THE ENGLISH CHANNEL STEAMERS.

We have already alluded to the oscillating saloon steamer, and some time ago we gave an illastration of her peculiar saloon, designed by Mr. Henry Bessemer to overcome the seasickness so prevalent in crossing the English Channel. She is now nearly ready for service, and is 350 feet long by 610 broad. She is fitted with two sets of paddle wheels, 106 feet apart, and is double ended. The saloon,suspended on pivots and controlled by hydraulic gear, is 70 feet long by 35 feet wide. Twenty miles an hour is expected of her but it is doubtful if she attains it. We hope to publish a view o the ontire ship in a few weeks.
Mr. Bessemer's experimental vessel will, however, be tested by competition with a formidable rival, the Castalia, built on the largest scale and at great expense for the same traffic. Thisis a twin ship, propelled by paddle wheels placed betweên the connecting girders; and she is especially placed between the connecting girders; and she is especially
designed to sail without pitching or rolling in any sea, howdesigned to sail without pitching or rolling in any sea, how
ever rough. The engraving, reproduced from the London ever rough. The engraving, reproduced from the London
Graphic, gives the reader a clear idea of her appearance on the water and the extent of heraccommodations. She is 296 feer long and 60 feet wide over all, each hull having a width of 17 feet ; she is also double-ended, to avoid the necessity of turning in entering or leaving a harbor. Her cabins and saloons are handsomely appointed; and she was much com mended as a successful sea boat in her preliminary voyage from the Thames, where she was built, to Dover, her in tended point of departure for the continent. Thirteen knots an hour is to be her speed, according to the expectation of her designer (Captain Dicey) and the builders and engineers By the latest advices she was waiting at Dover for a heavy sea to thoroughly test her capabilities. We shall shortly know the result of her further trial, and hear, we hope, of her success.

Lannch of the Bessemer.

The Bessemer saloon steamer was recently launched from the yard of Earle's Shipbuilding and Engineering Company, Hull. According to the London Times, she has very much the appearance of a breastwork turret ship. She is shaped alike atbow and stern, and for 48 feet from each end she has a freeboard of about 3 feet only. Her total length at the waterline is 350 feet, and the raised central portion, rising 8 feet above the low bow and stern, is 254 feet long, and extends the whole width of the vessel, 60 feet over all. The swinging saloon, 70 feet long, is in the center, and the engines and boilers which drive the two pair of paddle wheels aris stowed in the hold at either end of the raised portion of the vessel.
The whole of the machinery is on board, and the after pair of engines is completely fitted. The nominal horse power is 750 , working up to 4,600 , sufficient, it is esti mated, to drive the vessel 18 or 20 miles an hour. Th
two pairs of paddlewheels are placed 106 feet apart, and each wheel is 27 feet, 10 inches in diameter, and fitted with 12 feathering floats. The saloon is entered from two staircases leading to a landing, connected with the saloon by a flexible flooring. The saloon itself is upheld on its axis by four steel supports, one at each end, and two close together in the middle. The aftermost of the two central supports is hollow, and serves as a part of the powerful hydraulic machinery which will regulate the motions of the saloon. Without entering into a long technical explanation, it is enough to say that Mr. Bessemer has constructed some machinery which will cause the valves, the opening and shutting of which will adjust the saloon, to work automatically. The interior of the swinging saloon measures 70 feet long, 35 feet wide, and 20 feet high.
As to the question of the double set of paddlewheels and their effect upon the speed as compared with a single pair of wheels, Mr. Reed's view is as follows: When a ship is being propelled at a uniform speed by the exertion of a given contant power of engine, all that the engine does is to prevent the speed from decreasing, as it would do if the propelling power were removed. Were that power removed, the ship would not suddenly stop, but be gradually and slowly brought to rest by the resistances opposed by the water to her progress through it. In point of fact, therefore, in the case of a paddlewheel steamer at full speed, the ship herself carries the wheels rapidly past the surrounding water; and before the wheels can begin to propel at all, the engine must cause them to revolve with a corresponding velocity. If, for example, we take the case of a steamer going at a uniform speed of 14 knots an hour, with 36 revolutions of her engines, we may assume that 30 of those revolutions were required for enabling the wheels to overtake the ship, and that the remaining six only are useful for propulsion. These six evolutions no doubt impart a sternward velocity or race to the water of corresponding amount; and if another wheel has now to be brought into action in order to apply increased power, and has to be set to work in this race, it is obvious that it will require to be turned 36 times before it will begin to propel, and the few revolutions necessary for propulsion must be added to this number. The difference between the wo wheels will therefore simply be that the sternward wheel will require to revolve a few revolutions more than the other before it begins to propel, but after that the two will be upon equal terms, excepting as regards any losses from friction, etc., due to the extra speed of revolution. This is Mr. Reed's view, and, if he be correct, the speed realized by the Bessemer will probably prove at least equal to that of he fastest paddle steamers in the world; although, at the same time, the designer considers the very light draft and great beam of the ship, and the extra wrights which have been found necessary in connection with the saloon and its
machine beyond what he was called upon to design for will in some degree detract from the speed which has been predicted by the admirers of the vessel.

THE EARLY HISTORY OF WHEELED VEHICLES AND RAILWAYS.
 number 2.

"Men of genius have a hard time, 1 perceive; and must expect contra-
Iictions next to unendurable..-the phurality of blockheads being so ex. dictions next to unend
The struggle, however, between the friends and enemies of improvement was by no means over. One hundred and fifty years after John Crasset wrote his "reasons," a new motive power, which was to produce an unprecedented revolution in human affairs, to enable immense navies to advance in the face of wind and tide, and vast armies to traverse under lofty mountains and across deep rivers at a pace which far outstrips the fleetest race horse, made its appearance, and the conflict was again renewed with increased vigor. In truth, the opposition made to the railroad in its early years stands peculiarly alone. On the one side was a little band of merchants and manufacturers headed by eorge Stephenson the self-educated "Killingworth brakesman." On the other hand were the rich monopolies whose interests were about to be affected by the railway: the coach companies now about to be ruined, the canal companies about to avenge on the railroad the opposition they had experienced in time past; the nobility, the preservers of game, the celebrated engineers and famous doctors, the landed gentry, the small farmers, the public press " backed by the opinion of the nation," every profession from the clergy to the engineer, every trade, every rank of society from the peer to the Northumbrian miner, was bit'erly hostile to the steam railway. Against this array of public-spirited obstructives ready to choke the new invention at its birth on the ground of the public good, it struggled hard to gain a footing, scarcely daring to lift itself into notice for fear of ridicule. The civil engineers to a man rejected the idea of a "locomotive railway." The idea of traveling at a rate of speed double that of a stage coach was too preposterous for any engineer to risk his reputation by supporting it. Such a thing, they said, "did not fall within their general experience." Mr. Nicholas Wood,C. E. , of London,in 1825, speaking of the powers of the locomotive, remarks: "It is not my wish to promulgate to the world that the ridiculous expectations, or rather professions, of the enthusiastic speculator will be realized, and that we shall see engines traveling at the rate of twelve, sixteen, eighteen, or twenty miles an hour. Nothing could do more harm towards their general adoption and improvement than the promulgation of such nonsense." "What," says a writer in the Quarterly Reviero for March 1825, "can be more palpably absurd and ridi-

culous than the prospect held out, of locomotives traveling twice as fast as stage coaches! We will back old Father Thames against the Woolwich railway for any sum." No engine, it was claimed, could be made to move when attached to a heavy load. "The wheels will but slip round on the rails"; besides, even admitting that the engine would move ' no railroad could be so constructed as to bear the weight of forty tuns running at the rate of twelve miles an hour; be cause the more rapidly a body woves the greater the momentum generated, and no railroad could stand this increase of momentum." Moreover, it was vehemently asserted that the engine running at twelve miles an hour could never be made to "run round curves"; either the cu
Whatraight, or the machine leap the track.
When engineers, high in their profession, whose experienc be of maters was held to be of great moment, advanced such ruinous views, with nothing to refute them but the evidence of a self-educated mechanic of Northumberland, it is not surprising that men of other professions began to find objections based on their own professional learning. Sanitary objections were now urged against railways; and many wise doctors (never to be outdone at such a_{s}^{*} time) strongly inveighed against tunnels. Sir Anthony Carlisle insisted that "tunnels would expose healthy people', to colds, catarrhs, and consumption", and others believed the noise would be injurious to hearing. But worst of all was the "destruction of atmospheric air" as Dr. Lardner termed it. This learned gentleman made elaborate calculations to prove that the provision of ventilating shafts would be altogether insufficient to prevent the dangers arising from the combustion of coke, producing carbonic acid gas,which was fatal to life. There was not, however, the same unanimity among the doctors as among the engineers. Indeed, the proverbial disagreement of the doctors was, in this case, productive of much good. Solemn documents in the form of certificates,signed by many of the most distinguished physicians of the day, attesting the perfect wholesomeness of tunnels, were prepared and published. There were not wanting some, however, who, in default of reasons of their own, carried the statements made by others to the last extreme, and asserted that the air along the routes of the railroads would become unhealthy, that birds would drop dead as they flew over the locomotive in consequence of the CO_{2} discharged: and that the noise would cause cows to cease giving milk and women to miscarry!
Nor did the clergy and country gentlemen fail in this extreme. So violent was the antagonism of many patient and long-suffering men " of the cloth" to even a survey being made on their grounds, that the expedient was resorted to of performing this piece of work while the clerical gentlemen were in their pulpits.
By far the most persistent opposition, however, was undoubtedly that met with among those classes whose pleasures or interests wore directly interfered with, or whose prejudices had been aroused through ignorance and false representations. For the opposition resulting from this latter cause, the press must to a great extent be held responsible. Thus in 1825, when the Liverpool and Manchester Company were preparing to introducetheir bill to Parliament,the Leedp, Liverpool, and Birmingham canal companies appealed to the public to oppose the measure, and a Birmingham paper in. vited all to resistit to the last; and subscriptions were taken up to render this opposition more effectual. The farmer was told that his cows would be prevented from grazing and his hens from laying; that his sheep would no longer fatten, his horses would start and shy when at the plough, his houses and barns would be burned to ashes by the fire thrown from the engine chimney, and the air polluted by dense clouds of smoke; his hay and oats, usually so saleable,
would rot in his fields and granary, hisagricultural communiwould rot in his fields and granary, his agricultural communi-
cations be destroyed, his lands thrown out of cultivation,and cations be destroyed, his lands thrown out of cultivation,and
himself reduced to beggary. There would no longer be any use for his horses,and the breed, nay the very species, would soon become extinct! The poor rates would be largely increased in consequence of the number of laborers thrown out of employment. Every calling was to be utterly ruined. Hundreds of excellent inns would fall into decay; and in a shrot time, not a solitary house of this description would be found within the four kingdoms; posting towns would become depopulated, turnpike roads deserted, and the institution of the English stage coach destroyed for ever. The noble sport of the chase, the love of which was born in every true Englishman, must be ended for all time in order that a few merchants and cotton spinners might build railroads, aud send their engines screaming through the heart of the fox covers and game preserves. It was another deplorable illustration of the leveling tendency of the age. It put an end to that gradation of rank in traveling which was one of the few things left to distinguish a nobleman from a Manchester bagman. There was, however, one consolation left; none but fools would trust their persons to the conduct of explosive machines like the locomotive, and the canals would beat them after all.
It may well be believed that such a doleful picture of evils as this was not without its effect on those most inter ested. In the large towns, meetings were held denouncing the railway system as a delusion, similar to the many other absurd projects of that madly speculative period, when balloon companies proposed to work passenger traffic through the air at forty miles an hour, and road companies projected carriages to run on turnpikes at twelve miles an hour, with relays of bottled gas for horses. In the country, however,
where not one man in five hundred knew anything about where not one man in five hundred knew anything about
the railroad, other than that he had been told it would assuredly pass through the heart of his cabbage patch and his bean field, the fury of the opposition lead to blows. Whe

Mr. Stephenson was making the preliminary surveys for the projected Liverpool and Manchester railroad, many of the nobility stoutly refused him permission to enter their lands. At Knowsley, Mr. Stephenson was driven back by the keeper and threatened with rough handling if found there again; Lord Derby's farmers turned out all their men to watch the surveyors; guns were discharged over the property of then Duke of Bridgwater, and men armed with pitchforks,were stationed at the gates; while at St. Helen's, as a chainman was clambering over a gate, a laborer ran at him with a pitchfork and thrust the prongs through his clothes into his back others of his party coming to his assistance, the laborers, who had now gathered in force, poured in a volley of stones and finally completely demolished the harmless theodolite. Finally, in order to protect both his surveyors and his inFinally, in order to protect both his surveyors and his in-
strument, Mr. Stephenson was forced to make his surveys at night with the aid of dark lanterns, and to employ a " noted bruiser" to carry the theodolite.
Forty-nine years have passed since George Stephenson finished his first railroad, and all doubts of the merits of this great invention were set at rest forever. Fifty years ago it wasthe dream of a mechanic; today it is a great, almost the greatest, achievement of human ingenuity and human skill, the great civilizing agent of the nineteenth century, increasing the means of public intercourse, removing national and provincial antipathies and binding together all the branches of the world family
Never did so marvelous an invention pass through more vicissitudes, or struggle up through more bitter opposition
to a more glorious triumph never was courage tried by more to a more glorious triumph never was courage tried by more yet that background of disaster only sets in brighter relief the spirit that bore up under all, the faith that never ga way, and the patience that never was weary.

Preminm for Fireproof Construction

The Merchants', Farmers', and Mechanics' Savings Bank, of Chtcago,Ill., offers a premium of $\$ 1,000$ for the best. plan for two fireproof buildings, subject to conditions, among which are the following:

One building shall be a dwelling house of not less than 18 feet front, with 5 rooms, and shall contain not less than 5,500 cubic feet; of which a complete building as per plans must be erected, at expense of the bank, by the successful competitor; also a building of not less than four rooms for dwelling, with store on ground floor, of a cubic capacity of not less than 30,000 cubic feet, subject to the same requirerequired to erect, at prices specified in his plans, one or fifty buildings, at the option of the bank, anywhere within the corporate limits of Chicago. The model erected by the successful competitor shall undergo a thorough test as to its fireproof qualities, and also as to the action of water upon the material wheu heated. All damages resulting from such test will be at the expense of the successful competitor.
The main purpose of this offer is to secure an approxi mately fireproof cottage; but other things being equal, pre ference will be given to the best arranged building in the matter of symmetry, convenience, ventilation, heating, ard of emple, and which, as the purpose is mainly for theady occupancy.'
The competition will be open till January 1, 1875. W re curious to know if the bank really expects to have al the specified conditions filled, for one thousand dollars Guess not, gentlemen.

A Question for American steel Manufacturers. The ordnance bureaux of both the war and navy depar ments have just ordered from Mr. B. B. Hotchkiss, the in ventor of the well known rifle projectiles and of the revolv ing cannon not long since illustrated in these columns, tw of his new breech-loading metallic cartridge steel field guns, with equipments complete, the same to be exported from Europe. The trials of these weapons, we understand, are to be held in April next. Mr. Hotchkiss informs us that he cannot obtain steel blocks, large enough for the manufacture of his guns, from any foundery in this country, and that herefore he is compelled to have resort to foreign pro ductions. It strikes us that the necessity existing, of making arms for service of the nation outside our own borders, is a condition of affairs to which American steel manufacturer may profitably devote their serious consideration.

Recent Waking:Feats.

A walk of thirty-two miles, in seven and a half hours, rom New York city to Bronxville, N. Y., and return, wa lately performed by James A. Crozier. The wager was $\$ 250$, eight hours time was allowed.
E. P. Weston lately completed in this city his third at empt to walk 500 miles in six days. On the second day after about 200 miles had been walked, one foot was attacked with erysipelas, and he had to rest for a day for treatment At the end of the six days he had walked 346 miles.

The New York Christian Intelligencer saya: Among al ur exchanges, none is valued more highly than the SCIENtific american. We never open its pages without finding something useful, instructive, or entertaining to reward us for so doing. Itis a most valuableeducator to youth; whil to those who have a practical advanced knowledge of mat ters relating to art, science, mechanics, chemistry, and manu factures, it is an invaluable aid, keeping them thoroughl
posted on whatsoever is doing, or has been accomplished, in those important branches.

Invisible Ink,

If we write with a very dilnte solution of chloride of copper, which has scarcely more color than pure water, the characters are invisible; but if gently heated, they become distinctly yellow, and are easily read. Let the paper cool, and they vanish; and they may be made to appear and disappear an indefinite number of times. If heated too strongly, the compound is decomposed, and the writing becomes perma nently brown from the deposition of the copper. The chloride of copper may be conveniently made by mixing solutions of ammonic chloride (sal ammoniac) and of cupric sulphate (blue vitriol).
The change of color in this and kindred cases is due to the removal of the water of crystalization by the heat. In chemical combination with the water, the salt is transparent; with out the water, it is opaque. The salt, being very deliquescent, rapidly absorbs moisture from the air when cool.Boston Journal of Chemistry.

DECISIONS OF THE COURTS.

Supreme Court of the United States.

be great oorn planter patents.-George w. brown, appellant, vs. RUFUSB. GUILD, EXEOC
vs. JAMES SELBY etal.
Appeal from the Circuit Court of the United States fo
District of Inlnois.-October Term, 1873 .
Bradle, Judge:
Rhaese cases artie upon separate bills in equitv filed in the court below by
the appellant against George J. Bergen and Frederick \mathbf{P}. Sisson in the

pren
and
and

NEW BOORS AND PUBLICATIONS.

The Transit of Venus. By George Forbes, B. A., Professor of Natural Philosophy in the Andersonian University Macmillan \& Co., 21 Astor Place.
This work gives a most luctd explanation of the expected observations of the transtt, pregnant as it is with results of the highest 1mportance to physical sclence. The particulars of the various parties of observation and the engravings of the instruments, many of which latter are especially
destgned for this occasion, are replets with interest, and will repay the destgned for this occasion, are replete with interest, and w
student, as well as the general reader, for a careful perusal.
a Fourth Catalogue of Double Stars, giving Forty Seven Double Stars Newly Discovered by S. W. Burn ham.
In December, 1873, Mr. Burnham published his third catalogue of the double stars, and shortly afterwards followed up with the present publicaion, first glven to the public in the June issue of the Royal Astronomical tance, made with a 6 inch Clark reffector, the exception being tau Orionis, star so distant that the $18 \% / 2$ nch refractor of the Dearborn Observatory The Amepican
he American Edicational Annual, a Cyclopædia or Reference Book for all Matters Pertaining to Education.
Volume I., 1875 . New York: J. W. Schermerhorn, 14 Volume I.,
Bond street.
valuable book of

Inventions [Complled from the Commissioners of Patents' Journal.] From September 18 to September 28, 1874, inclusive.
Anvil Bed.-A. Hitchcock, New York elty.
cleotric Alark.-A. S. Howé' Utica, N. Y.
Heating Feed Water, etc.-R. Berryman (of Hartford, Conn.), Newcas. Heating Feed Water, et
tle-on-Tyne, England.
Horseshoz.-R. F. Cooke, New York city.
Enitting Machine.-J. Bradley,Lowell, Mass.
MAEING Asphaltur Mastic.-R. Skinner, San Francisco, Cal.
Making Gas.-F. H. Elchbaum, Detrolt, Micl.
Reverbrratory Fuanact. \rightarrow E. Helligendorfer, Eureka, Ney,
plegraph.-M.Gally, Rochester, N. Y.
Weating Fringe headings.-J. T.O'Erien et al., Brooklyn ,N.Y

