When, therefore, the brasses of a rod end whose strap is held by a gib and key, have worn so that the key is let down the brasses must be lined up to bring the key back to its original position, the back brass being lined up so that its joint face comes even to the center of theoil hole, and the o:her brass being lined up sufficiently to bring the key back to its original position; then the rod is sure to be its proper leogth. But if the strap is held by the bolts (in which case it does not move when the brasses are let together and the key further through), liniog the back brass up to the center of the oil hole at once ensures the rod being of its correct ength, without any reference as to what thickness of liner is put on the other brass, or how far the key may come through. In either case it will be observed that the center of the oil hole, when placed as described, forms a gage to keep the rod its proper length. To ascertain what thickness of liner is required for the brass back, place it in its place in the strap, and scribe a line (onthe inside of the strap) even with the joint face of the brass; then mark a line acrose the strap so that the line will intersect the center of the oil hole, and the distance between the two lines will be the requisite hickness of liner.
To find the tbickners of liner necessary to the other brass, put the strap in its place with both brasses in, and the back one lined up; then key the brasser up, and acribe a line on the key at its narrowest end, even with the face of the strap then the difference between the width of tbe key (on the taper face) at the line (which is the diatance it does come through), and the width of the key at or near the narrow end (that i o say, the distance it ought to come through) is the thickness of liner required.

Correspoudence.

To the Editor of the Scisntific American.
If the public generally knew how soon the air in a railroad car is spoiled and vitiated, there would probabiy be more z eal in searching for a remedy of the evil ; bnt comparatively few knowit, and only those who make the subject a particu lar study.
Pure air, so called, contains 4 parts of curbonic acid gas in 10,000 ; and a large paesenger car contains about 4,100 cubi feet of tloating atmospheric air. If pure, it should not con tain more than 1.66 cubic feet of carbonic acid gas. A man exhales 18 cubic inches of carbonic acid gas in a minute. I we suppose that there are 50 passengers in a car, they would xbale 900 cubic inches in a minuta, or $5 \cdot 21$ cubic feet in 10 minutes, which is at the rate of $12 \cdot 55$ parts in 10,000 ; so tha n 20 minutes the air is vitiated at the ratio of 25.10 parts in 10,000 . Twenty-five passengers would need 40 minutes t come to the same result. This is from the impurities from ound lungs. Take into consideration the breath from dis ased lungs, and uncleanness of person and clothes, and th case will be still more desperate. For this there is only on remedy: The air must be continually renewed. The question only is, how?
What is called natural ventilation is the flow of air caused by difference of tem perature and weight. Where the tem perature is equal, or nearly so, in and outside, there is little or no motion of the air. The dipplacement will increase with the difference in temperature. Suppose the external temper ature to be 32°, and the internal 62°, a difference of 30° : the hight of a cur from floor to cuiling 8.5 feet, and the opening for the discharge of air $2 \cdot 25$ square feet, or 1.5 feet square in all. We wnuld then have: Difference of temperature $30^{\circ} \times 0.002036$ (coefficient of expansion) $\times 8.5$ (hight of car) $=$ 0.51918 inches difference in hight of the pressing column. The mount of air displaced in a second is ascertained by the for mula for falling bodies, which, in our case, would give $2 \sqrt{051918 \times 15.6}$
$\times 2 \cdot 25=2.54$ cubic feet. The amount
eally displaced is f the theoretical result. In a minute, 152 cubic feet are driven out; and as the car contains 4,100 oubic leet, it will be $\frac{4180}{182}=27$ minutes before the air in the car an be renewed, when the atmosphere is at freezing point utaide and moderately wami within, keeping, in all, 2.25 quare feet continually open; but with a difference of tem erature of only 15°, it would require 54 minutes to renew te amount of air which is vitiated in 10 to 20 minutes. It very doubtful, however, if ever, in the most approved pas nger cars, so large an area is always kept open. In winter would soon reduce the temperature to below the comforta e point, and most of the passengers would protest, prefer ug even a bad atmosphere to a chilling draft. In summer fear of suffocation, all windows must be kept open; and, course, dust, smoke, and cinders cannot be kept out. At ly be forced in by funnel-shaped tubes provided the wind ws in the right direction), but with it dust and smoke 11 come in.
$N e$ see that natural ventilation will not fully answer the -pore ; and all the neat and ingeniously arranged no-called tilators, in the frieze and ekylight, are more ornamental n uzeful. There seems to be no other way to solve the stion but the application of mechanical means, such as 1 or blowers driven by some power, to exhaust the fou supply the fresh air. The exhaustion should be near op in summer, and at the botrom during winter. If the er be given, this can easily be done; and any plan for ibation, warming, or cooling can be combined with it.

Oonstructing Mammoth Telescopes.

B Fditor of the Scientific American:
alng in your widely circulated paper that a project is tained in Ametica of constructing agigantic astrono
mical telescope, and as various mel hode have been proposed carrying out that undertaking, I send you an account of mercurial reflecting telescope (invented by me and exhibi. ted before the New Zealand Inetitute), published in the "Transactions" of that Institute, Vol. V., p. 119: whereby advantage is taken of the parabolic figure assumed by liquids rotating in the plane of the horizon; so tbat objects at the zenith and a few degrees distant therefrom can be magnified by eyepieces in the ordinary manner. A zone of the hea vens, a certain number of degrees in breadth, can thus be examined, the sweep of the telescope in right ascension being made by the earth's rotation. For viewing objects not near the zenith, a large plane reflector of silvered glass is used, which first receives the rays from the object, and then reflects them vertically downwards on to the mercurial speculum, which speculum then collects the rave and reflects them convergently upwards through an aperture formed in the plane reflector. In the publication (which I inclose) the heory is fully explained, together with a contrivance for causing the plane mirror to be always at the proper inclinaion, whenever the finder is directed to the object.
In the accompanying Gigure, showing the vertical section

f the telescope and observatory, the epeculum cup contain ing the mercury is attached to the top of a long, hollow conical axis, and a thin, hollow metal float is attached to the bottom of the axis. This float revorves in a vessel of liquid and this liquid is rotated by conducting it tangentially into he vessel at ite circumference, at the parts, 00 , while it utlet is close to the bottom of the axis; a spiral motion is hus imparted to the liquid. The size of the float is so ad justed that it displaces nearly as much of the liquid as cor reponds to the weight of the speculum. There is then but little welght upon the pivot sapporting the axis, which is nserted in solid masonry.
Three curved pillars of stone, two of which are seen in the igure, form supports for three levers for leveling the specu um. These levers have a slow motion, communicsted to them by screws fixed near the long end of the levers; and when properly adjusted, the shorit ends of these levers have contact with, but exert no pressure on, the axis. By this arangement, the axis is secure from any vibration arising from he gyratory motion of the liquid round the float. Then, if his liquid is supplied from an elevated vessel kept full to overflowing, and if the inlets, 0 O, and the outlet be kept
of a constant size, as gravity is a constant and frlction at of a constant size, as gravity is a constant and frlction a revolution is a constant too
This arrangement contains within itself a centrifugal pen dulum for regulating its velocity, and that without adding any other apparatus to the parts already described; for let he vessel containing the float be supplied with a slight ex ees of the liquid, it is then always full up to ite edge, and when rotating, its surface is rendered concave. If, then, rom any circumstance, the revolution becomes accelerated the liquid becomes still more concave, and consequently ex erts less buoyant power upon the foat; this leads to extra
friction on the bottom pirot, which tends to retard the velo fricty.

A cylindrical wall of masonry surrounds the specalum, forming at the same time the tabe of the telescope and also the observatory. The top of this wall supports a rotating dome with sultable openings, and attached to and rotating with this dome is a large plane mirror of glase silvered on it
constructed by a novel method
The axis on which this mirror moves vertically is eupported In a similar manner to the axis of a transit circle, and simi lar vertical graduated circles can be attached thereto; and if the dome is made to revolve on a graduated horizontal cir cle, we shall havea symmetrical arrangement for an altitude and azimuth instrument on a large scale. Exterior to th wall supporting the plane mirror, and entirely unconnected therewith, is another circular wall, and it is this outer wal that supports the floors, through apertures in the interio wall somewhat larger than the supports; so that any move ment of the observer will not vibrate the telescope. Th teps up the observatory are in the space between the walls and are attached to the outer wall only.
The symmetry of the horizontal speculum precludes any danger either of deflection by its weight or of irregular ex pansion arising from increase of temperature; for it possess es the same shape and weight in whatever position it is turned; it is, in fact, self-compensating
Tho speculum admits of being beveled with extreme pre cieion by an optical contrivance which can also be applied to test the figure of the plane mirror in all its parte, while be ing constructed Henry Shey.
Dunedin Observatory, O' ngo New Zealand.
Hardening and Tempering Tools.
To the Editor of the Sciencific American:
In reply to the last two communications of Mr. Hawkins upon the above subject, I have to say

1. An experience of twenty years of workshop practice here and in Europe, under the most favorable conditions, has proved conclusively to me that, by tempering taps, reamers, etc., in a tube "moderately heated,' by parforming the operation "slowly," and by tewpering them to a "brown color," I could obtain a better tool than by the sand bath, or than by any otber metbod of tempering at presen practiced in our workshops. What difference there would be in the temper (the color being the same) if more rapidity or some other changed conditicns of tempering, were em ployed, I have no need to discuss.
2. My given methods for taps, dies, reamerf, etc., deter mine both the elements of time and access of the air ; for say that the tube must be "heated." by which the workman understands "heated to a red." I then eay that "care should be taken not to make the tube too hot, for the more slowly a tool is lowered, the more even the temper will be.' I think that, if there instructions are followed, there is no much option as to time, since the tempering cannot bebas tened, and can ouly be delayed by intentionally bolding it out from the tube; by the term "slowly," I mean as slowly as it can well be performed without purposed deiay. If the tube is merely "heated," the operator cannot go wiong.
3. In the tube process given by me, there is a current of air continually passing the steel being tempered, and it receives at the same time its heat equally all around. No other prevailing shop practice gives so free access to the air, and such evenness of heat at the same time. In the case of dies, my plan, as given by me, surrounds all but one face with air, and turns them over and over, that all paris may have equal access to both the air and the heat. Here again my condi-
tions regulate themselves for the given purposes.
4 As to the oxide question, my reason for deolining to discuss it was that I thought it liable to divert attention to matters not germane to workshop practice; and J. T. N., in disputing or questioning with Mr. Hawkin whether the colors produced in tempering are films of oxide, or of carbonization (as claimed by Nobili, who gives an excellent reason for his conclusions), proves the correctness of my premires. I have no objection to a diacussion of this inter. esting bat disputed question; it is of importance, I grant, but I can go on using my " color thermometer," be it caused by oxidation or carbonization
4. It may be that the bepefits I have foasd from the methods I give arise from the very fact that they permit of the proper access of the alr, and entall, of themeelven, a sufficiently defined limit of time to insure results, correct in themselves and at all times equal; and thus they are merely proofs of Mr. Hawkins' elements of time and exposure. I am inclined to think this to be the case, because the departures from the sand bath procers (the most genarally approved method), recommended byme, give, as Mr Hawking advises, icee access to the air, and determine of themselves the time by specifying that, in tempering, the hardened steel be subjected to the rays of heated (that is, red hot) iron; foriron red hot" gives some idea of a certain temperature, while heated sand, not being made red hot, may be made of a wide range of degress of heat with nothing to denote it, and may, as I have before stated, be hotter in one part than in, nother in consequence of the unevenness of the fire or of the depth of the sand.
5. I have never tried tempering under conditions which would give a more free access to the air, nor do I know of any method by which more free access to the air and, at the same time, more even heating of the hardened steel can be secured than by the methods I have given: but if Mr. HawLins can suggest any, I shall be happy to test the same and to report thereon.
.Joshta Rose.
New York city.
Mr. Samuel Webber, of Manchester, N. H., requests ua etate that the power ordinarily required to card one pound of cotton is $\frac{2 \delta}{2 \delta}$ of a horse power, and not $\frac{1}{2} \sigma$, as printed in our article on his book entitied . Fack on page carding cotton shoald be ito of a horse power instead of $\frac{1}{80}$.
