A BALLOON STEERTNG DEVICE. Experiments have recently been made, at Woolwich Arse nal, England, with an invention designed to accomplish the long wished result of steering a balloon. It is the invention of Mr. Bowdler, and consists of t wo fans or propellers, and a rudder with simple hand gear, the entireap. a rudder with simple hand gear, the entireap-
paratus weighing about 70 lbs . In our Fig. 1, paratus weighing about 70 lbs. In our Fig. 1,
C is a sheet iron propeller working on a verC is a sheet iron propeller working on a ver-
tical axis, and made to rotate by multiplying gear and winch at from 600 to 720 revolutions per minute, the object being to cause the balloon to ascend or descend without loss of gas or ballast. B is a similar propeller working on a horizontal axis a a about the same speed, inasmuch as this may be required to act in any direction. A rudder, A, made of canvas, with strengthening bands, is fixed opposite the prostrengthening bands, is fixed opposite the pro-
peller, and is held in any desired position by peller, and is held in any desired position by
ordinary rudder lines, while the propeller is ordinary rudder lines, while the propeller is
made to revolve by hand and winch. Thiegear Mr. Bowdler did not consider was large enough to suit the balloon which the well known aeronaut, Mr. Coxwell, lent for the experiment, and which contained about 60,000 cubic feet of gas. He hoped, however, that a distinct indication of the effect of the propellers would be manifest.
The experiment was carried out under the personal direction and orders of Major Beaumont, R. E. The official programme was as follows: (1) The balloon to be balanced carefully, and when in a captive condition to be raised to about 150 feet, and lowered repeatedly by the vertical propeller in order to test its efficiency. (2) The balloon to be released, and as soon as the course be shown to be steady and the direction ascertained by means of Mr. Coxwell's indicator, maps, etc., the horizontal Coxwell's indicator, mape, etc., the horizontal
propeller to be worked at right angles to the propeller to be worked at right angles to the
course of the balloon, and its maximum effect course of the balloon, and its maximum effect
thus obtained carefully noted. (3) The balloon thus obtained caiefully noted. (3) The balloon
then to be raised and lowered by the vertical propeller, without throwing out ballast or discharging gas. After attaching the gear to the side-as shown in the engraving-Major Beaumont, Mr. Coxwell, Mr. Buwdler, and a sergeart of the Royal Engineers entered the car and the first part of the programme was commenced, a series of small pilot balloons being menced, a series of small pilot balloons being sent off in succession to ascertain the direction
of the wind and probable course of the balloon when liberated.
the time disabled. Shortly after this the balloon was liberated for the trial of the horizontal propeller, and the remainder of the programme was visible only to those in the

Mr. Bowdler considered that his eteering apparatus ought to be shown to have had an effect. This it had, but in the nature of thinge it could hardly be otherwise. The queation is whetber it gave promise of producing a sufficient effect to be useful, and this we cannot at present say it did.
The problem of how to develope sufflient power to alter and govern the course of a balloon is, saye The Engineer, from which we extract the engravinge, no easy one. The enormous bulk of gas required to support any given weight, and the fact that the balloon is bodily immersed in a moving medium, with. out access to any fulcrum by which the force of the air might be turned to account, as in the case of a ship on the water, constitute difficulties that are far from being surmounted. A hand propeller may produce an effect that is just appreciable on a still day; but when a balloon is liable, almost without notice, to find itself moving at twelve miles an hour, or much faster, it is evident that a power of a totally different class is necessary to be of any real use. We should be very glad to see something of greater promise tried in the fair and thorough way in which Mr. Bowdler's gear was tried.

Yellows in the Peach.
If you dig around a peach with the yellows, you will be first struck with a musbroomy smell. Picking out the roots, and examining them with a lens, you will see millions of thread.like fibers, which are the mycelia of fungi. These eat the young fibers, and leare only the main roots, through which all thenutriment of the plant has to be gathered; and as an old root is unable to do much more than draw in water, the tree becomes in a measure starved, and the leaves become yellow, just as they would be if growing in poorsoil, which, though the plant might have plenty of roots, furnished nothing for the roots to eat. To have plenty of roots and no food is equivalent to having plenty of food and no roots. The effect on the plant is just the same. Remedies which look to the destruction of this root worked, and the fairly balanced and the vertical propeller \mid of 40 feet, although the line was slight; and had the $150 \mid$ parasite are employed. Hot water has done it, so has a weak and lowered again. when worked hard, produced a decided effect; probably the and deacent might correct the error. After a few trials, how- $^{\text {and }}$ maximum rate of ascent did not exceed 50 feet per minute,
balloon.
but it was not far short of it. The was no great accuracy speaking critically, in the arrangement of the conditions. For example, the line which held the balloon captive was held by hand, and thus every foot the balloon rose it had an

BOWDLER'S BALLOON STEERING APPARATUS.-Fig. 1 very polymorphous. This one may enter into the circulation

of the plant, and exist in that oase as an apparently distinct species, extending through the tissue, and destroying it as it goes. This neems likely from some experiments by Mr. goes. This aeeme likely from some experiments by Mr
Thomas Taylor, of the Department of Agriculture. At any Tbomas Taylor, of the Department of Agrizulture. At any
rate it is generally delieved that a bud, or even a knife used in pruning a diseased tree, will onmmunicate the disease to a heulthy one.-The Gardener's Monthly.

PROCEEDINGS OF THE AMERICAN ABSOCIATION FOR THE ADVANCEMENT OF BCIENCE.

We give below abstracts of papers read before the Hart ford Convention, concluding our report of the proceedinge of that body. Under the head of the
molecular volume of water of crybtalization, Professor F. W. Clarke stated that, when water unites to form a hydrate or a crystaline salt, contraction ensues, and by studying that contraction we get at curious results. In tive case of water of cryatalization, Profeseor Clarke has atudied over 30 ealts, and in every case the molecular volume of the water is about 14. With water of hydration no such regularity is found. Evidently, then, when water unites with an anhydrous salt from water of crystalization, all the condensation which occurs is on the part of the water, the volume of the molecule of the salt itself remaining an cbanged. Referring to the molecular heat of similar com pounds, the same speaker said that it is commonly though that similar compounde have equal molecular heat. This is only approximately true. In comparing about 20 series of similar compounds, Professor Clarke finds that the molecular heat increases alightly with the molecular weight, though is a very different ratio
Profersor Lovering exhibited a drawing of a new instru went which he had devised, by which vibrating flames re Hected in a revolving mirror could be made visible to a large audience. Paymaster General Alvord, U.S. A., explaiued a table, from which it appears that the annual death rate of the officers of the army in the period of 25 years,from 1824 to 1848 , was 27 per 1,000; the rate for the last 25 years, from 1849 to 1873, was 23 per 1,000, showing a decided de-

Piofessor T. Sterry Hunt, with reference to

the sewage question,
mentioned a new English method which consists in the use finely divided charcoal, obtained by charring seaweed or street awespinga. Only one fourth as much charcoal is required as of earth. The odorless and partially dried mix ture with thia charconl. after use, is removed from time to time and charred by heating to redness in close vessels like gas retorts, the products of the distillation being water, am movia, acetic acid, tar, gas, and churcoal, the last being aug mented in quantity, and ready for immediate use again though containing alkalies, earth. and phosphates, which give it a great fertilizing power. From the product of the distillation the chief materials obtained are acetate of lime and sulphate of ammonia, the latter being the most valuable of fertilizere.
The same speaker also described a new wat process of cop per extraction, devised by himself and Mr. James Douglas of Quebec. When oxide of copper is brought in contact with protochloride of iron, this is decomposed, the iron being hrown down as peroxide, and the copper converted into a mixture of one third soluble protochloride and two thirds of dechloride, insoluble in water, but soluble in a strong and hot brine. From this solution metallic iron throws down the whole of the copper or metal, regenerating the protochloride of iron, which is now read y to dissolve a fresh charge of oride of copper, and so on indefinitely, using the same solation over again, the consumption of metallic iron being about two thirde the weight of the iron. To prepare the ordinary sulphurous ores for this treatment, it is only necessa ry to calcine them at a low red heat. In this process the in tin remain undissolved, and the metallic copper obtained is so pure that it can be made into fine copper by a single fusion.
Professor R. E. Rogere described a new

DIRECT VISION BIPETROSCOPE

which consists of a thick plate of glase with parallel sides, united to one of the faces of an ordinary bisulphide of carbon prism, or a prism of dense flint glass. According to the amount of dispersion desired, the light is made to enter eitber on the end of the glass plate or on the opposite face of the bisulpbide prism. The resulte obtained from this instrument are as follows: The dispersion of this compound prism is nearly four times greater than that of the ordinary 60° prism. The mean emergent ray is practically parallel to the incident ray. It does not deflect the ray from its original path. Many Frauenhofer lines are visible by this prism the prominent lines are clearly reversed, without the use of the slit or collimeter, by merely throwing a strong beam of light by means of a mirror.
Professor C. V. Riley of Missouri, in a very interesting paper on

insects,

described those more particularly associated with sarracenia variolaris (spotted trumpet leaf). It referred to the insect catching powers of those curious plants, the flytraps (dioncea) the sundews (drosura), and the pitcher plants (sarracenia), which have of late awakened renewed interest by virtue of the interesting experiments and observations on their atructares, hab
Aer Gray.
The leaf of sarracenia is a trumpet-shaped tabe, with an
inside is furniehed with perfect chevaux de frise of retrorse bristles, commencing suddenly about an inch from the base, hence decreasing in size until, from about the middle to the mouth, they are so short, dense, and compact that they form decurved pubescence which is perfectly smooth and velvety to.the touch, especially as the finger passes downward. Under the hood, again, many of them become large and coarse. Running up the front of the trumpet is a broad wing with a hardened border, parting at the top and extending around the rim of the pitcher. Along this border, but especially for a short distance inside the month, and less conspicuously inside the lid, there exude drops of a eweetoned, viscid fluid, which, as the leaf matures, is replaced by a white, papery, tasteless, or but slightly sweetened sedi ment or efflorescence; while at the smooth bottom of th itcher is secreted a limpid fluid possessing toxic or inebriat ing qualities.
The insects which meet their death in this fluid are numer us and of all orders. Ants are the principal victims, and he acidulous properties which their decomposing bodies give o the liquid doubtless render it all the more potent as a oolvent. Scarcely any other hymenoptera are found in the otting mass.
Two species are proof againat the siren influences of the estroyer, and in turn oblige it, either directly or indirectly to support them. The first is xanthoptera semicrocea (Guen.) little glosey moth which may be popularly called the sarra enia moth. It walke with perfect impunity over the inner urface of the pitcher, and is frequently found in pairs with in the pitchers soon after these open in the early part of the season, or about the end of April. The worm riote in the putrid insect remains, bores through the leaf, and burrows into the grouad; there contracting to the pupa state, in a ew days it issues as a large two-winged ty called sarco phaga.
Professor Riley concludes: That sarracenia is a truly insec tivorous plant, and that by its secretions and structure it is minently fitted to capture its prey.
That those insects most easily digested and most useful to the plant are principally ante and small flies, which are lured to their graves by the honeyed path, and that most of the larger insects fall victims to the peculiar mechanical struc ture of the pitcher.
That the only benefit to the plant is that the liquid manure, esulting from the putrescent captured insects, mostly de conds the root stalk, and probably through tubular cells passing through the petiole in to the root.
That sarcophaga is a mere intruder, the larva eponging on and sharing the food obtained by the plant, and the fly at tracted thither by the strong odor. There is nothing to prove that it has anytbing to do with p ollination.
That xanthoptera has no other connection with the plant than that of a destroyer, though its greatest injury is done fter the leaf has performed its most important functions. That neither the mothe nor the flies haveany structurepecu liar to them, that enables them to brave the dangers of the plant, beyond what many other allied apecies possess.
In a paper on the
COTTON WORM,
Profersor A. R. Grote concluded that it is not indigenous with us, but an annual; not a denizen, but a visitant, unble to contend with the variations of our climate; and he believes that the process of artificial extermination may be simplified by limiting the period of successful attack and doing away with certain proposed remedies. The agent of destruction must be directed against the first brood in each locality: and concerted action on the part of the pla
the closing exercises,
which followed the conclusion of the reading of the papers, consisted in passing resolutions accepting the invitation to make Detroit the next place of annual meeting, and fling the time as the second Wednesday in August. Resolations ware also passed to take measures for repreeenting to Congress the importance and desirablity, in the opinions of the Aseociation, of having a new census taken in 1875 with reference to the Centennial celebration; and to take measures for urging upon the legislature of Maesachusette the need of a now geological survey of that State. The lolowing Professor J. E. Hilgard, of Washington; vice president for section A, Professor H. A. Newton, of New Haven; vice president for section B, Professor J. W. Dawson, nf Montreal ; General Secretary, Profeseor S. H. Scudder, of Boston; permanent secretary for five years, F. W. Putnam, of Salem Mass.; treasurer, W. S. Vaux, of Philadelphia; secretary of ection A, Professor S. P. Langley, of Pittsburgh; secretar of section B. Professor N. S. Shaler, of Newport, Ky.

NEW TREATMEAT FOR THROAT AND NOSE DISEASES We have been much interested, lately, in an examination of a comparatively new aystem of treatment of diseases of the throat and nose, maladies probably the most prevalent in the variable climate of our Northern States during the all and winter months. Physicians who omploy the old fashioned probang are well aware of the difficulty in reaching therewith the very mensitive parts to which local application of a remedy is necessary; and as a substitute for this uncertajn instrament, apparatus is by some employed, by which the medicine, in a finely divided slate, is blown againg the proper spot.
The aystom to whioh we refer is the last mentioned pro sens, brought to a remarkeble dogree of certainty and perfection through a series of entirely novel inventions, in the shape of peculiarly constructed instrumente, which are the
resalt of long acquaintance with and experiment apon the die-
eases in question, by Dr. Otto Füllgraff, the founder and manager of the Bond Street Homœopathic Dispensary, and an minent pracitioner of this city.
By means of this apparatus, the surgeon can directa pow orful spray of liquid or cloud of powder, infallibly upon the part to be treated. Connected with the atomizing arrange. ment are tubes of vulcanized rubber and nickel-plated metal, provided with movable tips of various shapes and bent at different angles, so that the ekillful operator, aid d by ingeniously contrived reflectors, can direct his medicine directly o the vocal cords or into cavities impossible to reach by any other method.
An idea of this operation may be obtained from the an

nexed engraving. From the bottle which holde the remed y metallic piece arches over the cork and then pasees at right angles over the tongue, at the root of which it is shown making another angle and passing over the epiglottis down into the larynx; so that the medicated fluid, forced by the air driven into the bottle by the compression of a bulb at. tached to the small projecting tube, is impelled directly into the larynx, trachea, and bronchial tubes. The end of the intrument terminates in a movable tip, which may be unscrewed, and another substituted, so as to throw a spray of finer or coarser particles.
Through this apparatus many important cures have been ecenlly effected, notably in cases of well known vocalists, uffering from diseases of the throat, nasal catarrh, etc., due to our changeable climate. The instruments are, of couree, not patented, and are, therefore, open to the examination and imitation of the profession. They have probably been the means of averting an immense amount of suffering among the poorer classes of this city, through the dispensary a bove alluded to. where, for the past twenty years, Dr. Fiillgraff has, with that lack of ostentation which marks the true phi. lanthropist, gratuitously given to hundreds of thousands the benefit of bis skill. The institution now treats a larger number of casesthan even the more pretentious dispensaries, largely subsidizad by the city and State, 38,830 poor people of every nationality having been aided, surgicaliy and medically, during 1873, directly at the diepensary; 5,589 outdoor visits were made by the medical staff, and 98,601 prescriptions given-and all this without fee or hope of reward. It is a grand and genuine charity, and, while it is greatly to be revate practice of its generous founder than from city and State coffers, the institution is one of which, as a commu. nity, we may well be proud.

The Worker's Friend.
"Partly by the information I have received from the Scientific american, and partly by the advice it has contained in refurence to thebenefits of study, I have been raised from the position of a laborer in a lumber yard, at $\$ 6$ a week, to that of foreman, at a salary of $\$ 1,200$ a year. I therefore consider the Scientific american to be the worker's best friend.,
Such are the casual remarks of one of our correspondents in a recent letter. They are an example of hundreds of similar expressions which we raceive from various parts of the country. It is always a gratification to us to be thus assured of the usefulness of our journal in the hands of the great body of practical workers to whose interests it is devoted.

Premium for the Best Circniar Saw

The Board of Commissioners of the Fifth (1874) Cincinnati Induatrial Exposition offer a special premium of $\$ 100$ in gold for the best circular saw. The competition is 10 be determined under conditions as follows: All raws competing shall be of uniform diameter, namely, 56 inches. They may have either solid or inserted teeth. The gage to be at the option of the exhibitor. The eye of the eave to be 2 inches diameter; the pin holes $\frac{8}{8}$ inch, and 3 inches from center to center. Each eaw is to be submitted to a thorough practical test, upon left hand mill provided for the purpose. Diagram cards are to be taken from the engine during the trial of esch saw, by a disinterested expert, selected by the jarors. The teat is to be made during the week beginning September 21, 1874. Other details of the examination are to be determined by the jurers.

Prines for hand Turning. - The Company of Turnere of London, in continuation of their artion in former years, propose to give, in 1874, their silvermedal and the freedom of the company and of the city of London to any ove workmen or apprentice in England who may send in the beat specimeng of hand turning for the year. Last year the prizes were awarded for turning in ivory and stone; this year the material to be ueed will be brass or gun metal.

