change of form produces a corresponding derangement of crystaline structure, but the defect, which in Fig. 4 was concentrated in the line A B, is in Fig. 8 spread out between the points C and D, so tbat no single point is much weaker than a similar point beyond C or D.

During the erection of one of the tubes of which the Britannia bridge is composed, a hydraulic press was used, the cylinder of which had a bottom formed as shown in Fig. 9. When pressure was applied the bottom went out, breaking where we would be led to expect it would, through from the inner to the outer angle, as we have shown in Fig. 10. though metal was in excess at that part. A new cylinder was cast, having a semi-spherical bottom, a section of which you see in Fig. 11; and although it was not as thick in the part where the first cylinder broke, yet it sustained a much greater strain without giving way.

In making patterns for whatever kind of castings, the greatest care should be taken to avoid all angles, of whatever size or shape, for, as has been said already, every change of form brings its corresponding lines of weakness. If curves are necessary, the larger they are the better.
Many of the catastrophes which result from the falling of bridges, or of buildings, might be avoided if this matter had received proper consideration.
For example, it is required to cast a bar with a hole through it. To make up for the iron lost by the hole, the pattern maker adds a square piece to the top of the pattern, as is shown in Fig. 12. When strain is put upon the bar, it breaks through one of the angles at A or B, and it is found that the bar is weakened by the addition more than by the loss of iron which the hole occasioned. The bar shown in Fig. 13 would have been better. -W. Keep.

GEOLOGICAL RECORDS OF LIFE.

Our engraving illustrates the progress of life, as developed by an examination and study of the fossils contained in the various deposits and geological subdivisions of so much as is known of the earth's crust. The diagram is separated into two general divisions, one for animals, the other for plants. It is again divided into seven subdivisions, corresponding to the geological periods. Commencing with the lower or azoic period, we find the first appearance of life was vegetable-the alge (sea weeds), a flowerless order of plants, propagated by spores instead of seeds, and vegetating in low, swampy places, or such as are entirely covered by water. This is the lowest form of life, and just what we might expect to find at the very beginning thereof.

Geological records of life.
As soon as we leave the azoic period, we come into the lowest order of animal life, which consists of radiates, mollusks, and articulates (crustaceans and worme). Each of these have continued in slightly varying quantities through all geological periods to the present time. The width of the ehadings represents their increase or decrease through the several periods.
Fishes next commenced their existence, and have slowly increased in number up to the present time.
Next follow reptiles, and after them mammals, with very important variations in quantities antil we reach the age of man, the last and crowning act of creation.
In the vegetable world, as we havealready said, we first find the alge or sea weeds-flowerless plants; next come the acrogens, a second class of flowerless plants, embracing the coal plants, the wonderful abundance of which, during the carboniferous age, is strikingly manifest from our diagram. The conifers also began to appear about this time, and, as will be seen, have steadily increased to the present time. In subsequent succession came the cycads, the dicotyls, and lastly, the palms-the most magnificent of vegetable creations.

The remains of all these animal and vegetable creations are found as fossils, and always in the order of superposition as here given. They present most interesting and in structive study.

What Constitutes a Mercantile Delivery? The Superior Court at Boston, Mass., has ruled on the question whether a wagnn built to order and remaining in the maker's store room, the buyer having failed to pay for it and refused to allow its sale, was at the buyer's or maker's risk, it having been burned. The court decided that "the article having been specially selected for the defendant, set apart for him and marked with his name, and all with his knowledge, and nothing remaining to be done except that he should pay the agreed price, no further act was needed to vest the title in him, subject to plaintiff's lien for the price, and it remained in the plaintiff's (the maker's) possession at

Correspondeuce.

The Sczaroch an American Invention.

To the Editor of the Scientific American:
In your issue of August 1 you describe a recent Russian invention called the sczaroch. I herewith send you a draw ng of a projectile which I invented last January, and whic ings (which I still possess), and it would be easy to prove the truth of what I say. The enclosed sketch needs no explanatruth of what I say. The enclosed sketch needs no explana-
tion after reading your article of August 1 . But I have thought of a use for the projectile, not named in your article.

It cases where it would be of advantage to send a shell a long distance, this could be accomplished by making the outer projectile of rolled iron, so that the second explosion would not burst it. The inner shell would, I think, travel as far as the outer would have done, plus the additional distance given by the powder contained in the outer shell. Of course, great accuracy of aim could rot be effected.
If I understand the sczaroch, my invention is substantially he pame.
Minneapolis, Minn.
C. Ridgway Snyder.

To the Editor of the Scientific American:

Your surmise that "Max Adeler's" account of his pyro technic experiment with Pitman's chickens " emanated from this side of the water" is quite correct. But the Danbury News man is guiltless of any part in it. Max is a Philadel phian, and can point a moral with fun, and disclose the ludi crous side of human imperfections. He bas had his turn too, with the plumbers, and tells a story thereof, which, though quite different from that on page 176 of your current volume, is equally moving. This, with much beside to pro voke quiet laughter, may be found in his "Out of the Hurly Burly, or Life in an Odd Corner." From chickens, morals, etc., to taps is a somewhat violent change of base; but is the very one I must make.
If mvexperience of nearly thirty years in a machine shop bas taught me anything, it is that a tap (I speak only at this time of those having a V thread) should have clearance in all parts of its thread. The curve of any thread between two parts of its thread. The curve of any thread between
adjacent grooves should be an involute, not a circle. Simply Giling away the tops of the threads is only a little better than nothing. After the thread is finished, grooves cut, and burrs carefully cleaned from the cutting edges, blue the tap over a clean fire and let it cool. Now take a good Stubs' taper saw file, lay it nicely between the tbreads, and file the clearance. The color will show the work of the file, and should be left untouched for a small distance back from the cutting edge, say, in an inch tap, one thirty-second of an inch. A machine tap, never requiring to be turned back ward, may be cleared entirely across the section, so that its cut will be like that of a reamer in principle, but with lese clearance. A hand tap, which requires to be turned back ward. sbould be filed straight across the section, leaving both the cutting and following ends of each thread up to the original diameter ; and the grooves should be shaped something like those in the lower figure on page 187, current volume. This will most effectually prevent any trouble from the cut tings wedging in backing out. A fair mechanic will very readily acquire the knack of filing uptaps as abovewith ease and rapidity. A little experience will also teach him how much clearance is best. Too much causes the tap to work with some irregularity unless very carefully handled, so that it is better to commence with but little. Of course, in establishments where the manufacture of tapsis a business, devices can readily be attached to an engine lathe, by which the thread cutting tool shall receive such movement as wil give the clearance as required, without subsequent filing. Whitworth has made taps in this way for at least twenty five years. A number of establishments in this country are also using similar machinery for tap-cutting with every sat isfaction. And a good many smaller concerns are regularly fling all their taps as described above; each, perhaps, with some trifling difference in detail.

Callipers.
Philadelphia, Pa.

Grindstone Spindles.

To the Editor of the Scientific American:
For every mechanic who has neither steam nor water power, it is of some importance to have a good metbod of turning his grindstone by foot power, so that it will not take more than one person to sharpen a tool.
Common grindstone spindles, for this purpose, with crank at one end, are open to the great objection that the stone will never keep round, because every person is inclined, more or less, to follow the motion of his foot with his hand, which causes the pressure on the stone to be unequal. The barder pressure is always applied to the very same part of the stone, and will soon make it uneven, so that it is impossible to grind a tool true. To avoid this, put in place of the crank a small cog wheel to the spindle, say with twelve cogs; have another short spindle, with a crank and a cog wheel of thirve: $n \operatorname{cog} s$, to work into the former. The stone
will make about 0.07 of a revolution more than the crank, and the harder pressure of the tool on the stone will change to another place at every turn ; and the stone will keep perfectly round if it is a good one. This is a very simple contrivance, but it will be new to many of your readers.
W. Kapp.

Small Printing Press Engine.

To the Editor of the Scientific American:

Some weeks since, I noticed an article in the Scientific American, requesting a statement of the performances of small engines. A few years ago, I built a small engine, which I set up in the Herald office in this place. The dimen. sions of the engine were as follows: cylinder 2×4 inches, sions of the engine were as follows: cylinder 2×4 inches,
steam ports. $\frac{3}{16} \times 1$ inch, and exhaust $\frac{1}{4} \times 1$ inch. Outside lap of valve was $\frac{1}{16}$ of an inch; no inside lap. Throw of valve was $\frac{1}{2}$ inch. The engine also had a link, the slot of which was 2 inches long. The main rod was 8 inches from center to center. The pin in the crosshead was of an inch in diameter, and the bearing of the main rod on crank was $\frac{8}{4}$ of an inch in diameter. The entire length of the bed plate was 2 inches. The shell of the boiler was $\frac{1}{4}$ of an inch thicis, and the heads, $\frac{8}{8}$. The boiler was 3 feet long by 1 foot in diameter, with nine $1 \frac{1}{4}$ inch flues. Half of the boiler and the flues made up the heating surface. The grate was 1 foot equare. The flame went under the boiler, and returned through the fues to the stack. The pulley on the engine shaft was 6 inches in diameter, over which a belt ran to a 16 inch pulley on a tly wheel of 700 pounds. This wheel was belted to a line of $1 \frac{1}{2}$ inch shafting, from which a large Potter newspaper press was run. The pulleys were of equal diameter from the fy wheel to the press. With 75 pounds of steam, the engine, making 300 revolutions per minute, ran the Potter press, printing 1,000 sheets per hour, also a medium sized press printing 1,200 sheets per hour. A small armful of wood and four buckets full of water was sufficient to run off the edition of 1,200 copies in a litile over an hour. The off the edition of 1,200 copies in a litile over an hour. The
water was pumped cold from a tank by a half stroke pump directly into the boiler. The exhaust steam was turned into the stack. Has the performance of this engine been beaten by any similar small engine? The edition was formerly worked off by four men, turning the large wheel by cranks, in four bours.

Frank C. Smith.
Delaware, 0
A Siphon for Drawing Liquids.
To the Editor of the Scientific American:
I wish to bring to the notice of your readers a siphon, which I believe to be new. I have been using it for twoor

three montbs, and I find it very convenient for drawing acida and solutions. It is composed of the glass tubes, A and B, B being about twice the diameter of A, and drawn down emall at one end, to which is attached a rubber tube, C. The tube, A, is packed at D. By immursing E in a liquid, taking the rubber tube, C, between the thumband foreinger, and draw ing it down as far as possible, it will create suticient vacuum to cause the liquid tu pass the bend and flow out, which it will continue to do until the rubber is released. J.W.S.

Magnetic Experiments.

To the Editor of the Scientific American:

On reading the account of the magnetic experiments of Mr. H. P. Henry, on page 100 of your carrent volume, it occurred to me that an interesting and instructive variation would be to substitute mercury for water. Let the magnet be cemented to the bottom of a glass vessel, to keep it from floating, and then drop iron flings on the surface of the mer cury. It seeme to me that the laws that govern the move. ments of the currents would be more correctly exhibited than in the usual experiments on glass and paper, where the friction must necesearily interfere with freedom of movement. The expariment could be still further varied by first sprinkling iron filings on the mercury, and then causing the magnet to approach from above, first with its plane parallel to the surface, then at right angles, etc.
Will you please request Mr. Henry or some one else who bas the time and facilities to make the experiments sug gested, and publish the results in your paper?
Albany, N. Y.
A. F. Onderdonk.

A recent report on the Great Butler Oil District, covering the.entire production of the country south and west of Pittsburgh, gives at present 596 producing wells and 81 wells now driiling. There are 1,076 engineers emploged. The working capital invested is $\$ 1,859,000$. The daily production of oil in this district is $\mathbf{1 ; 5 , 5 4 8}$ barreis, which indicat.es a large decreasa within the past month.

