bility of putting a larger number of pieces in a flask, of making more molds, and of getting out much better work.

We may add that the specimens of castings exhibited to us, as coming directly from molds thus prepared, appeared fully as sharp and clear as those from the best hand-rammed molds. Nor does the intricacy of the pattern seem to cause any dificulty, as we were shown molds for very irregular blind hinges, and completed castings for bank locks, the latter weighing some 30 pounds each, and of considerable intricacy of form. We also remarked that, through the evenness of the ramming, the waste through imperfect cast. ing of large numbers of keys, hooks, and similar small goods was very small, almost every object coming from the sand true in shape.
Our readers can d̀raw their own conclusions from these simple facts, so that we forbear further comment. We examined the score or more machines which the manufacturers, Messrs. P. \& F. Corbin, of New Britain, Conn., had in use in their factory, noting in every instance the ease and rapidity with which they were handled by the workmen. The amount of pressure to be applied to the lever seems to be the only point requiring practice to judge; but that this knowledge is readily acquired, is proved by the work of the unskilled hands above detailed.

The patent granted to Albert Eames and John P. Broadmeadow, of Bridgeport, Conn., under which the device is manufactured, was extended November 25, 1873, and many essential improvements are covered by another patent dated August 4, 1874. Further particulars may be obtained by addressing the manufacturers as sbove, who are the sole licensees for the sale of the machines.

Suitutific Ammerian.

MUNN \& CO., Editors and Proprietors. PUBLIBKED WEEKLY AT
NO. 37 PARK ROW, NEW YORK
o. D. MUNN. A. i. BEACH.

TERTMS.
One copy, one year, postage included...........
 By the new law, postage is payable in advance by the publishers,
and the subscriber then receives the paper free of charge.

VOLUME XXXI, No. 16.[New Serieb.] Tweniy-ninth Year.
NEW YORE, SATURDAY, OCTOBER 17, 18 '74.

Contents:

OUR FEVER NESTS AND THEIR REMEDY.

Though blessed by nature with a situation unrivaled for sanitary advantages, New York has a death rate such as few cities in Christendom can equal. The appalling mortality of the past summer, especially among children, has given rise to a great amount of sorrow and indignation on the part of the daily prese, and not a little severe criticism of the action of the medical and police authorities, the common theory
being that the enforcement of proper sanitary regulations would have prevented the larger part of the needless loss would have prevented the larger part of the needless los a
of life. That much might have been done to improve th e of life. That much might have been done to improve the
health of the city by more rigid aanitary measures, there is
no doubt; but it is aseless to expect a Board of Health, however efficient, to achieve impossibilities. The great source of disease and death in the city is the tenement house system, whereby families are massed by the hundred in huge barracks, destitute of light, ventilation, the means of keeping clean-of every appliance, in short, for healthful living and until wholesome dwellings can be substituted for these dens of disease, New York must endure the shame of being one of the most unhealthy cities in the world. No other city, in its densest portions, crowds half as many inhabi tants to the acre as can be seen in some of our lower and eastern wards, and nowhere are the dwellings so poorly fitted for a numerous occapancy. And not only are these huge hives, with narrow halls and lightless sleeping rooms, crowded from the roof to the pavement with poverty-stricken fa milies, but underground. in damp, unwholesome basements, multitudes find miserable shelter. Says the Children's Phy sician to one of the largest dispensaries: "An experienced dispensary physician can detect a patient who comes from a basement simply by the sense of smell"! Is it any wonder that the deaths of children in such a house number five o six a week? Or that a week of excessive heat may swell the weekly death list of children under five years of age by four or five hundred? About two thousand of these candidates for early death are born in our tenement houses every month.

- With high culture, scientific management, and abundant means, it may be possible for many families to dwell togeth er in health and aafety under one roof ; but where ignorance poverty, and filthy habits prevail, the massing of families is little short of pestilential. Only by the dispersion of the tenement house population can the now over crowded wards of the city be made tolerable, and the death rate reduced to reasonable limits; and we see no way by which sucha desirable result can be effected humanely, save by providing means for carrying the poorer working people to and from country homes more rapidly and cheaply than is possible with surface roads.
To some extent it may be necessary to do for this class of the community what Mr. Stewart is doing for the nore fortunate in his Garden City (a description of which was given
in the Scientific American about a month ago), and that in the Scientific American about a month ago), and that is to build country cottages for them.
The success that has attended the operations of the Artizans', Laborers', and General Dwellings Company, in providing cheap suburban homes for the working men of the larger English cities, is proof that such enterprizes may be profita English cities, is proof that
ble as well as philanthropic.
In connection with the recent inauguration of one of their villages, the London Times gives a detailed account of the history of this company and of the work it is doing. The new village, called Shaftesbury Park, will illustrate its mode of proceeding. The site embraces forty acres. The founda tion stone was laid in August, 1872; and it is expected that by the opening of the coming winter, 749 of the intended 1,200 dwellings will be ready for occupation. The houses are engaged long in advance of their completion, while over 1,200 applications, for houses atill to be built, are on the books. The dwellings are of four distinct classes: Class contains eight rooms-a front parlor with bay windows, backroom for meals, a kitchen with dresser and kitchener, small larder, a scullery fitted with copper and sink, a closet ash pit, and coal cellar; while on the floor above are three bed rooms and a bath room. Class 2 are seven roomed houses, without the bath room. Class 3 have six rooms, and water are laid to every house. Ventilators are supplied to each room : and the drainage (except surface water) is carried back from the closet and sink in the rear, so that no drain passes under any house. The foundations are of concrete, and the roofs are of slate. The paths have been laid with asphalt, and shade trees have been set out. There is also a temporary lecture hall, now used as a school room. School houses will soon be built, and baths and wash houses are projected. A site is left for a cöoperative store, and t acres and a half have set apart for park and playground.
The houses have been built, to a great extent, on the cöop erative system, the work being let out, under foremen in each branch, to the bricklayers, carpenters, painters, plaster ers, slaters, and plumbers employed, and it is reported, as matter of special satisfaction, that, under the piecework plan which has been adopted throughout, union and non-unio workmen have worked harmoniously together, and there ha been no csuse for the intervention of the appointed arbitra tors. Many of the workmen are shareholders in the compa ny, and not a few of them livein the houses they have helped to build. The result of this arrangement has been nnnsual care in the finishing of thair work. The houses built by the erected, yet they can be sold at equally low prices, in consequence of the materials saved by the workmen, who are shareholders. It is further claimed that these interested workmen earned, by piecework, forty per cent more than heir c rdinary wages
The growth of the
The growth of the company in popular favor is shown by the annual amount of stock taken. At the close of the first year, 1867, the share capital in hand was only $\$ 2.500$; at the close of the next year it was $\$ 9,000$. In 1869 it rose to
$\$ 15,000$. In 1870 it was $\$ 30,000$. In 1871 it increased to $\$ 92,500$. In 1872 it rose to $\$ 260,000$, and at the end of 1873 it was $\$ 560,980$. The last annual dividend was six per cent, and previously they had divided seven and a half per cent Were our means for cheap and speedy transit equal to hose of London, villages like this might be multiplied indefinitely along the Highlands, in Westchester, and on Long Island. The advantage, not only to those who would thus
be enabled to take their families into wholesome air, but o thousands who would of necessity remain within the city limits, would be incalculable.

MEASUREMENT OF A SCREW PROPELLER.
A correspondent asks for a rule for measuring the pitch of a screw propeller. The process, though simple, reguires con siderable explanation to make it understood, and as the sub ject will doubtless be interesting to many of our readers, we devote some little space to its corsideration. The surface of a screw propeller is the same as would be generated by a line revolving around a cylinder, through the axis of which it passes, and at the same time advancing along the axis. In this way the under or back surfaces of the blades may be supposed to be formed, and then the proper thicknessis put on, so as to make the front or entering surfaces. All mea surements of a blade should of course be made on the back surface. It will be evident, from the explanation of the man ner in which the surface of a blade is formed, that by varying the shape of the generating line, or the rate of its motion along the axis, very different forms of blades can be produced. The pitch of a screw is the distance the generating ine moves in the direction of the axis, while it is making one revolution around the cylinder. It is evident from this hat the pitch of the screw may be constant throughout, or it it may vary from forward to after part of the blade, or from hub to periphery, according to the. rate of motion of the generating line in an axial direction, and its angle of inclination to the axis. Hence in measuring a screw propeller will be necessary to determine the pitch at a number of points, for the purpose of ascertaining whether it is variable or constant. Every point in the generating line describes a curve which is called a helix. If measurements are taken along one of these helices, they will show whether the pitch varies from forward to after part of the blade, and measurements on corresponding points of different helices will indicate wheher or not the pitch is constant from hub to periphery. As gencral thing, the hub of a screw propeller is faced off at the ends, and the blades do not overhang a plane pasaing through this face. If necessary, however, a faced surface can be fitted to the hub, and made thick enough for its plane to clear the blades. Provide a atraight edge a little longer than the radius of the propeller, and secure cleats for it, every foot of its length for large wheels, and from nine to six inches apart for small wheels. These cleats are intendod to serve as guides for a rule, so that measurements can be made with accuracy at right angles to the straight edge. Se cure to the end of the hub a piece of paper on which the enter of the hub is marked, and the circumference is divided nto any number of equal parts. Then place the straight dge on the end of the hub, bringing a mark near $i^{t_{s}}$ end to the center of the hub, and making its direction coi ${ }^{n}$ cide with a division of the circumference. Measure the per Pendicular distance from the straight edge to the surface of the blade, at each of the cleats; then move the straight edge to coincide with the next division of the circumference, and again take measurements. The arrangement is represented in the accompanying engraving. the circumference of the hab being

divided into thirty-two equal parts. Suppose that, in the position represented, the measurements from the straight dge to the blade, taken at each cleat, are each six inches Then move the straight edge to the next position, and sup pose that the measurements are each fourteen inches. This hows that the generatrix, in one thirty second of a revolu ion, has advanced eight inches in an axial direction, conse quently the pitch is thirty-two times as much, or twenty- one feet and four inches. If measurements taken at successive divisions of the circumference give a successive increase of eight inches for each division, it shows that the propeller is a true screw, with a pitch of twenty-one feet and fourinches. Of course, if the pitch varies, it will be shown by the varia tion in the difference of the measurements taken at successive divisions of the circumference. It will be observed that the measurements made at one cleat in different positions of the straight edge give determination for the pitch at different

