THE YELLOWSTONE HOT SPRINGS.
We publish herewith en grevinga of two of the most remarkable natural features of the Yellowstone region in W yoming Territury, for which we are indebted to the Illus. trated London Neeos. This district abcunds in geysers or boiling fcuntains, and in marvelous ir crustations of calcareous or siliceous matter.
Congress, two years ago, passed an act reserving this portion of its dominicn, fiftyfive miles broad and sixty-five five miles broad and sixty-five
miles in length, from private miles in length, from private
agricultural or other occupaagricultural or other occupa-
tion, in order that the wonders and grand beauties of its scenery may always be enjoyed by visitors from every part of the world. In the neighborhood of Gardiner's River, which joins the Yellowstone, are the Mammoth Hot Springs, the subject of one of our illustratione. Here the hot water flows down steep walls of rock from a terrace above, and fille the beautiful white basins it has hollowed out in each ledge of the cliff. These basins are from 4 feet to 8 feet wide, and 2 feet or 4 feet deep, making perfect 4 feet deep, making perfect
natural baths, of different denatural baths, of different degrees of warmth. The white
deposit covers the entire side of a mountain 1,000 feet high, and extending one mile in length.
Not far from this is an extinct geyser, which has built up a cone of lime, 42 feet high, and 22 feet in diameter at the base, formed of the successive deposits of matter from its old eruptions of boiling water. eruptions of boiling water.
This cone, of which we also This cone, of which we also
give a view, is called "The Cap of Liberty," from the fancied resemblance of its shape to

THE CAP OF LIBERTY, YELLOWSTONE REGION.
that of the emblematic head dress worn by the revolted slaves of ancient Rome.

Sounding the Paclif.

Commander Belknap, of the U.S. S. Tuscarora, now engaged in deep sea soundings in the Pacific Ocean, has recently transmitted a report to the Navy Department, from which it appears that the first effiorts made only served to prove the impossi bility of laying a cableover the bed of the Pacific ocean. The course last taken was on a great circle passing through the island of Tanaga, of the Aleutian group, from Yoko hama to Puget's Sound Hardly 100 miles of this route had been traversed when an extraordinary shel ving of the bottom occurred the lead making a descent of 1,594 fathoms in a 30 miles run. On the next cast no bottom was reached at 4,343 fathoms, or nearly five miles depth, at which point a heavy current tore the fine sound ing wire apart. This settled the question as to laying a cable in that direction; for it was evident that if the force of the current were strong enough to break the fine wire it would quickly destroy the large line.

The Tuscarora then re turned to shore and started off on a new great circle from Point Komoto. Great depths were again encountered, at which such pressures existed as to crack and crush the thermometers sent down Currents also caured the loss of large quantities of wirf, so that Commander Belknap abandoned the second attempt.

The investigations thus

THESMAMMOTH HOT SPRINGS GARDINER'S RIVER; WYOMING TERRITORY.
far described, while of bat negative value so far as the main object of the search is concerned, are of interest and impor tance to hydrographic siience, as establishing the fact of depths in the sea hardly to be expected in view of the namerous soundings of the Challenger and of the Tuscarora herself, over wide expanses of the Atlantic, Pacific, and In dian Oceans, and confirming the existerce of a very deep trough under the Japan stream, similar to that cat by the Galf Stream on our own coast.
Commander Belknap's third attempt has proved moresuccoseful; and in a telegram from Ounalaska, dated August 29 he anmounces the practicability of a shore line along the eosst of the Kurile Islandz. The greatest depth found was 4,037 fathoms, 80 miles from Aggalton; the next greatest depth, 3,754 fatboms, 120 miles east of Kurile's Straits. A ridge is reported between Kurile and the Aleutian Islands the least depth of which is 1,777 fathoms, and at Tenega fine harbor and beach exiets.

gaxrespandence.

To the Editor of the Scientific American:

The query of your correspondent J. T. N., "is this true," (referring to the colors produced on the surface of ateel in the process of tempering) is very certainly answered in the affirmative, Nobili to the contrary notwithstanding, when it is remembered that these colors appear as readily upon pure (wrought) iron, in which, of course, there is no carbon, as upon steel. In facta similar effects are produceduponmany other metals, and always during an elevation of their temperature.
It is true, as he atater, that the hardness of a piece of ateel varies with the carbon contained, but not no with the temper, the latter being simply a degree of softening produced by elevation of its temperature, of which softening the olor re taken as a measure; and this measure holds good for any grade of steel.
It is well known, also, that a coating of oxide upon the sarface of any metal greatly retards the further rusting, in stead of accelerating it, as J. T. N. aeserts. But for this fact, the value in the arts of most of the oxidizablemetals would be greatly diminished, and iron would be one of the most perishable of subetances, even at ordinary temperatures This fact, then,accounts for the protection afforded to metal lie surfaces by the presence of such a film, and does not equire that the infnitesimal quantity of carbon resident in steol should have any credit for it. John T. Haweins.
62 Cannon street, New York city.

To the Editor of the Scientific American:

Mr. Rose's papers on "Practical Mechanism" come righ down to an intricate knowledge of practice and its theory. find in them solutions of things that had often pazzled me, and explanations of things which I thought I understood, but now find I did not. In speaking of tempering taps, etc., Mr Rose gives three methods, which include all our present shop practioe, to which a Mr. Hawkins objects. What plan does want to substitute?
We do not care why the color comes; but if there is a new way to temper, any better than the old one, I for one would
like to know it.
G. S . like to know it.
New York city

Stimming with the Clothos On.

To the Editor of the Ecientific American:
After perasing your valuable article on learning to awim, I gave swimming with the clothes on a trial, and I must asy I fullyagree with you as to its value. I felt nervon, at first thinking that I would not be able to swim at all; bat after making an attempt. I was astonished to find bat little trouble in beeping upon the apper sarface of the water. My elothe seemed to uet an if they wore olled with air, assisting to
keep me ap rather than to pall me ander. I find that con. bdence and coolness aro of great value. Many good swim mers are loot for want of thene. W. A. Hutchissos. Albany, N. Y.

A New Disinfectant

To the Editor of the Bcientific American:

The deodorizing and disinfecting properties of the protesulphate of iron have been long enough known, and immense quantitios of it have been ased for such parposes daring the past three or four years. Still the odor of the city of Cologne can be distinctly discerned in every town and city; and there are few abodes of men where there is not still needed some chemical agent for making the air tolerable The stable, the pig pen, the privy, are all offensive, and probably will be until that scientific millenium comes, when cleanli ness and healtbfulness will be cared for first. I have had my attention drawn, to a new source for disinfecting pur poses, by an accident. Last winter I had brought to me, in a load of bituminous coal, a bushel or two of that slaty sor which is filled with iron pyrites. I had it thrown into a hoap at the time, upon somesod. It remained there some monthe, slowly decomposing into flakes and white eflorescence. A last a heavy rain came and washed a quantity away into the grass ; and wherever it went it killed the grass, turning it black to the point. This led me $\boldsymbol{\jmath}$ think of it might be useful as a deodorizer, and I had the rest thrown into a privy vault, with the reanlt that the odor was so com pletely removed that no one would suapect the place from it. As thissulphide of iron is soabandant thronghout the United States, and espec:ally as it is got out in large quantitios in
the great coal fields ($\mathbf{w h}$ here it is not only worth nothing, bat

Is an expense to cart away). it may become of some use in the way of a disinfectant and deodorizer. The iron sulphide becomes iron protosulphate when exposed to air and moist ure, and then, uniting with more oxygen, becomes iron per sulphate. This latter change is what makes the protosul phate valuable as a disinfectaot; but as the sulphide has to be converted into the protosulphate by uniting with four atoms of oxygen, it will be seen that the salphide will be the more valuable, weight for weight
It is probable that the iron sulphide, found in masses so or this purpose by crushing it.
A. E. Dolbear.

Measuring the Distance of the Sun.

To the Fiditor of the Boientific American
When one edge of the illuminated surface of the moon appears as a straight line, the line joining the center of thi line and the eye of the observer forms a right angle with the line joining the centers of the sun and moon. If we can determine the exact lime when the edge of the illuminated surface appears as a straight line, we can measure or calculate the angular distance between the centers of the un and moon; and taking the moon's accepted distance from the earth as a base line, we have only to find the hy pothenase of a right-angled triangle for the distance to the an.
To find the exact time when the right angle is formed The common telescope, with spider lines, is not suitable for the purpose, for the edge will appear rough and atraighter than it does to the naked eye. I propose to ane an in strument that will make the edge of the light appear, say, one thousand times as crooked as it does to the naked eye so that when the edge becomes exactly straight, in being made one thousand times as crooked it will etill be straight. This instrument contains the same namber of lenses as an astronomicel telescope, bat the surface oif the lenses mast be cylindrical instead of globular, and rectangular instestof round. Such lenses will throw parallel rays of light to a ine instead of a point. In adjasting the instrument, these rocal lines mast coincide. One spider line should be placed no as to coincide with the focal line of the eyepiece. This instrument will only magnify in one direction. It will make roand objecte very elliptical. To determine whether a line is straight or not, the instrament mast be placed in sach a oosition that the direction of the magnifying power will form a right angle with the line. The edge of the illuminated surface appears smooth when magnified in only one direction. By making observations at both the first and last quarters, and comparing the resalts, corrections can be made for the emall irregularity of the general curvature of the moon's surface, at the very moment that the edge of the il. luminated sarface appears straight, as viewed through this instrament. The sun's and moon's right ascension and de clination must be known, from which we can obtain the re quired angle. I hold that by this method the distance to he sun can be measared with greater accuracy than by th common method, because the base line is so mach longer.

${ }^{d}$
D

a To the naked oyo when edge of lightir not quite atraight Δ_{8} meon apposis through the instrument at same time. c To the naked eye when edge of light is exactly straight. d With the instrument when the edge of light is exactly straight.

- With the instrument, when the focal line is not quite pa rallel with the atraight ed geof light.
California College, Cal.
L. Lillard.

Undetectable Adnlterations.

The pablic has.been so frequently cautioned against the poisonous compounds sold under the name of liquors, at even the more pretentions drinking saloons, that warning are taken as a matter of conrse and set down as part and par cel of the well known thongh incontrovertible argaments of the teetotallers. While we should scarcely expect to awaken new interest by reverting again to the quancines int
funel oil, benzine, and kindred abominations entering into the composition of the liquids retailed, there is certainly the composition of the iquide retailed, there is certainly attention in Profeseor J. F. Babcock's excellent article on attention in ProfesBor J. F. Babcock's excelilent article on
teating wines and liquors, recently publighed in the Labora ory, particularly since the writer positively anserts that at ificial liquore may be made, the difference between which and the genuine, chemical analygis cannot detect, and which ro excelled only by the very finest brands.
Distilled liquors are at first colorless, becanse the coloring matter of the substances from which they are distilled, being non-volatile, remains behind in the still, while only water alcohol, and the pecaliar compound ethers to which the different liquors owe their flavors pass over. By keeping in an ak cask, an amber tint is obtained from the wood, and aleo a mall portion of tanin,angmenting the astringent proper ties.

Pure brandy contains: Alcohol, water, traces of acetic in acetic ether, œnanthic ether, coloring matter, and tanin. It never contains over filty per cent of alcohol by weight, and to this percentage it owes its intoxicating prop orties. The last five ingredients impart flavor. By testing the alcoholic strength of the liquor, we may find either the addition of water, or of spirit, or that it is of the proper strength. By evaporating to dryness, the solid reeidue may be examined, and adalterations of glycerin. capsicum, etc., noticed; all brandies contain coloring matter and tannin, which are of course present in the residuum. But the determination that the alcoholic strength is exsetly right, and that the residue contains no foreign ingredien is, is no proof whatever that the liquor is not a gross imitation. Chemical analysis is powerless before the two common frauds of reduction and imitation. It cannot tell that perhaps twenty. five per cent of spirit and watar, of the proper alcoholic strength, dosed with tannin and coloring matter, has been added, for the only effect is to impair the flavor. Experienced palates may detect the fraud by taste; but this is bat a precarious reliance. So called British brandy is prepared by giving to proof apirits,mado from molasses and posseseing 49 per cent of alcohol by weight, animitation of brandy flavor. Oil of cognac, distilled from the lees of wine with water, and dissolved in alcohol, is often ased in the spurious manufacture.
Professor Babcock gives the following formula for an arificial brandy, which, he atates, contains nothing but what may be found in genuine Cognac. No chemical analysis can prove it to be an imitation; and for all practical purposes, he seer no reason why it should not have all the medical virtues of the original:
Cologne spirit is diluted with water till it stands at proof. Of this 12 gallons are taken and mixed with 5 gallons of wa. ter; $\frac{f l}{} \mathrm{lb}$. of crude cream tartar, previourly dissolved in 1 gallon of boiling water, is added, together with 6 fluid ozs. of acetic ether, 2 quarts of wine vinegar, 5 lbs. of prunes (bruised), and a small quantity of oil of Cognac, sufficient to flavor the mixtare. After standing for a fortnight with occarional agitation, the mixture is placed in a still and 15 gallons distilled. The distillate is put into a clean brandy cask, and a amall quantity, say 1 lb ., of oak shavings is added to produce the desired astringencr. After standing for a week, it may be drawn of and colored witha solution of caramel. What has been said of brandy applies equally well to whisky, gin, and ram, which may all be successfully imi-

Pneamatic Telegraphy.
An interesting exhibition of telegraph machines, worked exclusively by air, was lately given in Joondon by Mr. Guattaris, the inventor. A number of different instruments were on view. The impulse is produced at one end of a tube by the operator, and performs the mechanical work at the other end, either by ringing a bell or turning a needle round a dial. The rapidity and precision can be made equal to the electric telegraph, the conducting tabe being able to be laid ander or over cover in the same manner as the ordinary telegraph. Attached to each machine is a bell and dial, and the message is transmitted by the moving of a amall lever which drives the air through a pipe to the other operator. As the lever is moved ap and down, the dial, which stands where the message is destined for, registers whatevar
the words may be. Each dial is supplied with a needle: the words may be. Each dial is supplied with a needle:
and as each spurt of air prespes a aginst the works of the machine, the needle is moved exactly the number of times that the lever is pressed. Each instrument can receive or send a message about 400 yards. The instraments exhibitod were designed for intercommanication between large coffee houses, offces, hotels, and vessels.

Nickel Mines in A ustralla.
The Bydney Morning Herald notes recent analytical tests of a rich vein of nickel, found at Noumea, Now Caledonia The sabstances present are oxide of nickel, magnesium, silica, iron, alaminam, and calcium. The nickel ore is a ailieate of nickel and magnesium, with cortain impuritios, and the brown serpentine accompanying it is an impure silicate of magnosiom, containing a small proportion of oxide of nickel. The development of Australiau mines of nickel will have no mall effect upon the quantity and consequent value of that metal now in existence. It will be remembered that, not long since, the German manufacturers of German silver petitioned their government not to use nickel for coinage, on account of its scarcity and the greater need which existed for its application to other purposes.

Railway Statisticg. - A Parliamentary retarn just pub. lished atates that in 1873 there were in all 15.814 miles of railway in the United Kingdom. The total authorized capi. tal a mounted to $\$ 3,383,432,930$, of which $\$ 2,941,601,540$ was paid up. The number of passengers, exclusive of season ticket holders, was $455,320,188$. The total receipts from all sources amounted to $\$ 288.710,000$, of which fifty-five per cent was from goods trafic, and forty-one per cent from passenger traffic. Fifty-three per cent of the groes receipts was consumed in working expenditure, leaving \$134,945,760 for net receipts. This was 4.59 per cent on the total paid ap capital.
G. R. B. aays: "To restore the burnt ateel point of a pick, drill, or any aimilar tool, do not tonch it with a hammer; bat while it is still emitting sparks,plange it into cold water and let it remain antil cold. Then reheat to the proper degre, and work it: you will find itas good as before it was br.nt."

