagulation of the blood by supersaturation is produced in pulmonary asphyxia, after a stoppage or extreme slowing of the circula tion and after inflammation. The examination of different
processes of spontaneous coagulation happening during life establishes a relation between the formation of fibrinous clots and the accumulation of carbonic acid in the blood, or the same.

Correspoudemte.

The Plumber's Defence

To the Editor of the Scientific American :
Bearing cheerful testimony to your general fairness, can dor, and good nature, it is to be regretted that they have failed you in treating this tender subject. Our unfortunate occu pation seems to have achieved a painful and unenviable prominence of late, by being made the target of aavagely jocose and furiously sarcastic attacks.
Just complaints of the imperfect work of plumbers may be accounted for by the amazing want of judgment the owner of a house containing modern improvements displays in the selection of a plumber. If he becomes the owner of a horse, the blacksmith who shall shoe him is chosen after a most thorough investigation into his mexits, and after con sultation and advice with posted friends. If he be the pos sessor of a fine watch, the artificer who shall regulate, clean, and repair it is selected with great care, and on no account will it be entrusted to a new or unknown party. But if the same man builds a new house, or buys an old one requiring repairs to its plumbing, straightway he rushes round to searchcafter-the best plumber? Far from it. He has heard that all plumbers are robbers, and he is going to find a cheap man if it takes a month. Of course he succeeds, and of course he gets a botched job. Or, more fatal blunder still purposing to save bother, he permits or requires the builder o include plumbing in his estimate, thereby making it to the strong interest of the builder to put in the cheapest plumbing that will pass inspection.
No one but an expert can tell by inspection whether plumbing is well or ill done. The incompetence of archi ects and building superintendents in this respect is well known and frankly confessed by the best of them, who do not feel obliged (as third rate men generally do) to know everything. The writer has known of pipes one and two grades lighter than the specifications called for being put in under the very eyes of architects, who were thoroughly hon ast and could not have been suborned to wink at the evasion had they known it.
The ertployment of the cheapest mechanics who can be made to pass muster and the too rapid pushing of the work make it impossible to thoroughly test the material and workmanship as it progresses. Solid or leaky joints are not the worst, though perbaps they are the most annoying, effects of a bad job of plumbing. They are apparent at once, and the ontractor is obliged to put them in order; but a job put up with light or inferior material runs very well for a while until constant expansion by continued pressure produces a
burat. This is no sooner repaired than another appears, and another, and the jobber who has been called in (and who may be an entirely different party from the one who did the original job) getaall the blame of not being able to " fix a pipe o that it will stay fixed.
Much complaint is made of the exorbitant charges of plumbers, mainly in jobbing or small work. As honest mechanics do not make exorbitant charges any more than honest men pick pockets, it only remainsto explain why hon set charges are sometimes high. A castomer calls to sas hat a faucet is out of order. Desiring to find out accurate I what is to be done, you ask how it operates: "Oh, it ust drips constantly; won't shut off!"' "Well, does it turn to a stop, or will the handle revolve continually ?" He
"don't know." You suggest sending a new faucet, in case don't know." You suggest sending a new faucet, in case it should be needed. With a look of excessive sharpness, he to make it necessary. A little packing is all you want." A a decent self-respect stops argument here, the workmen are sent out. Upon reaching the job (perhaps milesaway), the thread is found to be stripped or the wings worn off, and the faucet worthless. The helper is dispatched for a new on and the timecharged. When the billis presented, the agony is frarful. "Your man just sat around and talked to the girls, while the boy went after something. Do you suppose I am going to stand that?" Another customer drops in and says that his wife wants a plumber sent up 'Don't know what's the matter. Reckon its something about the cocks." A man with proper tools for soldering packing, etc., is sent up, and finds that a water closet or drain is choked, or perhaps that the gas leaks; and the tools he has (usually a good load) are not at all that he needs. More delay and more of the running, which so exasperates
the unfortunate customer. Who is to blame? It is true that much incompetence and dishonesty do ex ist, and probably will until competence and honesty are better paid. The mechanic who promptly, faithfully, and carefully looks after his work is worthy of his hire, even i the priceis a little higher than that of the incompetent and careless. Probably the touchstone of the whole matter is contained in your aspiration for "a plumber who will do his work well at a moderate cost." If a man thoroughly and faithfully ouperintends his workmen, he is no more reponsible for the original cost of his work than his custom ars are. His naterials, of lead, iron, brass, and copper man pulated to a high degree, are expensive in the nature of things, and bills including these will necesearily be large. If your wish could be modified to a desire for a plumber who will faithfully execute his work and be content with a reasonable profit, it may be confidently expected that by patient searching you will find him out.

When it becomes the practice to bestow upon honesty, abi lity, and industry the premium which they earn and deserve parties who can "fill the bill" will abound.
I feel that the spirit of the foregoing remarks has a wider range and
Cleveland, Ohio

The Machinery at the Fair.

To the Elditor of the Scientific American:
Your correspondent " Esor," writing in your issue of October 17, concluded his remarks, in regard to an axle lathe of our manufacture, as follows:

On the tool post, however, is a taper washer, by means of which to regulate the hight of the turning tool. With such a washer, it is impossible to put this lathe to the full duty it will perform, because, the face of the washer not being parallel or level with the face of the holding screw the tool is not so firmly clamped as a heavy duty will require. The centers are not yet turned up, indicating that it is not intended to put any work on the lathe, an omission to be regretted."
W e take no offense at just criticiem; but we beg to demur to the statement that "it is impossible to put this lathe to the full duty," etc. Very nearly two hundred and fifty of these lathes, built by us in the past thirteen years, all with substantially the same arrangement for adjusting and bolding the tool, have been put into operation in the United Scates, Canada, Cuba, and South America. No complain has ever reached us as to difficulty in holding the tool.
Twenty complete and well fitted axles have in a number of shops been turned on one lathe in ten hours; even this has been exceeded in some instances; in one case, twelve were turned in five hours. This we consider tolerably "heavy duty," and think the tool must have been "firmly clamped" at pretty short intervals, without much delay or difficulty.
As regards the omission to put work into the lathe during he exhibition, it would plainly be impracticable, in such a place, to supply it with material, even for a small proportion of the time: a circumstance which we regret as much as any one.

Wm. B. Bement \& Son
Philadelphia, Pa

Rapid Railway Traveling.

To the Editor of the Scientific American:
A train consisting of three cars, drawn by engine 97, driven by Joseph Losey, ran from Easton, Pa., to Jersey City, a distance of 74 miles, in 79 minutes running time, an average of $56 \frac{1}{4}$ miles per hour. This does not show full peed, as three stops were made; and although I have deducted the actual time that was lost at the stations, there bas been no allowance made for slowing down and getting under headway again. The distance from White House to North Branch, $4 \frac{9}{9}$ miles, was run in exactly 4 minutes. The oad between the last named pointsis comparatively straight nd level; the time was taken accurately at both stations. and by stop watches on the train.
The engine, an anthracite coal burner, was originally of the Grant pattern, with 16 inch cylinders. She has been rebuilt, and her cylinders now are 17 by 22 inches, and her drivers are 5 feet 10 inches over the tyres.
Hampton Junction, N. J.
Charles Ward.

The Eucalyptus and the Phylloxera.

To the Elditor of the Scientific American:

I have been informed that the Tasmanian blue gum tree (uangptus globulus) is accimated in the southern portion of rance. In that territory, possibly in the immediate vicinity trees of that species, there are large numbers of cultivated rapevines. Perhaps it would be well to examine the grapeines so located and ascertain if they are exempt from the ravages of the phylloxera. The blue gum trees appear to be suitable for the vineyard: they grow rapidly, straight, and irm,aud would afford an admirable support for the wire; they cast no injurious amount of shade, and are known to bo an ntidote for that vapor of parasites called miasma.
New York city.
Robert Brdce Stuart.
Cable Telegraphy.
To the Editor of the Scientific American:
In your last issue you print a paper read before the British Association by W. K. Winter on an improvement in cable telegraphy.
Allow me to state that the principle shown was invented by myself and patented both in England and this country some three years ago. It is used by the Automatic Telegraph Company of New York.
Newark, N. J.
The surgeons of the Hotel Dieu at Montpetiler, France, have had for some time past a queer case on their hands, of a young man who swallowed a fork. The fork still remains somewhere in the body, and, strange to say, occasions no particular inconvenience to the patient, although over a month has elapsed since the accident took place. At the same hospital au individual, while in a state of delirium, lately ate a thermometer, glass and all. The doctors are sorely perplexed for a way to extract the intruding objects.

A recent patent for a map consists in having thoee portions intended to represent the rivers, lakes, and oceans filled with actual water. This is done by attaching the map to a back of wood of sufficient thickness. The rivers, etc., are dug out, filled with water, and glazed. Such maps may be hung upon the wall in the usual manner.

