gas, destroys the lining of the stack and melts off the damp. ers as fast as they can be roplaced. The grate bara, the ma: ufacturerastate, never burn out, and the pudder's tools last about three times as long as they did when coal was used. In furnaces where the water necks cannot be used, they are comptlled to use a jet of steam to leasen the heat.
Their producti ntas increased about thirty three per cant since they beaan to use gas, and tue iron made commanes from $\$ 10$ to $\$ 20$ per tun more than the same clase of iron manufactured at the Apoilo works, where they use coal, the iron being wade from the pause class of stock. These facts were communicated to the American Iron aud Steel Aesocia tion.

Snmitir smorim.

MUNN \& CO., Editors anc Proprietors poblimine weerty a
NO. ST PARK ROW, NEW YORK.

GAIN FROM THE USE OF FEED WATER HEATERS
In an ordinary boiler, one pound of average coal will pro duce by ite combustion between eight asd nine thousan un ts of leat that are available for generating steam. Sup. posing the feed water to enter the boiler at a ten purature of 32° Fall, each pound of water will require about 1,200 unite of hear to convert it into steam, so that the boiler will evapo. rate bstween 6 受 and 74 pounde of water per pound of coal Better resultathan these are often realizad, esp, cially in the case of terts, but the figurea given abive are believed to cor reapred with those of oroinary practice. The amount of heat required to convert a pound of watrr into steam varies with the pressure, as will be seen by the following table
Uxits of heat require to convert one pound of water, a the temperature of 32° Fah., into steam at difierent pres sures:

Prissure of peam nin pomudpers inct by gáe.	Units of heat.	Prepoure of steam 10 ponude bersa. neh, by gage.	Units of heat.
1....	.. 1,148	10.... ...	1,155
20.	.. 1,161	30.	1,165
40.	. 1,169	50..	1,173
60. 1,176	70..	1,178
80.	... 1,181	90.	1.183
100.	... 1.185	110.	1,187
120.	... 1,189	130.	... 1,190
140.	.. 1,192	150.	.. 1,193
160.	. 1.195	170..	.. 1.196
180.	.. 1,198	190....	... 1,199

cessary to convert it into steam can easily be computed. Su ppose, for instance, that its temperature is 65^{\prime}, and tba: it is to be converted into steam having a pressure of 80 pounds per square inch. Tae difference between 65 and 32 is 33 and subtracting this Irom 1,181 (the number of units of heat required for feed water baving a temperature of 32^{\prime}), the rom ainder, or 1,148 , is the number of units for feed wate with the given $t \in m$ perature.
In the use of an ordinary non condensing engine, in which the steam is exbausted directly into the atmosph re, each pound of ateam, as it facaper, carries off the greater part of th hr at that it haz received in the boiler. This can be rendere plain by an example: Suppose the feed water enters the boiler at, a temperature of 70°, that the pressure of steam is 90 pounds per \&quare inch, and that the back prespure in the cylinder, urder which the steam is exhausted, is 1 pound p.r $\&$ quare inch

Temperatute of

Subract.

Units of heat required to convert 1 pound of water at
2^{c} into steam at 90 pounds pressure. Subtract.
Units of heat required to convert 1 pound of water
at 70° into steam of 90 pounds pressure.
Units of beat in 1 pound of steam at 1 pound pres
ire, from water at 32°
Sabtract...
Units of heat imparted to feed water, that are car ried of by each pound of exhaust steam.

Multiply this by 100 .
Divide by 1, 1.45
which is the percentage of the heat, imparted to 9694 water, that is carried off by the exhaust steam.
Toere remaine, then. only about 3 per cent of the heat, imparted to the water by the combustion of the coal, that is utilized in the eygine. This is a rather serious consideration for the steam user, who may figure up his account with the boiler and engine somewhat after this manner: One tun of coal costs $\$ 6.50$, and evaporates, by its combustion, 15.030 pounds of water, at a cost for fuel of $\$ 0.00443+$ per pound When the steam resulting from the evaporation of this water
is u sed in the engine, $96.94 \mathrm{p} \rightarrow \mathrm{r}$ cent of the heat imparted to it by the fuel is exhausted isto the air. This is the same a throwing away 14,541 pounds of the water that bas been Evaporated, leaving 459 pounds for useful work, so tha really each pound of water used in the engive coats $\$ 0014+$ There are very many engines running today to which thi accourt will apply, evgines that are sending into the air early all the heat imparted to the water consid.rable saviog would generally result by attachidg coodersing apparatue to a mon condensing ergine. This canmot alwaye by dobe however; but there are means by which some of the heat carried off by the exbaust can be utilized. The most obvious method is to turn the exhaust steam into vers-le throush which the feed water parses, so that some of its he a may b imparted to the water, which will then require the consump tion of leas fuel for its conversion into steam. There are a number of heatera in the maskat which are guarnateca by at the temperature of 212°, and we can state from our own experience that this is not an uncommon refult, while a tem
 any good heater. It may be profitable to consider the effec of athaching such a heater in the case proviouely cited. The foed water will then enter the heater at a temperature of
70°, and be deliver d into the biln at a temperature of yon having had its $t \in$ mperature increased 130° by the exbaus steam, which has losta corresponding amount of heat. Eacl pound of water will require 1015 uoits of heat for its con version into steam of 90 ponnds pressure, instead of 1,145 units, which were needed when the heater was not in use wis gives a gain of 130 units of beat los hat required when the feed water was pumped into the boiler at a temperature of 70 . Each pound of exbaust steam, also, lostead of carrying off 1,110 units of best into the air, will anly take 980, or $1171+$ per cont less than it formerly did The accourt previously given will dow figure up as follows The combustion of one tun of coal will evsporate abut
16,900 pounds of water, at a cast of $\$ 000038+$ per pourd 16,900 pourds of water, at a cast of $\$ 000038+$ per pourd. 6,300 pounds of the steam is thrown awas in the exkaust leavirg $6 C 0$ pounds for useful effect, at a cost of $\$ 0.0108+$ er pound.
These examples, which correspond well with casea in ordi ary practice, will enable our readrre to estimate with tol rable accuracy the resulta that will be realized from attach ing a heater in ang given instance. It will be observed that, in the case supposed, no allowance was made for increased back pressure by the use of the beater. This was becaue the hyporbetical heater was properiy designed. A good heater does not increase the back pressure in the piston. There are many forms of the apparatus, bowever, that offer so much resistance to the escape of the exharst sterm, as to more than neutralize the gain that would otherwise be de the itrom their use. It is easy to ase, for instance, that water 10 per cent, but also increased the back pressure aо as to call for the expenditure of 12 per cent more fuel, th

SPECIAL EDITION OF THE SCIENTIFIC AMERICAN. ONE HUNDRED THOUSAND COPIES.

We sball, during the coming month of D.cember, iseue a special edition of the Scientific American, aggregating one bundred thousand copies, which will be gratuitously cículated among manufacturers of all kinds, machinists, il owners, and, in hrief, representatives of all industries in the United States and in Canada. At considerable out'ay of time and expense, we have procurea a list of one handred housand names, embracing the leading business men of the bove importani classes; and to each individual a copy of the Soientific American, enclosed in a separate wrapper and prepaid, will be mailed. The item of postage alone wili thus cost the large sum of two thousand dollars, and the issue will find its way into every post cffice in the country.
Our motive for printing this extra edition, at an outlay of some six thousand dollars we do not desire to concfal, nor could we do so even if such were our wish. Our a'm is to increase cur subsciption list; and in pursuance of this ob ject, we take ruct means as will enable others beside cur selves to derive bunffit from the enterprise, in direct pro portion to the moun:s they invest in its furtherance. To this end, therefore, we propose to admit a few advertise ments. It will readily be apprehended that, since the pub. lishers are disinctiy pledged to print the large special edi tion above noted, and to mail the a ame (pr paid) to names se lected with care and judgoent, every person having goods, productions, or deas bo bring to the notice of the class above mentioned is bere furnished with the means. Moreover, it should be remembered that the names to which we refer are not those of our regular subscribers, but of busitess men not aceersible through the crdinary newspaper channels.
We would direct especial attention to the fact that,ilthough circulation of 100000 copies is guaranteed, there is every prowability that this will be greatly ex ceeded. Our offer of last year included a circalation of but 60.000 ; but before w had supplied the demand, 120,000 copies were printed and mailled. For this immense excers, we imposed no extr charge upon our advertisers. The same course will be adopted this year. The extra bexefit is given freely to those firms who send us ad vertibements for the sprcial edision.
To the enterprising manafacturers and inventors who ad vertise in our regular columns, and indeed to everybon at all convarsant with the advantages of a good medium, we need not point out the benefits to be derived from our propo sition. For further particulars, ree advertifement on an other page.

00ST OF TUNNELS.

Arcong the various plans for disposing of the Jones' Falle tream or improving its channel, which havo been pre ented to the council committee, is one by.J. E. Sudier, civi engineer, proposing to divert it by a tunnel frocn a point be yond the city across io the valley of Gwynn's Falls, and thus hrow its waters into the middle branch of the Pacspaco, of Spring Gardens. This tunnel would pass in good part unde Dsuid Hill Park, ard through a rock formation which, it is beiieved, lifs beneath all the hills in tbat quarter. Neve having locked to diversion in that direction, and withou pretending to have examiced into or formed any jucgmen on the promises (the plan lately suggeated by the mayor in his apecinil message to the conoc!l for improvement within he city being atill perding), is may yet bo worth while to rquire into what bas been the cost of like vanceling. accom lished in otber parts of the world. The apgregate cost o bis tunnel for Joves' Falls, the lengli of which is 16,000 eet, is put by its author at $\$ 2,40 r 000$, or $\$ 16$ per linca foot, which is a fraction over zer cubic ynerd. Witb tegrad to other tunnels aiready in existence, their cost is given as filows: The graat Mont Celio tunnel cost about \$\$10 per lineal foot, including equipment of road, etc. The Kilsby double track railroad tunnel (England), in the construction of which very great difficulties were encountertd from the tapping of quickpande, co at $\$ 26250$ per lineal foot. Bletch ingly tunnel, for a double track raiiruad in Fingland, con $\$ 120$. Terre Noire, on the Paris, Lyons, and Meditfrranean railroad, cost but $\$.50$ per foor ; and the very ifficult Hauen stein tunnel, between Basle and Berne, Switzerland, cost $\$ 13$ per lineal foot. The Hoosac tuerei, theough a formation o mica slate and quartz, with working shaft upwards of 1,000 feet in depth, cost $\$ 300$ per lintal foot
These tuinels were all completed several years ago, and the cost per cubic yard of material accavated varies from $\$ 150$ to $\$ 14$. The cifficul ife met with in their exfcution have led to the invention of improved apparatus, by the use of which the cost of boring, drilling, etc., is reduced from 100 to 300 per cent. The diamond boring mact ine was thorougbly tested by Captain Beaumnnt, R. E., in Lancashire and Cumberlasd. At Stoughton, the borer reached 2 depth of 689 feet in two monthe, teat could not have beengot at in ess than two gears by laod labor. In the Clifton tuncel, Bistol Port ard Channel Dock Railroad, in hard mountain imestone, the drila advanced at the rate of two anches per minute-cutside diameter of horing, two inches. The machine advanced at about five times the speed that could be attained by as mavy men ae could find room to work at a heading. The motor is compresecd air. Dynamite is used for blasting, and found to answer admirably. With the aid of these machines the work of tunneling tbrough the hardes rock presents no dfficulties of any extraordinaly character and may be executed at a cost very little, if nay, greater baw the excaration of the same material in open cutting." Ealtimore Sun.
To the above, may bs added the cost of that portion of the Undergroumd Railway, in New York city, now near y com pleted, on Fourth Avenue, between 44th street and Harlem
river at 133 d street, a distance of about $4 \frac{1}{4}$ miles. This railway has four tracks, and consists chiefiy of open cuts and tunnels, bat includes a maseive stone viaduct 60 feet wide. 30 fest high at greatest elevation, and about 6,500 feet long. The open cuts are about 66 feat wide, walls included, and from 10 feet to 14 feet deep, spanned at the street crossings by splendid iron bridges. The tunnels are of three kinds, brick arches, flat iron beam tunnels, and rock tunnels. They consist of three parallel tunnels, one central and two sepa. rate side tunnels, all occupying a space under the streets of about 70 feet in width by 30 feet in depth. At about every half mile are roomy passenger stations and waiting rooms, also constructed underground, lighted from the sidewalks. Altogether this is one of the finest examples of underground railway construction in the world. It has been in progrees for the past two years, and will be finished in Jauuary next. The total contract price of this great work, including stations, bridges, ballasting, viaduct, tunnels,changes of water pipes and sewers, is $\$ 6395,070$, being at the rate of a little under $\$ 885$ per lineal foot. Considering the large size, this is a very moderate cost; and for once the city of New York, which pays one half of the bill, has not been cheated or im. which pays
We recently made a personal inspection of the work from beginning to end, carefully examined all the details of construction, and were much gratified to observe the extreme care taken to render every portion solid and enduring. We shall in our nest commence a detailed account of the entire line, drawings for which have been kindly supplied to us by the officer in charge. These papers will be read with interest by civil engineers in all parts of the world, as they involve many practical examples of the most recent construction, executed under the supervision of individuals of eminence in the profession.
explosive wounds from non-explosive bullets The use of explosive bullets in war is forbidden by inter. national agreement. During the Franco. German war, the French were repeatedly accused of violating this humane compact; and the charge, though indignantly denied, seemed to be justified by the nature of the founds which the Ger mansurgeons had to deal with. Where the bail entered, a within the body would frequently be marked by a fearful within the body would frequently be marked by a fearful
shattering of bones, and its aperture of exit would ahow a shattering of bones, and its aperture of exit would show a
ragged opening that one could thrust his fist in. Only by the explosion of the ball on striking the bone, it was thought, conild euch mutilation be possible. The accused have now the full though tardy satisfaction of having their innocence thoroughly established by German investigations.
In a paper read last year before the German Surgical Congresp, Professor W. Busch, of Bchn, calleả attention to the fact that wounds such as had been attributed to explosive bullete were made by the Chaseepât bullet fired at short range. He explained the phenomenon by supposing that the ball became melted and broken up by forcible contact with the bone, and acted like a mass of shot on the parts beyond. That the ball would be heated by the sudden arrest of its motion, full or partial, could not be donbted; and the spreading of the ball in star shape when fred against an iron target was urged as proof that the heating may be suficient to melt the lead.
Dr. Augustus Küster was not eatisfied with thin explanation, and has since been conducting experiments on gunshot rounds in animals at the Royal Military School at Spandan, the results of which have been published in a late number o the Berliner Klinische Wochenschrift. In making the ex periments, a large target was placed behind the animals (horses and wethers), so that the condition of the bullets could be observed after their passage through the bodies. The distances were five, twenty, one hundred, and eight hundred paces. The arms used were a muzzle-loading sporting rifle throwing a pointed bullet, the needle gun, and the Chasse pot, Mauser, and Henry-Martini rifles. The animals wer frst killed by a volley from all the weapons, and subse quently the carcases were used far further experiments. Omitting details of interest only to surgeons, the results of Omitting details of interest only to aurgeons, the
the investigation may be summed up as follows:

1. There is no essential difference in the aution of bullets on the living and on the dead body. Heretofore the opinion has been that gunshot wounds are more extensive in the livingthan in the dead body, and that by the wound it can be told whether the injury was done before or after deatha position no longer tenable. Owing to the greater toughnees of the skin of animals, the aperture of exit is not so large as in the human body; the destruction of the flesh an bones, however, is equally extensive.
2. The extent of the destruction is in inverse ratio to the distance, and in direct ratio with the initial velocity of the
bullet. The sporting riffe madethe simplest wounds. Then followed the needle gun, the Chassepôt, and the Mauser rife, which produced frightful destruction of the bones and sof parts.
3. The destruction of the tissue is produced by the lead becoming heated and broken up, but without being melted. The bullet is mechanically divided, leaving the finer particles of lead in the recesses of the wound, while the fragments of larger size pass out along with pieces of shattered bone flesh, etc. Most of the Chassepôt and Mauser bullets, which have the greatest initial velocity, passed through the animale'
bodies reduced by one half or more, and greatly altered in bodies reduced by one half or more, and greatly altered in
shape, making on the target an irregular impression, sur. rounded by a crown of amall pieces of lead, carrying fragments of bone, muscle, hair, etc. The wounds made at short range were frightful.
4. The injuries described are made only by bullets of soft
lead. The Henry-Martini rifle stands alone in using a ball of hard lead, or lead mixed with tin in the proportion of twelve parts to one. The initial velocity of the ball thrown by this rifle is almost as great as that of the Mauser, yet the wound produced by it is very much smaller. It makes a clean hole through flesh and bone neither shattering the bone nor leaving splinters of lead in the course of the wound. In one case only did Dr. Küster find a Henry-Martini bullet much misshapen, and that time it remained sticking in bone. On but one occas:on, when fired at a hundred paces, did it fail to pass through the longest diameter of a horse while the Mauser bullets frequently remained in the wound , owing to the greater resistance they had to overcome in con sequence of their greater misshapement.
Having shown that bullets of soft lead fired at short rang act just like explosive bullets, and that a close combat wit them can be nothing but a horrible butchery, Dr. Küster protesta against their use; and as a duty to a brave opponent, he takes pains to say that the French atand thoroughly acquitted of the charge of having committed an act of un worthy and interdicted barbarity.

WHAT TEMPERATURE KILLS?

At the present stage of enquiry, the very important biological question whether life does or does not ever appear otherwise than as a product of antecedent life plainly hinges ox the simpler question: What temptrature kills? In other words, what degree of heat is certainly fatal to living mat ter? A boiled egg will not batci, boiled seeds will not germinate; no animal or plant thus far experimented on hrs been found to survive exposure to boiling water. Yet the appearance of living forms within hermetically sealed flasks, the contents of which have been boiled ten minutes or more, has been observed by too many trustworthy witnesses to be longer doubted. The question to be settled is: Are there any forms of living matter, germs, seeds, or what not, that can endure 212° of temperature by Fahrenheit's scale? And if so, what higher temperature certainly kills them?
The first to attack the problem with scientific thorough ness and care was the acute and learned Abbé Spallanzan something over a hundred years ago. At that time Needham was advocating the doctrine of spontaneous generation, on the strength of experiments similar to those which later investigations have made familiar. Spallanzani repeated the experiments,and found that the lower infusoria certainly would appear within closed vessels previonsly subjected to boiling heat. The organisms themselves were killed by temperature of $108 \mathfrak{j}^{\circ} \mathrm{Fah}$. Unwilling to accept the conclu sion arrived at by Needham. the Abbé assumed that the unknown germs of the infusoria must be able to withstand the higher temperature, and thereupon set to work to discover whether the difference in the capacity of resisting heat, imagined to exist in this case between parents and germs, could be justified by the establishment of similar differences in heat-resisting capacity between other parent organisms and their germs. By a careful series of experiments, he found that, while frogs and tadpoles perished at 111° Fah., frogs' eggs appeared in some cases to resist the temperature o 131° Fah, none, however, surviving 1442° or upwarde. Aquatic allamanders and fish were likewise killed by water having the temperature of 111°. Silkworms' eggs and the eggs of the elm moth failedito germinate after being heated to 140° Fah. The developed worms died at $108 \frac{1}{2}{ }^{\circ}$. Leeches perished at 111°; the nematoids known as vinegar eels, a 113°; other aquatic worms at 111°, and water fleas at 107°. Thus, while about $110^{\circ} \mathrm{Fah}$. sufficed to kill matured forms their eggs were not killed under about 140° Fah.
Observations on seeds and plants were conducted in similar manner, the water being heated slowly and the seed and plants taken out as soon as the desired temperature was attained. Not one seed germinated after exposure to boiling water. Of the corresponding plants a few survived a momentary exposure to 156°, none the temperature of 167° The grades of heat experimented with differed for the most part by 5° Resumur, or 110° Fab, so that the thermal deat point was not precisely noted.)
From these experiments it was manifest that (1) eggs ean andure a higher degree of heat than the animals from which they are derived: (2) a similar difference exists between plantsand seeds: (3) seeds and plants resist higher grades of heat than eggs and animals. Not a single living thing, owever, egg or seed, animal or
posure to a moist heat of 212° Fah
To the dryness of seeds was evidently due their ability to withstand heat better than eggs. Certain eggs resemble seed in that they may be dried and yet develope after being placed in a suitable damp medium. Might not the germs of he lowest animalcules likewise withstand desiccation, and in a dry state etcel seeds in power to bear heat, as the seeds excel eggs? Inasmuch as the germs in question were invisi-
ble and unknown, they could not be subjected then to the lest of certain experiment; and on the ground of their hypo thetical existence and power, Spallanzani was able to refuse assent to the probability of the germless origin of living matter in the cases under consideration.
Unfortunately for the panspermatist position, Spallanzani's ssumptions are not merely not sustained but are positively contradicted by more recent investigations. Professor Bur den Sanderson shows that, so far from being able to with tand desiccation,the germinal particles of bacteria are killed by simple exposure for three days to dry air of the low temperature of 104° Fah., and that the fully formed animalcules are deprived of their power of further development by thorough desiccation. Further, Dr. Cbarlton Bastian (who reviews this question of the thermal death point of matter
shown that all direct experiment, on the power of bacteria and their germs to withstand heat, leads to the conclusion that they are both killed by a brief exposure to a moist heat of 140° Fah. Many investigators, working independently of each other, and often without reference to the origin of life question, coincide in showing that, with certain peculiar ex ceptione, the temperature of 140° Fah., with moisture, is fatal to living matter.
In very many, if not most, cases the death point is much lower. Thus according to the observations of Spallanzani Max Schultze,and Kühne,simple aquatic organisms die under temperatures ranging from 104° to $113^{\circ} \mathrm{Fah}$. According to Kühne, elements of the cold-blooded frog are killed at 104° Stricker and Kühne agree in fixing the thermal death point of the tissue elements of warm-blooded man at 111°; that of the tissue elements of plants, according to Max Schulize and Kühne, is from 1161° to $118 \frac{1}{2}^{\circ}$: while Spallanzani,Liebig, Tarnowski, and others find that eggs, fungus, spares, and bacteria germs are killed at temperatures between 122° and 140°.
The exceptional cases are the confervoce and allied organ isms observed by Dr. Hooker in Sorrjkund, flourishing in a hot spring of the temperature of 168° Fah.; others in wate of 174°, as observed by Captain Strachey in Thibet; in 185° as observed by Humboldtin La (frinchera; 190°, as observed by Dr . Bremer in California; and 208°, or 4° below the boil ing point of water at sea level, as observed by Descloizeau in Ieeland.

It is a well known physical fact,"' says the late Professo Wyman, commenting on the examples of life at high tem peratures above given, "that living beings may be slowly transferred to new and widely different conditions withou injury; but if the same change is suddenly made, they per ish. In the experiments made in our laboratories, the change of conditions is relatively violent, and therefore lia ble to destroy life by its suddenness."
Even if it were possible for living organisms to with stand suddenly the temperature to which these exceptional growths have become inured through long periods of time the difficulty attending the appearance of living forme, in hermetically sealed flasks which havebeen previously heated as high as 275° Fah., as recorded in Dr. Bastian's latest ex periments, would not appear to be greatly lessened. The vidence is overwhelmingly against the survival of living matter after prolonged boiling, much less after exposure to temperature sixty degrees higher

SCIENTIFIC and PRAOTICAL INFORMATION.

working men's health

From a report of Dr. Waller Lewis, a noted English phy sician, regarding the treaith of Trench working men, it ap pears that the percentage of deaths from consumption, in 1,000 cases collated, is for various trades as follows: Ex posed to vegetable or mineral emanations, 176 ; to dust and ne particles, 145 ; sedentary occupations, 140 ; employed in close workshops, 138; exposed to hotand dry air, 127; re quiring active muscular exercise, 89 ; requiring exertion of voice, 75; working in open air, 73; exposed to animal ema nations, 60 ; the remainder being made up of persons work ing in a stooping posture, exposed to sudden movements of the arms, or exposed to watery vapors. Concerning the effect of various employments on the eyesight, it seems that the sense is injured by those working with polished metals, looking glasses, etc. The smallness of objects and intensity of direct or reflected light is also a cause of impaired vision ; while astronomers who study the sun have become totally blind, and opticians who daily exercise and test apectacles, etc., engravers, watch makere, etc , are liable to amaurosis and amblyopia.
the population of China.
Abbé David, who has recently devoted some years to the the exploration of Chinese territory and the study of the people, says that the estimate of statisticians that the total population of the Chinese Empire is but $100,000,000$ souls is entirely incorrect. The error is due to the terrible ravages made in certain small political divisions, which have rebelled at times, and in which wholesale massacres have reduced the inhabitants to one half and in some cases one fifth their former numerical strength. The province of Kiangsi is, however, the least populated,and the average of each canton therein is 4,000 people. There are 4,345 cantons, making an approximate total of $17,380,000$ inhabitants. Among the 18 provinces of the Empire, it is certain that several largely exceed Kiangsi in population; but taking theabove givenaggregate as a unit, there must be at least $300,000,000$ individuals in the country.

> CTION OF SULPHURIC ACID ON LEAD

From recent experimentsby H. A. Mallard, it appears that acids below 61° Baumé, concentrate by boiling until they attain a temperature of 433° Fah., or that at which acids at 61° Baumé boil. They then attack lead, producing snlphurous acid and some sulphate of the metal. Acidsabove 61° Baumé and below $65^{\circ} 5^{\circ}$ Baumé concentrate by ebullition up to 780° Fah., the boiling point of acids of the latter density, when they attack lead, producing sulphate of lead, sulphnrous acid, and a little sulphur. Acids of 655° Baumé at 482
Fah. also attacklead, producing the results last mentioned.

The East River Bridge.-It is expected that in fonr weeks from this date the Brooklyn tower of the East River bridge will be completed. On October 24 a bight of 259 feet had been attained, and there were seven more courses, about 14 feet, of stone to be added. The anchorage on the Brooklyn side is aleo in a forward state.

