

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY AND MANUFACTURES.

metal points; diamonds are substituted in working upon the harder grades.
It is claimed that one circular saw in this machine will do the work of more than one hundred hand saws, and this acsurately true and out of wind. The machine has already sawn one hundred and twenty-five superficial feet of actual cutting in one hour, of the hardest kind of Berea sandatone, a material harder than ordinary grindstone grit. This was done with the diamonds as cutting points.
In our second figure (see page 163) is shown a section of two teeth of the saw with the holders in position; A is the diamond holder, and B the steel point holder. The steel holders are made adjustable and interchangeable in the saw, ly built, weighing about 24,000 lbs The metal portion alone comprises about $20,000 \mathrm{lbs}$. of this weight, The apparatus is mounted with a circular saw, 73 inches in diameter, carrying 48 diamonds and steel points.
Without changing the velocity of the main shaft, the speed of this saw may be varied from 5 revolutions to 500 per minute, an advantage of importance, as in the use of hard metal points a slow speed and heary feed are required, while in the use of diamonds for the cutting points the reverse is necessary. The feeding of the stone to the saw may be varied from one sixteenth of an inch to four inches at each revolution, the feed motion being taken from the mandrel of the saw. The carriage or beds upon which the stone is mounted are moved by a separate feed mction, separate feed mction, back and forth, much is cuttiog. A single hand lever suffices for this operation
By the aid of simple mechanism in connection with another hand lever, the saw, with all of its appliances, may be raised or lowered without stop or lowered without stopping its motion or changing the tension of a belt; so that when it is desirable to saw stone more than thirty inches in thickness or in width, the saw can be elevated and an upper cut made through the stone as deep as the saw will cut. The stone is then run back tone is then run back, and the saw lowered. The carriage next pasees over
the top or upper part of the mandrel, and an under cut is made. The time taken in raising and lowering thesaw does not occupy more tban five minutes, notwith. standing that the weight raised and lowered may exceed $4,000 \mathrm{lbs}$. In ordinary work, the stone is not moved no that either the steel tooth holders or diamond holders may after it is placed upon the bed until it is sawn into slabs be used in the same blade. or pieces of the required thickness. The saw is made movable upon its own mandrel by the turning of a small hand wheel. At each revolution the saw is moved sidewise on fourth of an inch, being four turns of the crank to one inch. The carriage or bed, upon which the stone rests, runs, it is claimed, as perfectly as the bed of an iron planer. It tra vels upon heavy iron rollers, the journal boxes of whic are made perfectly grit proof and self oiling.
Stone may be sawn to any length up to 14 feet, and of any angle or depth to five feet, so that a corner piece may be sawn out of a stone block. All stone to the hardness of ordinary grindstone, may be sawn with hardened steel or

EMERSON'S PATENT DIAMOND STONE SAWING MACHINE.
be used in the same blade.
Fig. 3 (page 163) shows the diamond holder and diamond detached from the saw, C C being a full sized holder with diamond inserted; D a half section, showing the cavity cut to receive the diamond, and E the diamond, inclosed or par tially embedded in a soft metallic casing (copper by preference). The method of setting and holding the diamond, as now adopted, is here clearly represented. The diamond is first wrapped in a casing of copper, and placed so as to present the most des: able cutting part in suitable direction and position. The casing is then closed around it so as to msintain it in position. The diamond is then, with the casing, placed between two metal or other suitable substances of
sufficient hardness to press the casing into every jagged shape and irregularity of the diamond, but not of sufficient hardness to crush or break the same. The surplus part of the casing is then cutaway. A cavity is then formed in the steel holder, approximating the outer shape of the diamond casing. The latter is then placed between the jaws of the holder, and under pressure is forced, to a perfect fit er profile, into the steel and on the diamond. The lower portion of the casing is gripped between the jaws of the holder, as in a vise, forming a perfect fit and substantial connection. This exceedingly simple method enables any mechanic of ordinary skill to set the diamond.
Fig. 4 (page 163) is a holder with three or more diamonds set in one piece, designed more particularly for straight saws, to be used with reciprocating motion.
Machinery for the use of this saw may be varied and constructed to suit all kinds of stone sawing and dressing.
We understand that the machine here illus. trated is to be set up and operated at the Cincinnati Industrial Exposition, which opens September 2, 1874. The stone saw and machine is the invention of Mr. J. E. Emerson, and is covered by numerous patents.

Further information may be obtained by addressing Mesprs. Emerson, Ford \& Co., Beaver Falle, Pa., or Richard $\$$. Robertson, Esq., No. 12 Smithfield street, Pittsourgh, Pa.

Structure of Coal.

By close invertigation E. W. Binney, F.RS believes he has established the following facts: Soft caking, or ckerry, coal is chicfly composed of the bark, cellular tissue, and vascular cylinders of coal plants with some macrospores and microspores. Caking coal has much the same com. position, position, except that it contains a greater proportion of bark. Splint, ur hard coal, has a nearly similar composition, but with a great excess of macrospores. Cannel coal, especially that yielding a brown streak, is formed of the remains of different portions of plants which had been long macerated in water: it con. tains a great excers of microspores. Macrospores are from $\frac{1}{2} \sigma$ to $\frac{1}{2} 5$ of an inch in diameter, and can be easily seen by the naked eye. Their exterior is composed of a brown coriaceous sub
tance, containing within it carbonate of lime or bisulphide of iron, according to the nature of the matrix. The microspores are about 320 times less in size, and contain some form of hydrocarbon, which, by the action of heat, becomes paraffin. These conclusions were arrived at merely as to the composition of the different kinds of coal. Each seam is materially affected by the nature of the roof, since, if it is an open sandstone, gaseous matter can freely escape, which is of course not the case when the seam is roofed in with airtight black shale or blue bind.

The Pilot Knob Iron Company have recently sunk a shaft on Shepherd Mountain, Iron county, Mo., and have now passed through 70 feet of almost solid ore.

Srientific American.

MUNN \& CO., Editors and Proprietors. published weekly at
NO. 37 PARK ROW, NEW YORK.

o. D. MUNN.

A.e. beach

TERDNE

One copy, one yoar.
one copy, bii month

8.300 150

2500
VOLUME XXXI, No. 11. [New Series.] Twenty-ninth Year
NEW YORK, SATURDAY, SEPTEMBER 12, 1874

CAN WE STAY?

It is time some one stood up for his country : some American, we mean. Not for its present prosperity and immediate prospecte, there are plenty to do that: but for its distant past and distant future. We are tired of hearing the Conti. nent called a graveyard of nations, the tomb of antecedent races, the one spot on earth which man cannot permanently nhabit!
It is bad enough to be told, by would be wise ethnologists, that our climate is hostile to the Aryan type, that an irre sistible Indianizing influence pervades the air and is rapidly converting us all into lean, high cheeked, bilious-looking copies of Mr. Lo; and that our great grandchildren will be no better than so many Sioux. But that is not half so bad as to be told that it is a question whether their dercendants will be able to stay here at all, except underground. Any existency is better than extinction: and it is possible to hope good things of our race even if it should assume the physi cal characteristics of the so-called American type.
The latest advocate of the extinction hypothesis is the somewhat prominent author of "Sex in Education." His essay, read before the National Teachers' Association the other day, set out with the discouraging announcement that no race of human kind has yet obtained a permanent foothold on this continent; ad the lesson he sought to enforce was that, unless something extraordinary is done, we are doomed as a race to untimely extermination. The Asiatice he said, trace their life to beginnings immensely remote The descendents of the Ptolemys still linger in the valley of the Nile. The race which peopled Northern Europe, when
Greece and Rome were young, more than maintains its ancient place and power. But the ancient races of Americawhere are they? "We only know that they are gone."
When Dr. Clarke talks of "Brain Building" and the "Education of the Sexes," he says much that is sensible and true: but when he infers our early destruction by climatic influences from the fact that other American races have van ished, our confidence in his judgment is seriously shaken Grant that vestiges of two or more departed races are to be found within our borders, and that when the Mayflower discharged her marvelous cargo of cottage furniture to furnish heirlooms for all New England, the native race were hasten ing to the happy hunting grounds at a rate which whisisy and gunpowder have but slightly accelerated: does that prove American races to be short lived? Rather let us call it evidence of exceeding long life. Where else on earth will you find so few races bridging over so vast an interval of time?
When the pioneers of Lialy and Greece, wild as Mohawk fought their way into Europe, a peaceful and populous nation-whose unhappy remnant has lately given a Presidont to Mexico-was cultivating maize in the valley of the Mississippi, mining copper at Lake Superior, and building temples in the South. The man of the Florida corals ante dates not merely the Ptolemys-men of yesterday-but the Pharoabs, the shepherd kinge, it may be the very land they owned and ruled. What wonder that his lineage is lost? We know from recent exploration that the desert regions of North Africa were under water in later tertiary times. Since then the sea has dried away, and across its sandy bottom the

Nile has laid its annual layers of mud for the creation of the Noe has laid its annual layers of mud for the creation of the
ancient granary of the world. There is geological evidence that, when the first mud layer was put down, a broad fresh water sea covered the now barren Bad Lands of our great West. There is similar evidence that men dwelt on its shores and fished from its headlands.
Since the pioneers of Western Europe sought shelter in the caves of France and Belgium, the Somme has sunk its bed through a hundred feet of gravel. Since a settled population flourished on the then fertile, now arid, plains of the Colorado, that stream has cut its mighty cañons deep in earth through two, four, perhaps six, thousand feet of solid rock! When the upper strata of the Himalayas were in process of deposition, and'before our Aryan fatherland began its upward course in civilization and altitude, human beings were fishing among the islands of our Pacific coast, since lifted up to form the Coast Range. Ages afterward, when the Golden Gate had been opened and California drained of the sea which had filled the valleys of the Sacramento and San Joaquin, but before the gold gravels were ground into existence or buried beneath lava floods, other men came in and occupied the land, leaving their remains, with those of ani mals long extinct.
Yet because we cannot trace these nations historically throurh intervening ages, because they seem to represent a number of distinct successive races, shall we olame the climate and call the land inimical to humanity?

PREPARE FOR THE CENTENNIAL

The short timeintervening betwean the present date and the opening of the Centennial Exhibition renders it impera tive that intending exhibitors should begin their preparations at once. We need not urge the fact that, owing to the magnitude of the affair and the large interests involved, the delays, so common in our yearly fairs, caused by not transritting objects for extibition until the last moment, will not here bs possible. The Centennial commission has announced its readiness to receive applications for space, so that this important matter can now be definitely settled, leaving nnthing to be done but to get the articles ready in conformity with the area of surface secured. Applications should be made immediately, in order that the commission may be allowed time to decide on the amount of room to be as signed to foreign nations. Lack of promptitude, therefore on the part of intending exinibitors will probably result in their finding the space desired alroady occupied by less ti rdy applicants or set apart for foreign contributors.
Those most directly interested at the present moment are manufacturers who propose making large entries which will take time to construct or arrange, and the people who contemplate collective exhibitions of the natural resources or
raw materials of different sections of the country, which canraw materials of different sections of the co
not well be made by individual exhibitors.
It is especially desirable that provision for these aggregate contributions should be speedily made. The importance of the plan, as an incentive to immigration and to the investment of foreign capital, is very great: and liberal arrange ments for the prompt and thorough performance of the work will amply repay those States or communities which undertake it.
The advertisement of the Director General of the Centen nial will be found in another column, and from it may be earned how applications should be made. It is high time that the public should realize the fact that, leaving out all debatable questions as to its expediency as a national enterprize, our Exposition of 1876 is not an abstraction, now commenced, is briskly progressing. Ground has been broken, and the foundations of the great buildings are be ginning to appear. Foreign commissioners have already astablished ofices among us, and foreign governments have set apart liberal sums of money to ensure the representation of their industries. If we propose to make the fair a fit celebration for the anniversary which it commemorates and worthy of the high industrial and intellectual standard of or people, we must begin work for it at once-not at some
vague, future period in next week, next month, or next year but, earneatly and emphatically, novo.

PENHOLDERS.

Goosequills are round : consequently penholders are round Professor Syllogism might dispute the logic of this observa expresion thers. Evolation-the unbreakable law which determines the products of human invention. Solomon's assertion that there is no new thing under the sun was therefore true in a wider sense than the kingly preacher imagined. In Nature and in Art alike, every thing is the offspring of something gone bofore; and how over unique it mey seem at first aight, it will prove on ex amination to be only a more or less modified copy of some thing else.
Downward from the first metal worker, whose weapons and implements of bronze were exact copies of those his neighbors were toilsomely chipping from stone-thus al lowing the necessities of one substance to determine the fashion of objects made of another, of entirely different char acter, by entirely different processes-one may trace the tendency of men to perpetuate form, even at the cost of sacrifi cing substance and usefulness. The material may change, and the mode of working, to correspond; but the figure remains, as though to justify Goethe's assertion that form alone is real.
The original maker of metallic pens could do no other than imitate the time-honored goosequill, thrusting a round atick into the end of the barrel for a holder. Subsequently
the barrel was taken from the pen and made a part of the holder, which has since been modified in numberleas ways, without departing essentially, however, from the cylindrical form. Accustemed to this ohape, we can with difficulty think of any other. Indeed, so strong is the natural feeling that whatever is is right, it is more than likely that, if our readers were individually asked why a penholder is round, the majority would reply: "Because that is the proper shape.'
But the argument from universal assent, so convincing to the theologian, is practically as little worth in matter of fact as in matters of faith. At best it only proves the matter not intolerable. Penholders are round because no ond has ever made them otherwise. It by no means follows that a change would not be beneficial
Place your thumb and forefinger against the second finger as in the act of grasping a pen, and notice the shape of the space between them. It is triangular. It is easy to put a round atick into a three cornered hole; but it needs no mechanical genius to see that it will not make the closest possible fit.
To write steadily and with a uniform slope, the pen needs to be firmly held in a fixed position. To write easily the pen must lie in the hand naturally, so as to maintain its position with the least effort. With a rolling penholder, these conditions are but poorly met. The contrary obtains with a three-sided holder, which presents a broad surface to each side of the finger's triangular grip, and gives a steady bold, without apparent pressure and without appreciably eeparating the fingers. The advantage of a triangular holder over a round one in the last paricular is very great; and we are confident that holders so made would rapidly supersede the present style if once placed in market.
There is reason to make the change, and pen stick makers will do well to consider it. Should it be made, would the logic of our first observation be impaired? Would the new form have any other reason for being than the fact that it is the best form? No, and yes. It is the best form unquastionably; yet it owes its existence not to that, but to the ap parently irrelevant fact that horsefoot crabs have three-cornered tails!
Visiting the seashore, we chanced to find the empty shell of one of these singular creatures. While holding it up by its spiky tail, a friend, of the rex that is said to have no inventive genius, remarked that the tail would make an odd penholder. The suggestion was carried out, and the product was odd enough. But it was something more. It was a revelation of a needed reform in penholdera. We have used it for weeke, with a daily increasing conviction that the goosequill was an unfortunate model. The perfect penholder is three-sided.

THE MICROSCOPE AS A CRIMINAL DETECTIVE.

The annals of criminal juisprudence furnish an abundance of cases in which the microscope, in the hands of an expert has been the means of eliciting missing links in the circumstantial evidence pointing to the guilt of the accused. Instances are cited where the instrument has shown hairs, clinging to the edge of an ax, to be those of a human being, in direct contradiction of the statement of the prisoner, ascribing them to some animal; and similar scrutiny of fresh blood upon clothing has proved the origin of the stain beyond a reasonable doubt.
When blood, however, has once become dry, several auhorities assert that it is impossible to distinguish it from that of the ox, pig, sheep, horse, or goat. It is urged that the differences between the average sizes of their corpuscles are too irregular to measure acrurately, and that a man's life should not be put in question on the uncertain calculation of a blood corpuscle's ratio of contraction in drying. In oppoition to these views are some recent experiments, made by Dr. Joseph G. Richardson, of Philadelphia. This investigation disposes of the first objection above mentioned by pointing out that, while it may be valid as regards feebly magnified blood disks, it becomes void when these bodies are auplified 3,700 times. Regarding the second, le stamps it as incorrect, and cites a case in which seven human blood dieks, whose mean diameter had been accurately determined at उ236 of an inch, were subsequently computed to average $\frac{1}{3266}$, or only ${ }_{352925}$ of an inch less than their actual mag 3266 , or Dr 352292 of an inch
nitude. Dr. Richardson also pointa out, with reference to the last objection, that, all the blood disks likely to be mistaken for those of man being normally smaller, instead of contracting they would have to expand to become conformed o those of human blood. This expansion does not occur so that the only possible mistake in diagnosis would be to suppose that ox blood were present when man's blood had actually been shed; so that at the worst wemight contribute to a criminal's escape, but never to the punishment of an innocent person.
In order to afford a positive demonstration of the facte, Dr. Richardson obtained, from each of two friends, three specimens of blood clots, from the veins of a man, an ox, and a heep respectively, selected without his knowledge. By nicroscopical examination slone, he was able to determine with perfect accuracy, the origin of each sample. The corpuscles of human blood averaged $\frac{1}{34} 3 \pi$, with a maximum of ${ }^{3} 1^{1} 44$ and a minimum of $\frac{1}{3636}$ of an inch; those of the ox blood gave a mean measurement of $\frac{1}{4662}$, with a maxi mum of $\frac{1}{434}$ and a minimum of $\frac{1}{48}$ d ; while those of the heep's blood afforded a mean of $\frac{1}{25}$, with a maximum of万4 5
From these and other experiments, Dr. Richardson concludes that, since the red blood globules of the pig, ox, red deer, cat, horse, sheep and goat " are all so much smaller
diak，as computed in my investigations，we are now able，by the aid of high powers of the microscope and under favora－ ble circumstances，positively to distinguish stains produced by human blood from those caused by the blood of any one of the animals just enumerated；and this even after a lapse of five years（at least）from the date of their primary pro－ duction．＂

THE ENGINEER＇S TRIAL TRIP OF THE PACIFIC MAIL STEAMER CITY OF PEKING．

About fifteen hundred guests assembled，in response to in－ vitations issued by the Pacific Mail Steamehip Company，on July 22，to witness the trial of the company＇s new steamer City of Peking．This vessel is one of a pair，built by Mesers． John Roach \＆Son，in their yard at Chester，Pa．，auring the last year．The mate，City of Tokio，has been launched and is now receiving her machinery and equipment at the Morgan Iron Works，foot of East 9th street，New York city．These vessels were designed to meet the requirements of a law passed in 1872，granting the company a subsidy for carrying the United States mails between the United Siates and China，but stipulating that they should be carried in Ameri－ can built iron vessels of more than five thousand tuns burden The following are the principal dimensions of the ship

Longth over all， 423 feet；length on water line， 407 feet beam， 48 feet 9 inches；depth of hold， 38 feet 6 inches；tun－ nage（registered），5，080 tuns；draft of water when loaded， forward 22 feet，att 24 feet：displacement when loaded deep， 7，600 tuns ；midship section， 930 square feet；total weight of iron used in construction of ship 2,400 tans ；thickness of iron in akin of ship， $1 \frac{1}{6}$ to 1 inch；tans of space occupied by ma－ chinery， 1,120 ．
There aresix watertight compartments．Three of the four masts are of iron，and the after or jigger mastis of wood． The total area of canvas that can be spread is 2400 yards．

5 in the one oylinder，and from 15 to 5 in the other，as is now
The steam to work these engines is furnished by 10 cyl in drical boilers，having each 3 internal cylindrical furnaces． The products of combustion return through tabes above the furnace，each furnace having its own nest of tubes，separated from the others by water legs．The steam passes through two superheaters on its way to the engine，where it is freed from the water held in mechanical suapension，and slightly superheated．The boilers are arranged in two sets，each set having its own superheater and smoke stack，coal bunker， feed pipes，and all fittings compiete，as if placed in separate ships．The following are the principal dimensions of the boilers：Diameter， 13 feet；length， 10 feet 6 inches；diame ter of furnaces， 3 feet 2 inches；length of grate bar， 5 feet 6 inches ；diameter of tubes， 3 to $3 \ddagger$ inches；length of tubes 7 feet 6 inches；thickness of shell，$\frac{1}{1} \frac{3}{6}$ inch；thickness of fur nace，$\frac{1}{2}$ inch ；diameter of smoke stack， 8 feet 6 inches；hight of smoke stack， 70 feet ；total grate surface， 520 square feet total heating surface， 16,500 equare feet；total superheating surface， 1,600 square feet．
It will be seen from the foregoing that，with the excep tions of the late Ville du Havre and the Great Eastern，the City of Peking is the largest trading ship yet built．The Great Eastern，on account of the tremendous space occupied by her machinery，did not prove a commercial success until she was employed in laying telegraph cables．The Ville du Havre was wrecked too early in her career as a screw ves sel to determine her economy；but she was increased in size， after having been run a number of years，with the expecta tion of an improvement．The following comparison of the two ships shows that the City of Peking is not an experi ment in marine engineering，as the managers of the French line gave their ship the same proportions after years of trial although both vessels were being constructed independently at the same time

Length
Beam
Draft
Diameter of screw
Pitch of screw（mean）
Grate surface
Total length of sbip
ccupied by machinery $\int 92$ feet

Itv of Peking
 423 feet

48 feet 9 inches
5,080 tuns
22 to 24 feet
20 feet 3 inches
30 feet $\begin{array}{ll}30 \text { feet } & 29 \text { feet } 6 \text { inches } \\ 520 \text { square feet } & 532 \text { square fest }\end{array}$

423 feet
49 feet
5，086 tuns 22 to 24 feet 19 feet 6 inches

The results of experiment may be more plainly seen by
coal bunkers．There are eight doors to the coal bunkers for getting the coal into the fire room，four being forward and aft
The starting engines and working bandles are on the platform above the floor of the ship，allowing room for the oilers to walk beneath while watching the bear－ inge，without interfering with the men working the en gines，on the platform．The two independent centrifugal circulating pumps－one for each engine－are on the starboard ide，on the floor of the ship．All other pumps，as also the donkey boilers，are on the deck，in order to be accessible if donkey boilers，are on the deck，in order to be
the lower hold of the ship be filled with water．
On the trial made on August 22，it was not attempted to run the engines at full speed，but only slowly，in order to wear the journals smooth，preliminary to the more extended rial whicn has since taken place，and to test the working of all parts of the machinery at sea．Such a trial was the more necessary as the sbip has，in addition to the propelling ma hinery ateam engines to move the rudder and to hoist th anchor．The ship left the North river，abreast of pier 42 ，at ten minutes past eleven，steamed around the light ship off Sandy Hook and returned，arriving abreast of the Battery at five minutes past four，having been under way five hours and fifty－four minutes．Only eight of the ten bjilers were in use and the pressure of steam carried was 50 lbs ．The tide was running in during the whole trip，and there was a freeh east wind．
During the first part of the trip，the engines were run lowly，but were allowed to increase in epeed；and during the last hour，they averaged the following
Revolutions per minute，46；horse power，2，250；vacuum 26 inches ；temperature of feed water， 85° ；temperature of discharge water， 87° ；t \in mperature of injection water， 70° ： steam pressure 40 lbs ；speed， 124 knots ；draft of water forward， 18 feet；draft of water aft， 19 feet．
The draft to the furnaces was very atrong，and they will probably be able to burn 15 lbs ．of coal per equare foot． Therefore the following is an estimate of the probable per－ formance of the ship at maximum power：Consumption of coal per hour $=520 \times 15=7,800 \mathrm{lbs}$ ；horse power $=7 \frac{28}{2} 00$ $=3900$ ；speed of ship $=\sqrt[3]{\sqrt{3} \frac{9.90}{25}} \times 12 \ddagger=14 \frac{4}{4}$ knots．This speed can probably be maintained in smooth water without the assistance of the wind．
In a series of voyages，the winds blow as long in favor of as against any ship．When the wind is against her，she furls her sails；but when it is in her favor．she spreads them and takes all the advantage．Thus，on a long voyage or series of voyages，the wind helps more than it hinders．It appears from an average of a number of voyages that the

Tillutulill
 O 0 シャッ・

\square

diagram showing the general arrangement of the machinery and coal bunkers of the city of peking．

The ship is propelled by two pairs of compound engines， each pair having two cylinders：Diameter of high pressure cylinders， 51 inches；diameter of low pressure cylinders， 88 inctes；stroke of pistons， 4 feet 6 inches．The object of using two pairs of engines is to guard against having the ship disabled if one engine should break down．As the ship has to make a trip of more than five thousand miles，through an ocean which is almost always in a perpetual calm，the breakage of one pair of engines might necessitate her to make her way，under sail alone，twenty－five hundred miles to the nearest port．But now，it any accident（with the sin gle exception of breaking the crank shaft of the after engine or the line shaft or screw）happens，the remaining engine will suffice to bring the ship into port at a very slightly re－ duced apeed．In order to avord as far as possible the liability of breaking the crank shaft，it has been made in excess of strength，the diameter being 18 inches（in place of $17 \frac{1}{2}$ inches as it would usually have been made），giving an excess of strength of 8 per cent over the usual practice．
The object in using a pair of cylinders in place of a single one was to divide the maximum strain upon the machinery into two portions，which are successively applied as each en－ gine passes the center，thus allowing the machine to be built lighter，and still to retain the advantage of a high boiler pressure and great expansion，and to obtain as good or better economy than can be had in a single cylinder．
The general style of the engines is of the type developed by the late John Elder，of Glaggow，Scotland，having two cylinders connected to cranks at right angles，and an inter mediate reservoir called a receiver．The steam enters the high pressure cylinders and follows the piston through about \ddagger of the stroke，at a pressure of about 50 lbs．，the difference between this and the boiler pressure of 60 lbs ．having been lost in the friction of the steam pipe and the intricate pas sages in the valves．The steam is expanded in the high pres sure down to 8 lbs．above the atmosphere，and is exhausted into the receiver at a pressure of 5 lbs ．above the atmosphere From the receiver it is admitted into the low pressure cylin der during nearly $\frac{1}{8}$ of the stroke，and is atill further ex panded to 7 lbs．below the atmosphere or an absolute pres－ sure of nearly $7 \frac{1}{4}$ lbs．，where it is exhausted into the con－ denser，giving a total measure of expansion of nearly 9 times．In order to obtain this in a single cylinder，the steam would have to be cut off at less than $\frac{1}{15}$ of the stroke，and the variation of pressure would be from 68 lbs．to $6 \frac{1}{8}$ lbs．per square inch，in place of from 50 to
reasoning from the following facts： 1 ．The cost of a ship depends upon her tunnage or displacement．2．The cost of fuel to propel her at a given speed is proportional to the square of the cube root of the displacement．
Take then the cases of two ships，to make a voyage of 5,000 miles at a speed of 15 knots per hour；and we have the following．

Tunnage
Displacement
Power required
Space occupied by machinery and coal Available space for cargo and crew Ratio of paying load Ratio of cost to run Ratio of first cost
Thus，it appears that，as the size of a ship increases，the economy increases，from the less cost of fuel to propel her in proportion to the paying load that she can carry，without con－ sidering the less proportionate cost of officers and crew for a larger ship．The size of ocean steamers has been continually ncreasing since their introduction，wherever they are able o run full and can be rapidly discharged and loaded．In ad－ dition to their economy，the large ships are much more com－ ortable for passengers on account of their lesa motion in ough weather．
The City of Peking will take the place，on the China and Japan route，of a vessel of 3,500 tuns burden．She is fitted for 150 cabin and 1,800 steerage passengers．The saloon and tate room accommodations are as luxurious as in any ship entering the harbor of New York，while the comforts of the steerage are probably in excess，as will be appreciated by any one noticing the hight between decks， 8 feet，and the nu merous air ports，whose hight above the water line at deep draft will allow of their being kept open in smooth weather There is a Root＇s rotary exhauster，worked by a separate en gine placed in the engine room，from which pipes are led into the most inaccessible portions of the hold and through the steerage，to withdraw the foul air and gas which would oth orwise accumulate，its place being supplied by fresh air from the deck．The application of this exhauster is an experimen on merchant vessels，bat it is believed that it will mitigate the poor ventilation incident to all ships，and the tendency of the inside of the skin of the ship to sweat，sometimes erious objection to iron ships in warm climates．
The diagram shows the arrangement of the boilers and ma
chinery in the City of Peking．Theshaded portionshows the
wind increases the available power of a sbip about one third，and therefore the available power of the City of Peking will be equivalent to 5,200 horse power，and the average speed，if worked at full power，at a draft of water of 18 feet 6 inches，will bs： $3 \sqrt{\frac{5}{2} \frac{20}{2} \frac{0}{0}} \times 12 \frac{1}{4}=15.9$ knots．This speed would carry the vessel from San Francisco to China in 13 days on 85 tuns of coal per day．The amount of coal carried would have to be 1,500 tons，leaving 4,000 tuns of space for crew and paying load．

The Royal Yacht．
The new royal yacht Osborne was laanched in 1870，but， proving weak，has been surengthened，replanked，and finally finished．She recently made a trial trip of six hours，and attained a speed of 14.85 knols per hour．The following are some of her particulars：Extreme length， 278 feet；extreme breadth， 35 feet 1 inch；oscillating engines，cylinders， 6 feet 81 inches；feathering paddle wheels，floats 11 feet 6 inches； 2 funnels，twenty furnaces；mean steam prepsure， 23.3 lbs ． mean revolutions， 24.98 ；mean speed， 14.85 ；mean in ilicated power， 3,374 ；mean consumption of coal，per indicated horse power per hour， $3 \cdot 95$ lbs．；capacity for fuel，two days＇steam． ing．

The Liverpool Landing Stage．
This structure，probably the most magnificent floating platform in the world，was recently totally destroyed by fire． It consisted of a large number of pontoons，having iron frames and wooden fittinge，which in all aggregated a length of 700 yards，and a width of 80 feet．The structure was used as a place of debarkation and embarkation for the many steamships in the harbor．The timbers were creosoted or tarred，and it is believed that the gas arising therefrom be came ignited，communicating the flames to the newly caulked deck．

John E．Gavit．
We regret to learn of the death of Mr．John E．Gavit which took place on August 25，at Stockbridge，Maes．Mr Gavit was President of the American Bank Note Company， Secretary of the American Institute，and an earnest studen and promoter of microscopical science，in which branch of knowledge he was recognized as an authority．He was also identified with the art of steel engraving．

American shad have been lately shipped in cans to Persia

THE GRAPE PHYLLOXERA-SIXTY THOUSAND DOLLARS REWARD
The French National Assembly has recently passed the following law, the text of which we translate from $L a N a$ ture:

Article 1. A prize of three hundred thousand francs $(\$ 60,000)$, to which will be added the voluntary subscriptions of departments, of communes, of associations, and of indi viduals, will be granted by the State to the inventor of a method, both efficacious and economically applicable in the generality of soils, for the destruction of the phylloxera or the prevention of its ravages.
Article 2. A commission, named by the Minister of Agriculture and Commerce, will be charged; I. To determine the conditions to be fulfilled in order to compete for the prize. II. To decide upon the methods presented and to make the award.
The commission, under M. Dumas, President, has already entered upon its labors. The reward, we believe to be open to the citizens of all nations. None of the methods proposed for the destruction of that scourge of the vineyard have proved atailing. The insect is indigenous to the North American continent, and has been found in near. y all portions of the United States; so that in his country abundent opportunity is offered for his country abundant opportunity is offered fo inventor will notonly earn a worldwide fame, but a large fortune, for the definite sum above named will probably be greatly augmented by the private rewards offered by the wine manufacturers of Southern France, whose business has been terribly injured by the destruction of their vines by the parasites.
The phylloxera is a peculiar genus of plant lice, comprising several species, nove of which affect man's interest excepting that known as the vastatrix. Its attack upon the vines of France began to attract serious attention soon after the close of our civil war, the roots of the plants af fected becoming swollen and bloated, and finally wasting away. Professor Planchon, in 1868, recognized the injury as caused by the punctureo a minute insect, to which, after study, he gave the name by which it is now known, and which Professor Riley, State Entomologist of Miseouri, from whose recent report we extract the follow ing facts and engravings, suosequently found to be the same as that indigenous to the United States. The disease continued to spread in Europe, and especially in France, to such an alarming extent that a standing phylloxera committee has been organized in the French Academy of Sciences, of which M. Dumas is secretary. In Portugal, Austria, and Germany, and even in England, the plague has also appeared.
There are two types of the phylloxera, one termed the gal. lacola, which lives in galls on the leaves: the other, or ra dicicola, in swellings of the roots. In Fig. 1 is shown the

underside of a leaf covered with the galls. On opening one of the latter (see d, Fig. 2) the mother louse is found at work, surrounding herself with pale yellow eggs. She is about 0.04 inch long, spherical in shape, and of a dull orange color When six or eight days old, the eggs hatch into little oval hexopod beings, which differ from their mother in being of

Fig. 2.

a brighter yellow, and having more perfect lege and anten nœ. These issue from the gall, scatter over the vine, and on reaching the tender terminal leaves, begin to pump up and to appropriate the sap. In a few days the gall is formed, and the louse, also growing, beging a parthenogenic mater-
nity by the deposition of fertile eggs, from 200 to 500 in number. Each egg brings out a fertile female. So prolific is the generation that Professor Riley estimates that the pro duct of a year would encircle the earth thirty times, each in dividual touching the end of another.
In autumn, the dwellers in the galls descend to the roots, and there hibernate. During the summer the number of the parasites is immensely reduced by their natural enemies. The precise conditions which determine the production and maltiplication of the type cannot be stated, but it is said to be evident that the nature and constitution of the vine are important elements. In our second figureare shown various characteristics of the type. a and b are ventral and dorsal characteristice the type.

THE ROOT-INHABITING PHYLLOXERA (Fig. 3).

gall, e swelling of an attacked tendril, $f g h$, views of the

 mother larva, i her antennæ, and j her two jointed tarsus. The natural sizes are indicated at the sides.The newly hatched larvæ of the radicicola at first resemble those of the type just described; but they shed the smooth skin, and acquire raised warts or tubercles. After this they appear in two principal forms ; one, e $f g$, Fig. 4, is of a more dingy greenish yellow, with more swollen fore body and tapering abdomen. In the same illustration, b is the larva, hibernating ; a the roots of the vine; $c d$ the antennæ and leg of larva, and h the granulations of the skin. The second or more oval form eventually develops wings. In Fig. 3, a is a heal thy root; b, one on which the lice are working; c a deserted and decaying root; d shows how the parasites are found on larger roots; e is a female pupa (dorsal view), and f, ventral view; y and h are similar views of winged female; j, side view of wingless female, and i the antennæ; and k shows how the puncture of the lice causes the larger roots to rot. As to the best means of coping with the disease, Pro fessor Riley suggests grafting the more susceptible vires on the roots of the more resistant varieties. The South ern fox (vulpina) is the only species exempt from both leaf and root lice, but this does not flourish above latitude 35°. The same authority recommends a bath of weak lye or strong soap suds before planting the young ones, as the best safeguard. Λ thorough aprinkling of the ground with lime, ashes, sulphur, salt, or similar substances destructive to in sect life, in from July till fall, will also have a beneficial of fect. Planting the vines in a soil mixed with sand and soot is also advised. The natural enemies of the phylloxera are he thrips, the lace wing fly, the lady bird, the synphus fly, and the phylloxera mite. Fig. 5 represents the last men tioned. The leaf lice, it seems, may be controlled by care in destroying the first galls and in pruning and destroying the terminal growths of infested vines later in the season. The root lice are not so easily reached, and it is for a direct remedy for these that the largo French reward is offered.
The only known and certain cure is submersion for 25 or 30 days, in September and October, or 40 or 50 days in win ter. Temporary irrigation will not answer. Carbolic acid oil of cade, arsenious acid, sulphide of calcium, sulphide of mercury, and arsenate of potash, will all kill the insect when brought in direct contact; but this, in field practice, cannot be done, or else a strong enough solution cannot be used without injuring the vine. A thorough mixing of the soil with carbolic powder has given good results. Bisulphide of carbon, upon which extensive experiments have been made by a special French commission, proves to be costly and la borious in application: while there is great difticulty in its reaching and killing all the lice without injuring the vine. Basides, it is dangerous to use, its vapor being extremely volatile and explosive. The application of fertilizers intended o invigerate the vine, and, at the same time, injure the lice, has been productive of good. Especially has this been the case with fertilizers rich in potassic salts and nitrogenous
compounds, such as urine. Sulpharet of potassium dis-
solved in liquid manure, alkaline sulphates with copperas dape seed, potassic salts with gusno, soot, and cinders, are among other applications favorab!y mentioned.

The Bamboo.

A pamphlet has been published at Cairo by the Agricul ural Department of Egypt, on the Indian bamboo, which, it s said, is being acclimatized there with great success. We ppend a few notes therefrom:
The gigantic bamboo, which is of colossal dimensions, growing to the hight of 64 feet, and is 15 to 18 incbes in circumference, from the joints of which, especially those of the middle and upper parts, grow numerous branches with long lea and uper parts, grow numerous branches with ng leaves, is the most vigorous species of this arborescent plant. It was introduced some years ago ito the gardens of the Khédive of Egypt, at Ghézireh, from whence it has been multiplied in two or three other gardens of Egypt. It was so much admired by the Emperor of Brazil, on his visit to the gardens of the Khédive last autumn, that he expressed his determination to import it into Brazil, and to cultivate it upon the Imperial estates as a shade for animals during the heats of summer. The gigantic bamboo originates in India and China, and is highly appreciated wherever it is cultivated, being used for posts in pavilions and the houses of the inbabitants. The hollow joints are utilized for carrying liquids, for flower vases, etc. ; and in China, and especially in India, for bottles and tobacco boses, highly wrought and polished, and sold at great prices. The larger stalks are also used for bridges, water pipes, and carts and other vehicles. In fine, the wood is employed in the arts, in a multitude of industries, and for implements of agriculture. This species of bamboo vegetates with such rapidity that it can almost be eaid that one can see it grow. Its progress may be seen from day to day, and at Ghézireh it has been known to grow 9 inches in a single night. In China, criminals condemned to death are subjected to the atrocious punishment of impalement by means of the bamboo.
A humid soil is congenial to the gigantic bam boo, although it suffers under a prolonged inundation. It is proposed in Egypt to cultivate it upon the borders of the canals in the vast domains of the Kbédive.
There is also in the gardens of Egypt another species of bambon, believed to be the bambusa arundinacea of Wildenow. It presents the following characteristics: The stalks are samaller and shorter than the gigantic bamboo of India; it attains about 39 feet in hight; it forms larger tufts or clusters than the great bamboo, and throws out a great number of stalks, which are furnished with numerous slender and flexuous branches, bearing, ordinarily, tolerably large thorns, a little arched at the joints or articulations; and the lea ves are smaller than those of the gigantic species, being rounded at the base, lance-shaped, tapering to a point, and a little downy.

Fig. 4.

There is another species of bamboo which it is proposed to cultivate in Egypt. It attains a hight of 16 or 20 feet, prouces enormous clusters of canes, about the size of the finger, and makes excellent props for use in horticulture. A plant of two or three years' growth will furnish a hundred staike, forming a cluster of vast size. This species is the bambusa edulis, so called from the fact that its young shoots are edible, and in China regarded as very nourishing.
There is still another species of bamboo to which the attention of the cultivators in Egypt is called. It is the black bamboo (bambusa nigra). It is distinguished principally by

Fig. 5.

ts olender branches, which are of a fine black color, and from which canes are manufactured extensively for exportaion. Pens are made from the smaller stems, which are commonly used for writing in Egypt.

Static Induction Produced by Means of Rahmkorfiss Coil.
The author finds that if the current of a battery, alternately interrupted and re established, is made to pass through the thick wire of a Rubmkorff's coil, two induced currents in contrary directions appear in the fine wire, and for a certain explosible distance there seems to be only one current pro daced. This current is direct, and the sparks given by i bave quite the appearance of sparks of static electricity. Reciprocally, if a series of sparks of static electricity are passed through the fine wire, we receive in the thick wire

Interesting Experiments upon the Clay in Water. Clay in Water.
 In a paper read before the Royal Physical Society, Edinburgh, by William Durham, F.R S.E., he says: "It has been ong known that pure water has the power of holding clay in suspension for an indefinite time, and also that salts of lime when added, even in small quantity, to water, destroy this power. I have made a considerabie number of experiments on this subject, and the results appear to meextremely interating.
 The power which water possesses of sustaining clay is

opaque for three days, while water only was seen through in about a da y and a half
In solutions of sodium carbonate of varying atrengths (and most probably in all alkaline solutions), the greater part of the clay sunk to the bottom, and the liquid clearad in the in. verse order of the specific gravities of the solutions, so that the densest liquid settled and cleared first.
Water whose power of sustaining clay had been destroyed by an acid had this power restored, in great measure, to it by the addition of any of the alkalies.
On substituting finely powdered white silica for clay, th $_{e}$

emerson's diamond holders, as inserted in circular saws. See page 159.)
currents quite analogous to those given by the battery. On examining these currents by means of a voltameter, there appears to be merely one current in an inverse direction.M. E. Bichat.

Leaf and Flower Impressions.
Oil a piece of white paper on one side; hold the side that is oiled over a lamp or pine knot smoke till quite black; place the leaf on the black surface, as the veins and fibers of the leaves show plainer on the under part; now press it on all parts of the leaf with the fingers; then take up the leaf and put the black oiled sides on the page of a book (made for leaf impreesions) with an extra piece of nice paper on the top to prevent smutting the opposite page; press it a few moments; then remore the green leaf, and the impression will be left on the page as beautiful as an engraving. Flowers of single corolla can be pressed in like manner. Many of the geranium leaves make beautiful impressions. The impression book can b \ddagger made atill more interesting by giving botan ical classifications of each leaf and flower.

IMPROVED VERTICAL PLANING MACHINE.

Vertical planing machines are now becoming pretty gene al in engineering workshops of the first class. The Chi nese Government have lately established arsenals and dockyards on the European system at several of their principal porte, and mong the tools eent out from this country by Messrs. John this country by Messrs. John Bourne \& Co., to furnish these establishments, there is a type of vertical planing machine which offers several features of advantage. Of this machine we give an illustration, for wbich we are indebted to The Engi. neer.
Upon a planed base of cast ron formed with grooves fitted with T headed bolts, for the at. tachment of the object to be operated upon, two strong standards are erected which carry planed cross pieces at the top and bottom, along : which is drawn, by Neans of screws, a great upright bar, which carries the cutting tool. The tool holder with the tool, or, if desired, three ois, is made to travel up and ools, is made to travel up and own upon the vertical bar by means of a ecrew-shown in the engraving-and after each cut the vertical bar is drawn sideways by the top and bottom screws through a suitable distance, whereby an action resembling that of an ordinary planirg machine is maintained, except that the cut is vertical. The foundations in many parts The foundations in many parts of is so constructed as to be tool is so constructed as to be independent of walls or build-
ings. The vertical travel is 12 ings. The vertical travel is 12
feet, and the horizontal 16 feet. The cutting tool travels up at twice the speed that it travels down, and, as will be seen by a reference to the engraving, the design is one which combines strength with simplicity. The base plate is formed in two parts bolted together laterally for facility of shipment. Only about one third of its depth is shown above the floor. At the back of the machine there is a pit about 3 feet deep in which the attendant stands when the machine is at work.

VERTICAL PLANING MACHINE FOR THE CHINESE GOVERNMENT.

the jar, and the liquid became clear in the order of the specific gravities of the solutions, so that the densest liquid ettled and cleared last. This effect was more decided in the acid than in the salt solutions.
The power which water possesses of sustaining clay in suspension is gradually increased by the addition of amall quantities of the alkalies, or their carbonates, and lime. Thus water having 3 grains of sodium carbonate in it was quite more than the other. where a man's labor is concerned.'

fig. 3

same general results were obtained, but in a much modified form as to the time of clearing, the silica settling much more rapidly in every case than the clay.
These remarkably contrasted actions of acids and alkalies have not been noticed before, so far as I know, and, besides being of much scientific interest, may be of practical import. ance. I have not been able as yet to discover the cause of these phenomena, but it appears to me extremely probable that the clay, in falling through the water, generates, by friction, electricity; and as water is a bad conductor, the difference in potential between the clay and the water continues for some time, hence they are matually attracted; but, when acid or salt is added, the liquid becomes a good conductor, the potentials are equalized, and the clay falls. With thealkali, on the other hand, although the liquid does become a better conductor, it at the same time becomes a better generator of electricity; and it is only when, by adding a considerable quantity of alkali, the conducting exceeds the generating power that the potentials are equalized and the clay falls. I hope to be able shortly to put this idea to the test of experiment."

Dealing with Workmen.

In a recent address to the British Association of Gas Managers, Mr. Geo. T. Livesey, the president, made the following observations, which apply not only to gas men, but to workmen of every class and profession: "A Eource of great anxiety has been, and is atill, the difficulty of dealing efficiently with their workmen. Undoubtedly the advance of wages so universally applied for, or expected, has been founded on circumstances that must be admitted in many cases to be a justification for the claim. When such grounds exist for an advance, I hold it to be to the interest of themanager, as well as his duty, to be the first to move in the matter, for I have found that men in regular constant employ, being generally steady, honest workmen, do not often make a request for an ir crease unless they have fair rea. sons for doing so, and it is a mistake to wait until they make the application. I have felt, when this has been the case on the part of a good servant, that I had done him an injustice in not giving him the advance unsolicited. I would further say, " Do not put a man off with excuses. Consider the matter at once, and give him an answer. If he is already sufficiently paid, tell him so; but, if not, remember that 'he gives twice .who gives quickly'; and from that day let the extra pay be granted." So small a sum as 3d. or 6 J. a day may make all the differencebetween a contented and a discontented workman; while the one may be worth, in the value of the work done, twice or four times that amount

It is all very well to say that the price of labor, like that of coal or iron, is regulated by the inesorable law of supply and demand; but this law, though perfect in its application to the purchase of materials, has only a partial application

PRACTICAL MECHANISM
Nomber viti.

VIBE WORK-TOOLS FOR SCRAPING sURFACES
Surfaces requiring to be very true may be got up with the craper, the best form of which is that shown in the following illuatration, the point, a, being the cutting edge. It is

ess liable to jar and more readily sharpened than any other. For use on wrought iron, the cutting edge should be kept moistened, or it will tear the metal instead of cutting it cleanly. All surfaces intended to be scraped should first be filed as true as possible with a smooth file, care being exer cised to use a file that is evenly curved in its length and slightly rounding in its breadth. After the surface has been craped once or twice, a well worn, dead smooth file may be passed over it, which will rub down the highest spots of the craper marks and greatly assist the operation of scraping. Scraping should be executed in small equares, the marks of one equare being at a right angle to the marks of the next; then, after the surface plate has been applied, repeat the ope ration of scraping in squares, but let the marks cross those of the previous scraping. The face of the surface must be wiped off very clean before the surface plate is applied, or the surfaces of both the plate and the work will become scratched. The face of the plate may be mointened by the application of a barely perceptible coat of Venetian red mixed with lubricating oil, rubbed on by the palm of the band, to operate as marking to denote the high spots. In applying the surface plate, move it both ways on the work and reverse it end wise occasionally. If the work is light, it may be taken from the vise and. laid upon the plate; but much pressure need not be placed upon the work, or it will spring to suit the surface of the plate, and thus appearto be true when it is not so. Small surfaces should be rubbed on the outer parts of the surface of the plate, by which mean he wear on the surface plate will be kept more equal.

fitting connecting rods

The planing work on a connecting rod being complete, the first thing for the fitter to do is to mark off the key ways,the bolt holes (if there are any), the boles for the set screws, the oil holes, etc., so as to have the drilling completed before the straps or rod ends are filed up, because drills leave a burr where they come through the metal, and because the clamps, which hold the work while it is baing drilled, are apt to leave marks upon it. The holes should then be tapped when the rod will be ready for the file. The taces of the rod whereon the straps fit should then be surfaced with a eurface plate, and made quite square with the broad faces of the rod, parallel crosswise with each other, and a little taper with each other in the length. The strap should be made narrower between its jaws than the width of the rod end, so as to require to spring open when placed upon the od end if the brasses are not in their places. The inside faces of the jaws of the strap must be made quite square with the side faces, so that, when the strap is placed upon the rod end, the latter faces of the strap will not spring out true with the broad faces of the rod end. The rod end must have a light coating of marking rubbed over it, and the strap moved back and forth on it, so that th
If, when the strap is on its place, its aide faces are uneven with the side faces of the rod end. as shown in Fig. G (which is a sectional view of a strap and rod end, a being the rod end, and B B the jaws of th strap), either one or both of the inside sid faces of the strap require filing in the direc tion denoted by the dotted lines, because it is only in consequence of the inside faces not being aquare with the outside faces that this twist occurs. The key ways in the strap and rod end should be filed out together, that is while the strap is on its place and secured by being clamped or bolted. If the strap is one held to the rod by a gib and key, the width from the end of the rod to the crown of the strap when it is placed in position to cut or file out the key way, should be that of the extreme width of the braeses when the joint of the
brasses is close, less the amount of taper there is on the key. The key way should then be filed out parallel, both in its width and breadth, and surfaced with a surface plate, the breadth being equal to that of the gib and key together when the head of the key is even with the head of the gib; then when the key way is finished and the strap is placed in its intended posi. tion on the end of the rod, the strap will have moved back from off the rod end for a distance equal to the amount of the taper on the key, so that there will bs the requisite amount of draw on the key way of the strap on the one side and on the key way of the rod on the other side, while the key will at the same time come through the strap to its required distance. The faces of the rod end, whereon the jaws of the strap fit, having been made (as directed) a little taper, and the strap allowed (as described) a little spring, the rod end will enter the strap somewhat easily, and tighten as it passes up the strap, so that, when quite up. the strap will fit a little tighter than it is intended, when finished, to do. Wher the
strap is fitted and keyed to the rod, a light cut should be taken off the faces of the rod and strap while they are together, the bolts of a bolt rod being sufficient to hold the strap for that purpose; but in the case of a gib and key, a piece of wood should be placed between the rod end and the rown of the strap, that is, in the space inteuded to be filled by the brasses, and the wood keyed up so as to lock the strap on the rod while the faces of the rod and strap are planed. This being complete, the strap is ready to receive the brasses. The bottom of back brass must be made to a tight fit, so as to spring the strap open aufficiently to make it fit the he rod end as easily as required; thus both the brass and the strap will be closely fitted. The top brass must be fitted to the strap while the bottom brass is in its place in the strap, and mast be made to fit the strap without being so tight as to spring it open. The corners of both brasses where they fit the corners of the strap should be eased away ith the edge of a half round file, so that they will not destroy the corners of the strap (when the brasses are being driven in and out to fit), which would make the strap appear be a bad fit on the rod.
While fitting the top brass, it is necessary to try the strap on the rod end (the brasses being in their places) at intervals, o as not to take any more off the top brass than is neceseary to let the strap fit the rod end. As a guide, when fitting the rasses to the strap, the callipers may be set to the width of he rod end where the strap fits, and applied to the strap when the brasses are driven in to fit. The gib and key must when placed together edge waye, be quite parallel in their total breadth, so that they will fit properly against each other and gainst the key way in the rod end and the strap. When set ing the gage for the size to which the brasses are to be planed, place the strap on the rod end to get the correct ze, for the strap is narrower (between its jaws) when it is ff than when it is on the rod, because of the spring. In edding the back brass to the strap, let it bear the hardest, if nything, upon the crown, for if the bevels of the brass hould keep the crown from bedding, the strap would spring way from the rod end, in spite of the gib (or the bolte, if Fig. 35.

If the back brass does not bed down upon the crown, a, of the strap, the latter will spring away from the block end of he rod and from the brasses on the sides, and will assume he shape denoted by the dotted lines. Should the top brass ot bed properly against the rod end, the trap will spring as lescribed in Fig. 36.

Fig.37. The dotted line, a, is the back of the brass

 supposed to bed improperly against the rod end, as shown; the dotted lines, B B, denot the manner in which the strap would, in con sequence, spring away from the rod end when the fit properly againgt if the brasses fai to fit properly against the rod end or strap, in the direction of the breadth of the strap, itwill spring out of line, as described in Fig. 37, which is a sectional view of a connecting rod end. C is the strap, D is the rod end, and B B are the brasses, the top one of which, if it did side only), as represented by theiline a, would spring the strap out of true with the rod end, in the direction of the dotted lines. The strap is, by reason of its shape, very susceptible to pring; and unless the brasses, or even the gib and key, ar quite equare and fit well, it is certain to spring out of true. brass and brass," that is, the joint of the t wo brasses close "ogether, so as to take the pressure of the key, which thus ocks the strap and brasses to the rod end, and prevents hem from moving, or working, as it is called, when the gib and key to hold them to their places, because, if the oint of the brasses is not close, the key cannot be driven ome tightly, and hence there is nothing to lock the strap armly to its place. If, however, the strap is held to its place by bolts, it is not so imperative to keep the joint of the brasses close together, although it is far preferable to do so, especially in the case of fast.running 'engines, not only on ccount of the assistance lent by the key to hold the strap irmly, but also because it holds the brasses firmly, and the key cannot bind the brasses too tightly to the journal, even et screw in preventing it from slacking back.
The brasses should be left a little too tight in the strap before boring, because they invariably shrink or go in a little deways from being bored, as do all brasses, large or small ideways from being bored, as do all brasses, large or small,
oven if bored before any other work has been done on them.

For driving the brasses in and out of the strap to fit them, se a piece of hard wood to strike on so as not to stratch the skin of the brass and alter its form, as will be explained in future remarks on pening.
The brasses should be of equal thickness from the face forming the joint to the back of the brass, so that the joint will be in the center of the bore of the brasses. The respective faces forming the joint should be quite equare with both the faces and sides of the brass, so that they will not spring the strap when they are keyed up, and so that, when the brasses are let together in consequence of the bore having worn, the faces may be kept square, and thus be known to fit properly together without having to put them together in the rod and on the journal to try them, which would entail a good deal of unnecessary labor.
To get the length of a connecting rod, place the piston in the center of its stroke, and the distance from the center of the crosshead pin to the center of the crank shaft is the length of the rod from center to center of the brasses. Another method is to place the piston at one end of its stroke and the crank on its dead center corresponding to the same end of the stroke, and the distance from the center of the crosshead pin to the center of the crank pin is the length of he rod.
To ascertain when the crank of a horizontal engine is upon ts exact dead center, strike upon the end face of the crank axle or engine shaft a circle true with the shaft, and of the sume dimeteras the crank pin ; then place a spirit level so :hat one nd rests on the crank pinand the other end is even with the outline of the circle; and when the spirit level stands true, the crank will be upon its dead center.
The length of a connecting rod cannot be taken if the crank placed in the position known as full power, because the osition in which the piston would then be cannot practically be definitely ascertained; for the angle at which the connecting rod stands causes the piston to have moved more or less than half the length of the stroke when the crank has moved from a dead center to full power, according to which end of the cylinder the piston moved from. If it was the end nearest to the crank, the piston moved less, if the other end, it moved more, than half of its stroke ; so that in either case the piston stands nearer the crank than is the center of the length of the cylinder when the crank is in the position referred to. This variation of piston movement to crank movement is greater in the case of short connecting rods than with lorg ones.
To fit a connecting rod to an engine, first rub some mark ing on the crank pin, and put the crank pin end of the rod on its place, with the brasses in and keyed properly up. The other end of the rod, being free, can be placed so as to touch against the crosghead pin, when the eye will detect if it will go into its place without any spring sideways; if it will do so, the rod may be taken off the crank pin, and the brasses if necessary, fitted to the pin sufficiently to allow each to bear on the crown. But if the rod end will not fall into the crosshead journal without being sprung sideways, then move it clear of the crosshead, placing a side pressure on it in the direction in which it wants to go to come fair with the crosshead journal, and move it back and forth under such side pressure, which process will cause the crank pin to mark where the connecting rod brasses want filing and scraping to bring the rod true. The rod must then be taken off, and the brasses eased where the marking and the knowledge of which way the rod wants to go determine, the rod being placed on the crank pin as before, and the whole operation repeated until the rod "leads" true with the crosshead journal. The crosshead end of the rod must be fitted in like manner to the crosshead journal until the crank pin end of the rod leads true to the crank pin journal. The rod muet then be put on its place, with both journals keyed up, and, if it can easily be ccomplished, the engine moved backwards and forwards, the brasses being then taken out and bedded, when the rod wil be fitted complete. A connecting rod which has both straps held by gibs and keys gets shorter from center to center of the bore of the brasses as it wears, and tbat to half of the mount of the wear. This is, however, generally rectified by ning up the brasses-thatis, placing pieces of metal behind hem (they may be fastened to the brasses if it is desirable)which pieces are made of the required thickness to replace the amount of the wear of the bracses.
A connecting rod whose crosshead end has a strap with a gib and key, or, what is botter, two gibs and a key, to hold t, the crank pin end having its strap held by bolts, and the sey, between the bolts and the brass, would maintain its origi nal length, providing the wear on the crosshead brasses was as great as is the wear on the crank pin brasses; but since that on the latter is the greatest, the rod wears longer to half the amount of the difference of the wear between the crosshead and crank pin journals. If both the straps of a rod are held by bolts, the key of one end being between the brasses and the main body of the rod, and the key of the other end between the brasses and the crown of the strap, it would maintain its original length if the wear on both ends was equal; but this not being so, it wears longer, as above stated. When marking off the end of the rod (that is, the circle on the brasses to set them by for boring), or when trammeling a rod to try its length, stand it on its edge; because if it rests on its broad face the rod will deflect, and appear to be shorter than it is ; this is especially liable to occur in coupling or side rods, which are generally longer and slighter in body than connecting rods.
The oll hole of a strap for either a connecting or side rod should be in the exact center of the space intended to be filled by the brasses. It will thus be central with the joint of the brasees, and from center to center of the oil holes, and will, therefore, represent tha proper length of the rod

When, therefore, the brasses of a rod end whose strap is hald by a gib and key, have worn so that the key is let down the brasses must be lined up to bring the key back to its original position, the back brass being lined up so that its joint face comes even to the center of the oil hole, and the oiher brass being lined up sufficiently to bring the key back to its original position ; then the rod is sure to be its proper length. But if the strap is held by the bolts (in which case it does not move when the brasses are let together and the key further through), lining the back brass up to the center of the oil hole at once ensures the rod being of its correct ength, without any reference as to what thickness of liner is put on the other brass, or how far the key may come through. In either case it will be observed that the center of the oil hole, when placed as described, forms a gage to keep the rod its proper length. To ascertain what thickness of liner is required for the brass back, place it in its place in the strap, and scribe a line (on the inside of the strap) even with the joint face of the brass; then mark a line across the strap so that the line will intersect the center of the oil hole, and the distance between the two lines will be the requisite thickness of liner.
To find the tbickness of liner necessary to the other brass, put the strap in its place with both brasses in, and the back one lined up; then key the brasses up, and ecribe a line on the key at its narrowest end, even with the face of the strap then the difference between the width of the key (on the taper face) at the line (which is the distance it does come through), and the width of the key at or near the narrow end (that is to say, the distance it ought to come through) is the thickness of liner required.

Carrespoutence.

Car Ventllation. Scientific American:
 To the Editor of the Scientific American:

If the public generally knew how soon the air in a railroad car is spoiled and vitiated, there would probabiy be mor zeal in searching for a remedy of the evil ; bnt comparatively few know
ar study
Pure air, so called, contains 4 parts of carbonic acid gas in 10,000 ; and a large paesenger car contains about 4,100 cubi feet of floating atmospheric air. If pure, it should not con tain more than $1 \cdot 66$ cubic feet of carbonic acid gas. A man exhales 18 cubic inches of carbonic acid gas in a minute. If we suppose that there are 50 passengers in a car, they would xhale 900 cubic inches in a minute, or 5.21 cubic feet in 10 minutes, which is at the rate of $12 \cdot 55$ parts in 10,000 ; so that in 20 minutes the air is vitiated at the ratio of $25 \cdot 10$ parts in 10,000 . Twenty-five passengers would need 40 minutes to come to the same result. This is from the impurities from ound lungs. Take into consideration the breath from dis eased lungs, and uncleanness of person and clothes, and the case will be still more desperate. For this there is only one remedy: The air must be continually renewed. Thequestion only is, how?
What is called natural ventilation is the flow of air caused by difference of temperature and weight. Where the tem perature is equal, or nearly so, in and outside, there is little or no motion of the air. The displacement will increase with the difference in temperature. Suppose the external temper ature to be 32°, and the internal 62°, a difference of 30° : th hight of a car from floor to ceiling 8.5 feet, and the opening or the discharge of air $2 \cdot 25$ square feet, or 1.5 feet square in all. We wnuld then have: Difference of temperature $30^{\circ} \times 0.002036$ (coefficient of expansion) $\times 8.5$ (hight of car) $=$ $0 \cdot 51918$ inches difference in hight of the pressing column. The mount of air displaced in a second is ascertained by the formula for falling bodies, which, in our case, would give $2 \sqrt{051918 \times 15.6}$
$\times 2 \cdot 25=2.54$ cubic feet. The amount
eally displaced is f the theoretical result. In a minute, 15 cubic feet are driven out: and as the car contains 4,100 cubic leet, it will be $4180=27$ minutes before the air in the car an be renewed, when the atmosphere is at freezing point utside and moderately warm within, keeping, in all, 2.25 quare feet continually open; but with a difference of tem erature of only 15°, it would require 54 minutes to renew ze amount of air which is vitiated in 10 to 20 minutes. It very doubtful, however, if ever, in the most approved pas nger cars, so large an area is always kept open. In winter would soon reduce the temperature to below the comforte e point, and most of the passengers would protest, prefer g even a bad atmosphere to a chilling draft. In summer fear of suffocation, all windows must be kept open; and, course, dust, smoke, and cinders cannot be kept out. Air I be forced in by funnel-shaped tubes provided the wind iws in the right direction), but with it dust and smoke 11 come in.
$N e$ eee that natural ventilation will not fully answer the -pose ; and all the neat and ingeniously arranged no-called tilators, in the frieze and akylighr, are more ornamental n useful. There seems to be no other way to solve the stion but the application of mechanical means, such a 3 or blowers driven by some power, to exhaust the fou supply the fresh air. The exhaustion should be near top in summer, and at the bottom during winter. If the er be given, this can easily be done; and any plan for ibation, warming, or cooling can be combined with it.

donstructing Mammoth Telescopes.

B Fiditor of the Scientific American:
sing in your widely circulated paper that a project is tained in Ametica of constructing a gigantic astrono
mical telescope, and as various met hods have been proposed for carrying out that undertaking, I send you an account of a mercurial reflecting telescope (invented by me and exhibited before the New Zealand Institute), published in the "Transactions" of that Institute, Vol. V., p. 119: whereby advantage is taken of the parabolic figure assumed by liquids rotating in the plane of the horizon; so that objects at the zenith and a few degrees distant therefrom can be magnified by eyepieces in the ordinary manner. A zone of the hea. vens, a certain number of degrees in breadth, can thus be examined, the sweep of the telescope in right ascension being made by the earth's rotation. For viewing objects not near the zenith, a large plane reflector of silvered glass is used, which first receives the rays from the object, and then reflects them vertically downwards on to the mercurial speculum, which speculum then collects the rave and reflects them convergently upwards through an aperture formed in the plane reflector. In the publication (which I inclose) the heory is fully explained, together with a contrivance for causing the plane mirror to be always at the proper inclinaion, whenever the findor is directed to the object.
In the accompanying figure, showing the vertical section

of the telescope and observatory, the speculum cup contain ing the mercury is attached to the top of a long, hollow conical axis, and a thin, hollow metal foat is attached to the bottom of the axis. This flost revolves in a vessel of liquid and this liquid is rotated by conducting it tangentially into he vessel at its circumference, at the parts, 00 , while its outlet is close to the bottom of the axis; a spiral motion is hus imparted to the liquid. The size of the float is so ad justed that it displaces nearly as much of the liq aid as cor esponds to the weight of the speculum. There is then but little weight upon the pivotsupporting the axis, which is nserted in solid masonry.
Three curved pillars of stone, two of which are seen in the gure, form supports for three levers for leveling the specu um. These levers have a slow motion, communicated to them by acrems fixed near the long end of the levers; and when properly adjusted, the short ends of these levers have contact with, but exert no pressure on, the axis. By this ar angement, the axis is secure from any vibration arising from he gyratory motion of the liquid round the float. Then, if his liquid is supplied from an elevated vessel kept full to verflowing, and if the inlets, 00 , and the outlet be kep of a constant size, as gravity is a constant and friction at
all parts of the axis nearly annihilated, therefore its periodic evolution is a constant too
This arrangement contains within itself a centrifugal pen dulum for regulating its velocity, and that without adding ny other apparatus to the parts already described; for let he vessel containing the float be supplied with a slight exess of the liquid, it is then always full up to its edge, and hen rotating, its surface is rendered concave. If, then rom any circumstance, the revolution becomes accelerated the liquid becomes still more concave, and consequently ex erts less buoyant power upon the flost; this leads to extra friction on the bottom pivot, which tends to retard the velocity.
A cylindrical wall of masonry surrounds the speculum, forming at the same time the tube of the telescope and also the observatory. The top of this wall supports a rotating dome with sultable openings, and attached to and rotating with this dome is a large plane mirror of glans silvered on its
constructed by a novel method.
The axis on which this mirror moves vertically is eupported in a similar manner to the axis of a transit circle, and simi ar vertical graduated circles can be attached thereto; and if the dome is made to revolve on a graduated horizontal cir cle, we shall have a symmetrical arrangement for an altitude and azimuth instrument on a large scale. Exterior to the wall supporting the plane mirror, and entirely unconnecte therewith, is another circular wall, and it is this outer wa that supports the floors, through apertures in the interio wall somewhat larger than the supports; so that any move ment of the observer will not vibrate the telescope. Th teps up the observatory are in the space between the walls and are attached to the outer wall only.
The symmetry of the horizontal speculum precludes an danger either of deflection by its weight or of irregular ex pansion arising from increase of temperature; for it possess the same shape and weight in whaterer position it turned ; it is, in fact, self-compensating.
The speculum admits of being beveled with extreme pre cieion by an optical contrivance which can also be applied to test the figure of the plane mirror in all its parte, while be ing constructed Henry Sket.
Dunedin Observatory, O‘ngo. New Zealand.
Hardening and Tempering Tools.
To the Hditor of the Scientific Amerıcan:
In reply to the last two communications of Mr. Hawkins upon the above subject, I have to say

1. An experience of twenty years of workshop practice here and in Europe, under the most favorable conditions, has proved conclusively to me that, by tempering taps, reamers, etc., in a tube " moderately heated," by prrforming the operation "slowly," and by tewpering them to a "brown color," I could obtain a better tool than by the aand bath, or than by any other method of tempering at present practiced in our workshops. What difference there would be in the temper (the color being the same) if more rapidity or some other changed conditicns of tempering, were em ployed, I have no need to discuss.
2. My given methods for taps, dies, reamere, etc., deter mine both the elements of time and access of the air ; for eay that the tube must be " heated." by which the workman understands "heated to a red." I then say that "care ohould be taken not to make the tube too hot, for the more slowly a tool is lowered, the more even the temper will be.' I think that, if these instructions are followed, there is not much option as to time, since the tempering cannot be bas tened, and can ouly be delayed by intentionally bolding it out from the tube; by the term "slowly," I mean as slowly as it can well be performed without purposed de'ay. If the tube is merely "heated," the operator cannot go wiong.
3. In the tube process given by me, there is a current of air continually passing the steel being tempered, and it receives at the same time its heat equally all around. No other prevailing shop practice gives so free access to the air, and such evenness of heat at the same time. In the case of dies, my plan, as given by me, surrounds all but one face with air, and turns them over and over, that all parts may have equal access to both the air and the heat. Here again my conditions regulate themselves for the given purposes.

4 As to the oxide question, my reason for declining to discuss it was that I thought it Jiable to divert attention to matters not germane to workshop practice ; and J. T. N., in disputing or questioning with Mr. Hawkins whether the colors produced in tempering are films of oxide, or of carbonization (as claimed by Nobili, who gives an excellent reason for his conclusions), proves the correctness of my premies. I have no objection to a discussion of this interesting but disputed question; it is of importance, I grant, but I can go on ueing my " color thermometer," be it caused by oxidation or carbonization.
5. It may be that the bepefits I have fonnd from the muthods I give arise from the very fact that they permit of the proper access of the air, and entail, of themselver, a sufficiently defined limit of time to insure results, correct in themselves and at all times equal; and thas they are merely proofs of Mr. Hawking' elements of time and exposure. I am inclined to think this to be the case, because the departures from the sand bath process (the most generally approved method), recommended by me, give, as Mr Hawkins advises, fcee access to the air, and determine of themselves the time by specifying that, in tempering, the hardened steel be subjected to the rays of heated (that is, red hot) iron; for iron 'red hot" gives some idea of a certain temperature, while heated sand, not being made red hot, may be made of a wide range of degrees of heat with nothing to denote it, and may, as I have before stated, be hotter in one part than in, nother in consequence of the unevenness of the fire or of the depth of the sand.
6. I have never tried tempering under conditions which would give a more free access to the air, nor do I know of any method by which more free access to the air and, at the same time, more even heating of the hardened steel can be secured than by the methods I have given: but if Mr. Hawkins can suggest any, I shall be happy to test the same and to report thereon.

Joshea Rose.
Mr. Samued Webber, of Manchester, N. H., requests ue o atate that the power ordinarily required to card one pound of cotton is $\frac{1}{20} \sigma$ of a horse power, and not $\frac{1}{2} \sigma$, as printed in our article on his book entitled "Facts on Power," on page 48 of our carrent volume. Similarly, the bent results in

IMPROVED GAS REGULATOR.

We give herewith perspective and sectional views of a new gas regulator, patented through the Scientific American Patent Agency, May 5, 1874, by Mr. Joseph Adams. The pressure of the gas acts on a flexible diaphragm, which is con nected with a valve, which opens or closes as the gas is turned on or off from the burner or as the pressure varies in the street mains. The devices arranged with the diaphragm, desribed below in detail, contribute, it is claimed, to render the regulator extremely sensitive to differences in the flow.
The exterior of the invention is represented in Fig. 1, and from Fig. 2 the interior arrangement will be readily under. stood. The circular casing of the regulator is of metal, and the parts are joined together through the flanges shown. The latter also through the flanges shown. The latter also fasten, with a gas tight joint, the outer edge
of a flexible annular diaphragm, A, the inner edge of which is riveted between the flanges of the thin metallic hemispheres which form the balloon, B. Upon the top of the latter is a rod, upon which are placed weights, C , to adapt the governor to the variation of press ure for different elevations. The lower hemi sphere opens tbrough a pipe, D , to the supply of gas from the meter below, said pipe terminating in a funnel-shaped valve which plays in the valve seat, E . The latter is attached to the bottom of the case, and is adjustable, so as to be lowered to reduce the orifice around the valve, and by this means adapt the appa ratus to a low pressure of gas. A movable plate, F, is screwed into the upper portion of the outer casing, and has in its center a small hole for the admission of air to counteract the pressure of gas upon the diaphragm. G is a conduit for the gas, and H the connection for the service pipe. In operation, the valve is adjusted to the particular elevation or pressure of the locality by means of the weights As the valve, pipe, and diaphragm are in a state of suspension by reason of the buoyancy of the balloon, the pressure on the gas being neutralized by the atmospheric air on one side and by the weight on the other, the diaphragm becomes particularly sensitive to an increased or diminished flow. If the pressure be increased, the diaphragm, balloon, and valve are raised, and the valve orifices proportionally closed; if diminished, the same portions are depressed by th ir pressure and weight, the orifice opened, and the flow ugmented. For very low pressures, the weights may be en tirely removed and rhe valve seat lowered, or both, as re quired. By this delicate arrangement, it is claimed, th flow of gas through the burners is made uniform and inde pendent of the pressure from the main and also of the num ber of burners employed at a time. For further particular address Joseph Adams, 1,025 Market street, Philaielphia, Pa.

youngman's improved slide valve.

The invention herewith illustrated is an improvement on the ordinary D valve, which is designed to overcome the difficulties arising from the expansion of the metal when heated by steam. The valve fillsup the whole of the space of the steam chent vertically, and, while highly elastic, is claimed to be as indestructible as the D valve under any speed or pressure. When the steam is shut off, the valve cannot cock in the yoke, as it takes no air in through the

amoke stack, but through the opening in the chest head by the sinking of the cap. The oil is received at the same place.
Fig. 1 is a transverse vertical section of the valve, \mathbf{A}, as located in the chest, B. Fig. 2 is a perspective view show. ing a portion of the steam chest above. Attached to the valve is a screw bolt, C, which passes through the adjusta ble cap, D, Fig. 1, and is secured by the nut shown. At E,
packing is placed, and at F, a spiral spring. An opening, G, Fig. 2 , is made in the top of the steam chest in order to al. low the nut to travel the full extent of the movement of the valve, and aleo to give access to the nut to use a wrench whenever necessary.
The packing is kept in place by lugs, H, depending from the cap. A gum gasket, we are informed, placed between the capand valve, is all that is necessary on machinery where drifting cannot occur, consequently metallic packing can be dispensed with on steamboate.
The nut, in connection with the spring, regulates the cap, which forms a ground joint in connection with the inside

ADAMS' IMPROVED GAS REGULATOR.

urface of the steam chest head, elevating it and depressing it at will. All the upward force falls upon the nut, and not upon the chest head. Between the valve and the cap exists a space the full square of the valve, in which the packing is placed, coneisting of four pieces of brass, three aixteenths of an inch in thickness and one half inch in width, shaped precisely like a carpenter's square. These are laid one on top of the other so as to break joint, and also so that, if expansion should take place and shuve one out of position at the point of intersection, the other may take its place. Between each layer of metallic packing a gum gasket is placed. A epace of about one eighth of an inch exists between the cap and the upper layer of packing. This forms a equare of packing around the shoulder which occupies the chamber. The effect of this is that, when the steam is forced into the steam cheat, it presses upon the packing inward and downward, inward against the shoulder and downward against the top of the valve. The packing is subject simply to pressure; there is no movement whatever connected with it. When the steam is off, and the engine is in motion, the cap sinks and rises according to the motion of the piston head and the operation of the spring, the shou!der sinking within the square of packing without any abrasion whatever. As the different parts of the packing are separated one sixteenth of an inch, and are brought instantly into place through the pressure of the steam, it never can become disordered.
The inventor claims the present device to be superior to a somewhat similar arrangement employed on board of the Great Eastern, and mentioned in a recent work by Mr. John Bourne. The English invention consists of two rings embedded in the chest head, between which is a gum gasket. This combination is subject to the operation of set screws, which keep the parts pressed closely upon the top of the valve, thus, we are informed, producing much more friction than the device above described.
The further claims regarding the present invention are, that it moves its weight only, is chesp, requires no alteration of machinery for its application, and may be very quickly ubstituted for the D valve. Using it, the engine can be re versed without shutting off steam, and it can be moved easily with one hand when surrounded by pressure. We are
also informed that the valve has been successfully tested for some time past. It will be placed in locomotives, steamers or land engines, and warranted for six monthe.
For further particulars, addèress Jacob Youngman or J. M Bostian, Sunbury, Pa.

The Tay Bridge.

The firm of Hopkins, Gilkes \& Co., of the Tees Side Iron Worke, Middlesbrougb, England, have entered into a contract with the North British Railway Company for the completion of the great engineering work known as the Tay Bridge, near Dundee. This, when finished, will be the longest bridge over a running atream in the whole world. The total length will be 10,321 feet, or nearly two miles, so that it is 1,127 longer than the Victoria Bridge, Montreal, which is 9,194 feet in length and has hitherto claimed the distinction that will henceforth be awarded to the Tay Bridge. There are, of course, bridges of considerably greater length than either, although none spanning a tidal river. There is, for example, the Tensas and Mobile Bridge, on the Mobile and Montgomery Railway, which is fifteen miles in length; but the greater part of this bridge is carried over great morasses, where the engineering and other difficulties to be surmounted were not at all comparable to those met with in this case ; and even after our American cousins have got all due credit for the big things they have done in this direction, the fact will still remain that the Tay Bridge is, in its way, perhaps the most remarkable structure in the world.Newcastle Chronicle.

INDIA RUBBER SHOES FOR HORSES

We can describe the invention illustrated in our engraving in no better or more concise terms than by stating that it is an india rubber overshoe for horses. It is made and lined in precisely similar manner to the articles of apparel worn by the human race, and, in fact, presents no points of difference save in its shape and its manufacture of the best quality
of india rubber.
It is designed as a substitute for the iron shoe, and as a means of preventing the many maladies to which horses' feet are subject. The inventor informs us that horses suf. fering with cracked or contracted hoof, and similar painful hurts, are quickly cured by the substitution of the rubber covering for the unyielding metal shoe. The elasticity of the former allows the hoof to remsin in its natural shape while protected from abrasion against pavements by the heavy rubber sole bencath.
The device is easily removed from or put on the hooi, and hence, while standing in the stall or turned out to pasture, the horse may be left barefooted. In winter time the covering serves as a protection against illness due to the common practice of mingling salt with the ice and snow in city streets, while the roughened surface of the rubber beneath serves to give the animal a foothold in slippery weather."
As compared with iron shoes, the cost of the rubber ones is about one third more, and their weight is some forty per cent less. Sixteen sizes are manufactured, so that accurate fits may be obtained. With reference to wear, the inventor states that the durability, owing to the fine quaity of rub-

ber employed, is very great. The device has been succe ly used for some time past, and, we understand, has re the endorsement of the New York Society for the P. tion of Cruelty to Animals.
For further particulars relative to sale of territory purchase of goods, address the inventor, Mr. Amzi J. No. 266 Nesbitt street, Newark, N. J. Patented throu Scientific American Patent Agency, July 14, 1874

A BALLOON STEERTING DEVICE.
Experiments have recently been made, at Woolwich Arsenal, England, with an invention designed to accomplish the long wished result of steering a balloon. It is the invention of Mr. Bowdler. and consists of t wo fans or propellers, and a rudder with simple hand gear, the entire ap. paratus weighing about 70 lbs . In our Fig. 1 paratus weighing about 70 lbs. In our Fig. 1,
C is a sheet iron propeller working on a vertical axis, and made to rotate by multiplying gear and winch at from 600 to 720 revolutions per minute, theobject being to cause the balloon to ascend or descend without loss of gas or ballast. B is a similar propeller working on a horizontal axis at about the same speed, inasmuch as this may be required to act in any direction. A rudder, A, made of canvas, with strengthening bands, is fixed opposite the prostrengthening bands, is fixed opposite the pro-
peller, and is held in any desired position by peller, and is held in any desired position by ordinary rudder lines, while the propeller is
made to revolve by hand and winch. Thisgear Mr. Bowdler did not consider waslarge enough to suit the balloon which the well known aeronaut, Mr. Coxwell, lent for the experiment, and which contained about 60,000 cubic feet of gas. He hoped, however, that a distinct indication of the effect of the propellers would be manifest.
manifest.
The experiment was carried out under the The experiment was carried out under the
personal direction and orders of Major Beaupersonal direction and orders of Major Beau-
mont, R. E. The official programme was as follows: (1) The balloon to be balanced carefully, and when in a captive condition to be raised to about 150 feet, and lowered repeatedly by the vertical propeller in order to test its efficiency. (2) The balloon to be released, and as soon as the course be shown to be steady and the direction ascertained by means of Mr. Coxwell's indicator, maps, etc., the horizontal Coxwell's indicator, maps, etc., the horizontal propeller to be worked at right angles to the course of the balloon, and its maximum effect
thus obtained carefully noted. (3) The balloon thus obtained carefully noted. (3) The balloon
then to be raised and lowered by the vertical propeller, without throwing out ballast or discharging gas. After attaching the gear to the side-as shown in the engraving-Major Beaumont, Mr. Coxwell, Mr. Bowdler, and a ser. geart of the Royal Engineers entered the car and the first part of the programme was commenced, a series of small pilot balloons being menced, a series of small pilot balloons being sent off in succession to ascertain the direction
of the wind and probable course of the balloon of the wind and when liberated.
The balloon ws
worked, and the balloon raised to a hight of about 40 feet and lowered again. (Soe Fig. 2.) The vertical propeller, when worked hard, produced a decided effect; probably the maximum rate of ascent did not exceed 50 feet per minute,
but it was not far short of it. The was no great accuracy, speaking critically, in the arrangement of the conditions. For example, the line which held the balloon captive was held by hand, and thus every foot the balloon rose it had an additional for and thus every loo this

BOWDLER'S BALLOON STERRING APPARATUS.-Fig. 1.
the time disabled. Shortly after this the balloon was liberated for the trial of the horizontal propeller, and the remainder of the programme was visible only to those in the balloon.
Mr. Bowdler considered that his ateering apparatus ought to be shown to have had an effect. This it had, but in the nature of things it could hardly be otherwise. The question is whetber it gave promise of producing a sufficient effect to be useful, and this we cannot at present say it did.
The problem of how to develope sufficient power to alter and govern the course of a balloon is, says T he Engineer, from which we extract the engravings, no easy one. The enormous bulk of gas required to support any given weight, and the fact that the balloon is bodily immersed in a moving medium, without access to any fulcrum by which the force of the air might be turned to account, as in the case of a ship on the water, constitute difficulties that are far from being surmounted. A hand propeller may produce an effect that is just appreciable on a still day; but when a balloon is liable, almost without notice, to find itself moving at twelve miles an hour, or much faster, it is evident that a power of a totally different class is necessary to be of any real use. We should be very glad to see something of greater promise tried in the fair and thorough way in which Mr. Bowdler's gear was tried.

Yellows in the Peach.
If you dig around a peach with the yellows, you will be first struck with a musbroomy smell. Picking out the roots, and examining them with a lens, you will see millions of them with a lens, you will see millions of
thread-like fibers, which are the mycelia of thread-like fibers, which are the mycelia of
fungi. These eat the young fibers, and leave only the main roots, through which all thenutriment of the plant has to be gathered; and as an old root is unable to do much more than draw in water, the tree becomes in a measure starved, and the leaves become yellow, just as they would be if growing in poor soil, which, though the plant might have plenty of roots, furnished nothing for the roots to eat. To have plenty of roots and no food is equivalent to having plenty of food and no roots. The effect on the plant is just the same. Remedies which look to the destruction of this root保 40 feet, although the line was slight; and had the $150 \mid$ parasite are employed. Hot water has done it, so has a weak feet laid down in the programme been adhered to, the effect solution of salt; otbers have found a solution of potash sucwould have been very considerable. A mean rate of ascent \quad ceed. The exact nature of this fungus, so far as we know, ever, the gear broke, and the vertical propeller became for very polymorphous. This one may enter into the circulation

of the plant, and exist in that case as an apparently distinct species, extending through the tissue, and destroying it as it goes. This seems likely from some experiments by Mr. Thomas Taylor, of the Department of Agriculture. At any rate it is generally believed that a bud, or even a knife used in pruning a diseased tree, will onmmunicate the disease to a heulthy one. - The Gardener's Monthly.

PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE.

We give below abstracts of papers read before the Hartford Convention, concluding our report of the proceedings of that body. Under thehead of the
molecular volume of water of crystalization, Professor F. W. Clarke stated that, when water unites to form a hydrate or a crystaline salt, contraction ensues, and by studying that contraction we get at curious results. In the case of water of crystalization, Professor Clarke has studied over 30 salts, and in every case the molecular volume of the water is about 14. With water of hydration no such regularity is found. Evidently, then, when water unites with an anhydrous salt from water of cryetalization, all the condensation which occurs is on the part of the water, the volume of the molecule of the salt itself remaining uncoanged. Referring to the molecular heat of similar com pounds, the same speaker said that it is commonly thought hat similar compounds have equal molecular heat. This is only approximately true. In comparing about 20 series of similar compounds, Professor Clarke finds that the molecular heat increases alightly with the molecular weight, though in very different ratio.
Profersor Lovering exhibited a drawing of a new instru ment which he had devised, by which vibrating flames re flected in a revolving mirror could be made visible to a large audience. Paymaster General Alvord, U.S. A., ex plaiued a table, from which it appears that the annual death rate of the officers of the army in the period of 25 years,from 1824 to 1848 , was 27 per 1,000 ; the rate for the last 25 years, from 1849 to 1873 , was 23 per 1,000 , showing a decided decrease notwithstanding the civil war.

Piofessor T. Sterry Hunt, with reference to

the sewage question,
mentioned a new English method which consists in the use of finely divided charcoal, obtained by charring seaweed or street aweepings. Only one fourth as much charcoal is required as of earth. The odorless and partially dried mixture with this charcoal, after use, is removed from time to time and charred by heating to redness in close vessels like gas retorts, the products of the distillation being water, am movia, acetic acid, tar, gas, and charcoal, the last being aug mented in quantity, and ready for immediate use again though containing alkalies, earth. and phosphates, which give it a great fertilizing power. From the product of the
distillation the chief materials obtained are acetate of lime ajd sulphate of ammonia, the latter being the most valuable of fertilizers.
The same speaker also described a new wat process of cop per extraction, devised by himself and Mr. James Douglas of Quebec. When oxide of copper is brought in contact with protochloride of iron, this is decomposed, the iron being thrown down as peroxide, and the copper converted into a mixture of one third soluble protochloride and two thirds of decbloride, insoluble in water, but soluble in a strong and bot brine. From this solution metallic iron throws down the whole of the copper or metal, regenerating the protochloride of iron, which is now ready to dissolve a fresh charge of oxide of copper, and so on indefinitely, using the same solation over again, the consumption of metallic iron being about two thirds the weight of the iron. To prepare the ordinary sulphurous ores for this treatment, it is only necessa ry to calcine them at a low red heat. In this process the in jurious elements of the ore, such as arsenic, antimony, and in remain undissolved, and the metallic copper obtained is so pure that it can be made into fine copper by a single fusion
Professor R. E. Rogers described a new

DIRECT VISION SPECTROSCOPE,

which consists of a thick plate of glass with parallel sides, united to one of the faces of an ordinary bisulphide of carbon prism, or a prism of dense flint glass. According to the amount of dispersion desired, the light is made to enter eitber on the end of the glass plate or on the opposite face of the bisulphide prism. The results obtained from this instrument are as follows: The dispersion of this compound prism is nearly four times greater than that of the ordinary 60° prism. The mana emergent ray is practically parallel to the incident ray. It does not deflect the ray from its original path. Many Frauenhofer lines are visible by this prism the prominent lines are clearly reversed, without the use of the slit or collimeter, by merely throwing a strong beam of light by means of a mirror.
Professor C. V. Riley of Missouri, in a very interesting paper on
described those more particularly associated with sarraconio variolaris (spotted trumpet leaf). It referred to the insect catching powers of those curious plants, the flytraps (dioncea) the sundews (drosura), and the pitcher plants (sarracenia), which have of late awakened renewed interest by virtue of the interesting experiments and observations on their atructares, habi
Asa Gray.
The leaf of sarracenia is a trumpet-shaped tube, width an
nside is furnished with perfect chevaux de frise of retrorse bristles, commencing suddenly about an inch from the base, hence decreasing in size until, from about the middle to the mouth, they are so short, dense, and compact that they form decurved pubsescence which is perfectly smooth and vel vety to the touch, especially as the finger passes downward. Under the hood, ayain, many of them become large and coarse. Running up the front of the trumpet is a broad wing with a hardened border, parting at the top and extend ing around the rim of the pitcher. Along this border, but especially for a short distance inside the mouth, and less conspicuously inside the lid, there exude drops of a sweet oned, viscid fluid, which, as the leaf matures, is replaced by a white, papery, tasteless, or but slightly sweetened sedi ment or effiorescence; while at the smooth bottom of th pitcher is secreted a limpid fluid possessing toxic or inebriat ng qualities.
The insects which meet their death in this fluid are numer ous and of all orders. Ants are the principal victims, and he acidulous properties which their decomposing bodies give o the liquid doubtless render it all the more potent as a olvent. Scarcely any other hymenoptera are found in the otting mass.
Two species are proof against the siren influences of the estroyer, and in turn oblige it, either directly or indirectly o support them. The first is xanthoptera semicrocea (Guen.) little glossy moth which may be popularly called the sarra cenia moth. It walks with perfect impunity over the inne surface of the pitcher, and is frequently found in pairs with in the pitchers soon after these open in the early part of the season, or about the end of April. The worm riots in the putrid insect remains, bores through the leaf, and burrows into the ground; there contracting to the pupa state, in a ew days it issues as a large two-winged fly called sarco phaga.
Professor Riley concludes: That sarracenia is a truly insec tivorous plant, and that by its secretions and structure it i minently fitted to capture its prey.
That those insects most easily digested and most useful to the plant are principally ants and small flies, which are lured o their graves by the honeyed path, and that most of the arger insects fall victims to the peculiar mechanical struc ture of the pitcher.
That the only benefit to the plant is that the liquid manure, resulting from the putrescent captured insects, mostly desconds the root atalk, and probably through tubular cells, passing through the petiole into the root.
That sarcophaga is a mere intruder, the larva eponging on and sharing the food obtained by the plant, and the fly at racted thither by the strong odor. There is nothing to prove hat it has anytbing to do with pollination.
That ranthoptera has no other connection with the plant han that of a destroyer, though its greatest injury is done after the leaf has performed its most important functions. That neither the moths nor the fieshaveany structure pecuhar to them, that enables them to brave the dangers of the plant, beyond what many other allied species possess. In a paper on the

COTTON WORM,
Profersor A. R. Grote concluded that it is not indigenous with us, but an annual; not a denizen, but a visitant, unble to contend with the variations of our climate; and he believes that the process of artificial extermination may be simplified by limiting the period of successful attack and doing away with certain proposed remedies. The agent of destruction must be directed against the first brood in each ocality: and concerted action on the part of the plan where the remedy is to be applied, will be necessary.
tHe closing exercises,
which followed the conclusion of the reading of the papers, consisted in passing resolutions accepting the invitation to make Detroit the next place of annual meeting, and firing he time as the second Wednesday in August. Resolutions were also passed to take measures for representing to Congress the importance and desirablity, in the opinions of the Association, of having a new census taken in 1875 with reference to the Centennial celebration; and to take measures or urging upon the legislature of Maesachusetts the need officers were then elected for the coming year: President Professor J. E. Hilgard, of Washington; vice president for section A, Professor H. A. Newton, of New Haven; vice president for section B, Professor J. W. Dawson, nf Montreal ; General Secretary, Professor S. H. Scudder, of Boston; per manent secretary for five years, F. W. Putnam, of Salem Mass.; treasurer, W. S. Vaux, of Philadelphia; secretary of ection A, Professor S. P. Langley, of Pittsburgh; secretar of section B. Professor N. S. Shaler, of Newport, Ky.

NEW TREATMENT FOR THROAT AND NOSE DISEASES, We have been much interested, lately, in an examination a comparatively new system of treatment of diseases of he throat and nose, maladies probably the most prevalent in the variable climate of our Northern States during the all and winter months. Physicians who employ the old fashioned probang are well aware of the difficulty in reaching therewith the very mensitive parts to which local appli cation of a remedy is necessary; and as a substitute for this uncertain instrument, apparatus is by some omployed, by which the medici
The systom to which we rafer is the last mentioned pro sesa, broaght to a remarkable degree of certainty and perfection through a series of entirely novel inventions, in the hape of peculiarly constructed instruments, which are th
eases in question, by Dr. Otto Füllgraff, the founder and manager of the Bond Street Homœopathic Dispensary, and an ominent praccitioner of this city.
By means of this apparatus, the surgeon can directa pow erful spray of liquid or cloud of powder, infallibly upon the part to be treated. Connected with the atomizing arrangement are tubes of vulcanized rabber and nickel-plated metal, provided with movable tips of various shapes and bent at different angles, so that the skillful operator, aid d by ingeniously contrived reflectors, can direct his medicine directly o the vocal cords or into cavities impossible to reach by any ther method.
An idea of this operation may be obtained from the an

nexed engraving. From the bottle which holds the remedy metallic piece arches over the cork and then passes at right angles over the tongue, at the root of which it is shown making another angle and passing over the epiglottis down into the larynx; so that the medicated fluid, forced by the air driven into the bottle by the compression of a bulb at. tached to the small projecting tube, is impelled directly into the larynx, trachea, and bronchial tubes. The end of the intrument terminates in a movable tip, which may be uncrewed, and another substituted, so as to throw a spray of iner or coarser particles.
Through this apparatus many important cures have been ecencly effected, notably in cases of well known vocalists, suffering from diseases of the throat, nasal catarrh, etc., due to our changeable climate. The instruments are, of courae, not patented, and are, therefore, open to the examination and imitation of the profession. They have probably been the means of averting an immense amount of suffering among the poorer classes of this city, through the dispensary above alluded to. where, for the past twenty years, Dr. Fiullgraff has, with that lack of ostentation which marks the true philanthropist, gratuitously given to hundreds of thousands the benefit of his skill. The institution now treats a larger number of cases than even the more pretentious dispensaries, largely subsidized by the city and State, 38,830 poor people of every nationality having been aided, surgicaliy and medically, during 1873, directly at the dispensary; 5,589 outdoor visits were made by the medical staff, and 98,601 prescriptions given-and all this without fee or hope of reward. It is a grand and genuine charity, and, while it is greatly to be regretted that its pecuniary support comes more from the private practice of its generous founder than from city and State coffers, the institution is one of which, as a commu nity, we may well be proud.

The Worker's Friend.

" Partly by the information I have received from the Scientific American, and partly by the advice it has contained in reference to the benefits of study, I have been raised from the position of a laborer in a lumber yafd, at $\$ 6$ a week, to that of foreman, at a salary of $\$ 1,200$ a year. I therefore consider the Scientific American to be the worker's best friend."
Such are the casual remarks of one of our correspondents in a recent letter. They are an example of hundreds of similar expressions which we receive from various parts of the country. It is always a gratification to us to be thus assured of the usefulness of our journal in the hands of the great body of practical workers to whose interests it is devoted.

Premium for the Best Circular Saw

The Board of Commissioners of the Fifth (1874) Cincinnati Industrial Exposition offer a sptcial premium of $\$ 100$ in gold for the best circular saw. The competition is to be determined under conditions as follows: All raws competing shall be of uniform diameter, namely, 56 inches. They may bave either solid or inserted teeth. The gage to be at the option of the exbibitor. The eye of the saw to be 2 inches diameter; the pin holes $\frac{\mathrm{s}}{8}$ inch, and 3 inches from center to center. Each saw is to be submitted to a thorough practical test, upon a left hand mill provided for the purpose. Diagram cards are to be taken from the engine during the trial of each saw, by a disinterested expert, selected by the jarors. The test is to be made during the week beginning September 21, 1874. Other details of the examination are to be determined by the jurers.

Prizes for hand Turning.- The Company of Turnere of London, in continuation of their artion in former years, propose to give, in 1874, their silver medal and the freedom of the company and of the city of London to any one workmen or apprentice in England who may send in the best specimens of band turning for the year. Last year the prizes were awarded for turning in ivory and stone; thie year the material to be used will be brass or gan metal.

VENTILATION OF RAILWAY TUNNELS.

To ventilate a building containing various apartments, with opening doors and windows that interrupt or modify the air current, is somewhat difficult; but to thoroughly purity the atmosphere of a railway tunnel, which is a single closed apartment, is one of the wost easy matters with which the engineer has to deal. The air in the long railway tunnel under the city of Liverpool is changed every ten minutes by means of a large steam fan, placed near the center.
A novel method has lately been adopted on a portion o the Underground Railway in London, which is described in a recent number of Engineering as follows
A very careful investigation of the condition of the air in the Metropolitan Railway covered way was undertaken conjointly by Messrs. George H. Bachhoffner,Henry Letheby, and J . Whitmore, and the result of their investigation showed that, while the air of the tunnel was sufficiently im pregnated to impart disagreeable and. in some cases, inconvenient sensations, no source of danger could possibly exist. With regard to carbonic acid, a number of careful experiments showed that,in the railway tunnels, during the busies period of the day, when its quantity attained a maximum there were only 6.1 parts to 10,000 parts of air in volume In many crowded places of public resort, such as churches, theaters, law courts, etc., the quantity of carbonic acid reaches the proportion of 32 parts per 10,000 ; and in Man chester, during foggy weather, it is often 8 parts per 10,000 in the streets. The presence of carbonic oxide can be acarce ly detected. This result of this investigation proved con clueively that no danger from inhaling the air in the tunne could possibly exist.
The section of the Metropolitan Railway lving between the Gower street and Portland road stations, a length of half a mile, has no communication with the outer air between the two points just named.
a means presents itself, however, for improving the ven tilation of this length of the line through the fortuitous cir cumstance of the Pneumatic Dispatch Company's tube crossing the crown of the Metropolitan Railway arch between Gower street and Portland road. This tube connects the Fuston square terminus with the company's pumping station at Holborn, whence a second section of the tube is carried on to the General Post Ollice. The Euston-Holborn tube which is 3,080 yards in length, is of $二$ rection, 4 feet 6 inches high, and 4 feet in width. On the floor of the tube, rails are laid, upon which run carrier wagons, 10 feet 4 inshes in length, and weighing each 22 cwt . The ends of these carriers conform to the shape of the tube, and a close contact with the sides of the latter is always maintained by means of rubber packing. These carriers-either empty or loaded with letters and parcels-travel between Euston, Holborn, and the General Post Office. The motive power, which is located at Holborn, consists of an engine with a pair of 24 inch cy linders, of 20 inch stroke. This engine drives a fan 22 feet in diameter, at an average speed of 160 revolutions per minute. By this means a pressure of about 6 ounces per square inch is obtained, available eitber for forcing the car riers from Holborn to Euston, or on the return journey for exhausting the tube, and thus creating a sufficient differ ence of pressure against the ends of the carriers. The traffl between Holborn and the Post Office is conducted in pre cisely the same manner.
The relative positions of the pneumatic tube and the Me tropolitan Railway tunnel are, as we have mentioned, such that openings could easily made between the roof of the lat ter and the floor of the former, for the ventilation of the rail way tunnel.
This idea has been carried out very successfully by Mr S. De Wilde, resident engineer of the Pneumatic Dispatch, with the approval of the Metropolitan Railway Company, and, as at present worked, a very sensible improvement in the ventilation of the tunnel is effected. Two rectangular openinge, each 6 feet by 2 feet, are cut through the roof of the tunnel into the tube, and these openings are closed by valves hung upon trunnions, and so balanced as to open freely in wards. When the carrier is on its way from Euston to Hol born, and after it has passed the tunnel, the valves are opened by the passing carrier, the air is drawn in from the tunnel at the rate of about 1,000 cubic yards a minute, until the carrier reaches Holborn, when the action of the fan is reversed, and a pulsation of air is sent through the tube, until it strikes the valves, and closes them.
It will be worth while for the Metropolitan Railway Company to consider whether they cannot ventilate this section of their line more efficiently and a great deal cheaper than by the help of the Pneumatic Dispatch fan. The length of the line between Gower street and Portland road is about 900 yards, and the cross section of the tunnel is 450 square feet; its capacity is thus $1,215,000$ cubic feet. Supposing this amount of air to be changed every hour, 20,250 cubic feet would have to be dealt with per minute. If openings no larger than those now leading into the pneumatic tuke were adopted, a velocity of 22 feet per second through these openings would change the whole of the air every hour as above stated; and the pressure required to give this velocity is only 0.122 ounces per equare inch, the excens of pressure being absorbed principally by the friction of the tube. Even supposing that a Siemens steam blast be used for the pur pese, it would be found more economical than the system now proposed. With this jet, the volume of air that can be exhausted by a volume of steam reduced to atmospheric pressare is 1.37 to 1 , that is to say that, to exhaust 20,000 mospheric prossure would be required, corresponding to 9 pounds of steam per minute, or 540 pounds per hour, and 9 pounds of steam per minute, or 540 pounds per hour, and
*opresenting a consumption of about 60 pounds of coal per
hour. As we have said, this would not prove the most economical means of ventilating the tunnel, but the first cost of its establishment would be confined to the necessary connections and a small steam boiler. On the other hand, if a fan were placed close to the tunnel, an engine of three horse power, consuming from 10 to 15 pounds of cosl per hour, would be ample for the purpose."
In view of facts like these, we hope that railway passengers who find the atmosphere of our long railway tunnels someimes disagreeable, will remember that the nuisance exists, not because it is difficult to overcome, but solely because railway companies are so careless and parsimonious as to refuse to burn a few pounds of coal, to promote the comfort of passengers.
Take,for example, the Erie Railway tunnel, at Jersey city, not quite one mile in length; was thereever a more smaky foul, or disagreeable place for passengers to go through ? The reason is obvious. Both tracks of the railway tunnel re constantly occupied by locomotives belching forth clouds f smoke, and the company employs no special means for entilation. The area of the Erie tunnel is about the same as that of the London Metropolitan Railway, namely, 450 feet cross section, but it is twice the length of the Gower strees station tunnel.
On the basis of the estimate given by Engineering, it would require the consumption of from 20 to 30 lbs , of coal per hour to ventilate the Erie tunnel, by an hourly change of its entire contents, while from 40 to 60 lbs. of coal would ventilate its entire length every half hour.
It will also be seen, from the foregoing, how utterly absurd is the bugbear which property owners and others have tried oraise against the construction of the Broadway Under ground Railway in this city, namely, that its atmosphere would bo bad. The truth is that the sectional area nf the Broadway tunnel will not exceed that of the London Under ground Railway. Calling the area 450 square feet, and the unnels between the stations half a mile in length, the Broad way company will, according to the estimate of our cotem porary, be able to renew the entire contents of its tunnel every fifteen minutes on a fuel consumption of 40 to 60 lbs f coal per hour, costing, say, 10 or 12 cents. This would robably give a better ventilation than is ordinarily found in our dwellings, offices, and stores.

Rallroad Train Timer.

An ingenious invention has lately been successfully tested on the Vandalia Railroad, Ind., which records the motion of railmay cars. There is a locked iron box, attached to one side of the car and containing a clock. The mechanism of the atter causes a small drum, on which is wound a sheet of paper, to travel at a constant rate. With the axle, by means of ods and gearing, a pencil touching this paper is connected As the pencil is moved slowlyacrossthe paper, by its mechan sm governed by the axle, and as the paper is slowly moved orward, the pencil point inscribes a diagonal line back and orth. The paper is ruled in very small sections, every ourth line being dotted and representing one mile; so that supposing the car goes a mile in four minutes, the line wil cross just four sections diagonally from one dotted line to the next one. If the car stops, the line crosses the paper directly and shows the number of minutes that the train i at rest.
The names of the stations are written at the proper places on the paper, and thus the exact rate of speed made at any point on the line can be subsequently noted. The apparatue thus affords an excellent check on the train officials, as, if the train be run ahead or behind time, the fact is sure to be de ected.

The st. Joseph, Mo., Exposition

An industrial and agricultural fair is to be held in St. Joseph, Mo., from September 7 to 12, inclusive. The grounde extend over an area of 100 acres, and form the site of large and commodious buildings, the main hall of whio covers 30.000 square feet, and the machinery hall, 16,000 square feet, of surface. There is also a fine race course and
ample accommodations for live stock. No entry fee is charged, and liberal arrangements have been made with con necting railroads.
The money premiums aggregate the large sum of $\$ 25,000$ and are offered for almost every conceivable object and proess. There are also special prizes, mainly awarded by the citizens of St. Joseph, two of which, at least, are evidentl intended to benefit the community through the advantages of brisk competition. One is offered for the best calico dress made by any young lady unier the age of twenty yeare, and ages of one and two years. The individual who is about to undertake the arbitration of the last mentioned question ha our cordial sympathy.

The Ruins of Farkin.

The Rev. Dr. H. D. Barnum, missionary in Turkey, in ecent letter to the New York Observer, gives an account of a visit he lately made to the ruins of Farkin. in Eastern Turkey, near the border of Persia. He says: En route to Van w apent several hours with great interest among the ruins of Farkin. The present town is little better than any of the
other towns of Koordistan; bat it is surrounded by a ver other towns of Koordistan; bat it is surrounded by a very ine ancient wall, and contains very imposing ruins, which the Forum at Rome. The most noticeable are a large cathedral and the elegant standing arches and pillars of a church built 1,400 or more years ago, in memory of the Christian martyrs who were pat to death by the King of Persia
ruins, and a palace, all of which combine to form a picture, the like of which is seldom seen in any land.

Spiral Bevel-Edzed Arrow Heads.

We published not long ago an engraviog of an Indian arrow head, with spiral bevels to give rotary motion to the arrow during its flight. The specimen was from the collection of Dr. Olmstead, who believed it to be unique. As a specim that publication, we have received several similar poscimeos; also letters from other individuals who are in possession of specimens. In the collection of 250 arrow eads belonging to Mr. A. J. Schultz, of Dayton, Ohio, there re six which have the bevels. From these evidences it adpears that the rotating arrow was a not uncommon projectile with the North American tribes

HOW SHALL I INTRODUCE MY INVENTION?

This inquiry comes to us from all over the land. Our answer is: Adopt eatablubing any bueneas. Make your thention known and if it esses any merit, somebody will want it. Advertise what you have for ale In such papers as circulate among the largest class or persons likely to einterested in the article. Send llusutrated circulars describing the merit of the machine or implement to manuracturers and dealers in the epecial erent trades may be obtained from State directories or commerctal repisers. If the invention is meritorious, and if with its utility it possesses velty and is attractive to the eye, so much the more likely it ts to find a urchaser. Inventors, patentees, and constructors of new and usefu tons illustrated and described in the columns of the Scientific Ameri an. Civiland mechanical engineering enterprises, such as bridges, docks, foundres, rolling mills. architecture, and new industrial enterprises of al inds possessing interest can find a place in these columns. The publishgart, for this paper only. They mey be copied from good photogiaphe
 ry to make the necessary sketches. The furnishing of rawings, or models is the least expensive, and we recommend that course as preferable. The examination of elther enables us to determine if it is subject we would like to publish, and to state the cost of engraving in ut incurring much expense. The advantage to manufgctarers, patentees, nd contractors of having their machines inventions or engueering orks illustrated in a paper of such large circulation as the Scientific american is obvious. Every lesue now exceeds 42,000 and will sonn reach 50,000 , and the extent of tis circulation is limited by no boundary. Tuere not a country or a large city on the face of the globe where the paper oes not circulate. We have the best authority for stating that some of he largest ordersfor machinery and patented articles fromabroad hav mana

Mr

7 Park How. N. Y.

NEW BOOKS AND PUBLICATION

gechanical Homor: a Collection of Original anecdotes connected with Engineering and Mechanics. By
Richards, Mechanical Engineer, Author of " The Princi ples of Shop Manipulation,", etc. Price $\$ 1$. Ph ladel.
phia, Pa.: George kichards, Franklin Institute Building. Mr. Richards has collected in this volum9 several rexdable sketches and he occurrences. The last tale tin the book, called "Struck by a Sea," 1 l a oud plece of descriptive writing.
an Introduction to the study of General biology, Designed for the Use of Schools and Science Classes
By Thomas C. McGinley, Principal of Croagh National By Thomas C. McGinley, Principal of Croagh Nationa New York: G. P. Putnam's Sons, Fourth avenue and 23 d street.
The rapid increase of our knowledge of the intilial forms and phenomens
of iffe, due so largely to the lavors of Baif nur, Carpenter, and Huxley, has of ilfe, due so large iy to the lavors of Balinur, Carpenter, and Huxiey, ha
awakened great interest in this most important branch of natural sclence nd there is a widespread demand for elementary and acourate tex: book an treatise, cartled down to the latest date. We commend it to the notice instructors in natural history.
The Leader, a Collection of Sacred and Secular Music for Choirs, Conventions, and the Home Circle. By H. R PalmerandL. O. Emersin. Price $\$ 1.38$. Bo
Oliver Ditson \& Co., 277 Washington street.
This volume adds one more to the number of books of dllute mustc
which encumber the shelves of our school and other l'brartes. Most of he songs contained in this book would not pass munter as a school girl' rstattempts at harmony; and the few meritortous selections in th (Men delssoln's " May Bells" and one or
sutt the "taste" of the compilers.

Inventions Patented in England by Americans.
[Compiled from the Commissioners of Patente' Journal.]
From July 31 to August 13. 1874. inc
Bolt and NUt Lock.-I. D. Guyer, New York city.
Car Coupler and bifferr.-O. Pooley, Buffalo, N. Y
Car Replacer.-E. Nefcomb, Westbrook, Me.
Clothes Wringer.-C. M. Howlett, Auburn, N. Y.
Dental Engine.-N. Stow, Binghamton. N. Y.
Dintal Engine.-N. Stow, Binghamton. N. Y.
Elitiptic Spring.-E. Cliff et al., New York city.
Embiptic Spring.-E. Cliff et al., New York city.
empatachent.
mbroidrry Aitachment.-G. M. Ramsay, new York city.
Foraing, Driling, \& Riveting Machine.-R.H.Tnurston,Hoboken, N.J Foel for Metallurgy.-C. E. Lester, New York city.
Generating Power.-C.C. Walcott at al., Washingto
generating Power.-C.C. Walentt et al., Wash!ngton. D. C.
Harvister.-D. M. Oshorne (of Auburn, N. Y.), London, England
lluminating Clock Diale, etc.-H. O. Cook, Brooklyn, N. Y.
Mating Chain, etc.-J. Selden, Erte, Pa.
Mating Fise Hoors. - William Court et al., Brooklyn, n. 1
Pavement.-P. Zadig, San Franctisco, Cal.
portable Fountain.-G. J. Wenck, New York city, et al.
Slef- Ststaining Motive Power.-G. Rischmaller, San Francisco, Cal.
3xwine Maohine Fied.-G. Merrili, New York city
London, England.
Smiming Apparatus.-F. Tryon, Brooklya, N. Y.
Umbrilla.-C. A. Thompson, East New York, N. Y.

Fecent gatuticau and foretgn zeatents.
Improved India Rubber Horseshoe.
Amzi J. Dean, Newark, N. J., aselgnor to himdelf and George D. Dean, Amzl J. Dean, Newark, N. J., aselgnor to himaelf and George D. Dean,
same place.-This is a rubber horseshoe having an upper extending to the same place.-This is a rubber horseshoe having an upper extering descrip.
ankle, and drawn in on the rear part to overlap the hel.. A full
tion with illustrations will be found on page 166 of this issue of the Sciankle, and drawn in
tion with illustratio
ENTIFIC AMERICAN.

Improved Horse Collar and Hames
Martin Hubbell, Mount Kisco, N. Y.-In this device the hames are pivoted adjustablv at the top, and are connected at the lo wer part by a plvoted ad-
iustable latch, which slldes, with its forked and notched end, over a gulde iustable latch, which slldes, with its forked
bolt, and is locked thereon by a spring pawl.
Improved Machinery for Dressing and Finishing Hides ohn Pullman and John R. Edmonds, Wonersh, England.-This inven'scudding" hides and skins, and for staking and grounding leather. "scudding" hides and skins, and for staking and grounding leather.
The machine consists of a suitable frame, in which is mounted a shaft, on which a long knife or a rubber is carried. Motion is imparted to the shaft,
and to the knife or rubber which it carries, from a main shaft suitably disposed. The skit is latd upon a travellng apron, by which it is fed betteen
a pair of rollers in proximity to the knif eshaft and parallel therewth, the akin, after having passed through these rollers, betng held by the operator against the knife or rubbers. Means are provided to stretch the skin and keep it Hat when on the apron, and prevent it falling into folds or wrinkles passing between the rollers.

Improved Means for Adjusting Kitting Burrs
Campbell,Cohoes, N.Y. This invention consists of anarm wh Geo. Campoell, Cohoes, N...-This invention consists of an arm which sup.
ports the rotating loop;or stteh adjusting or discharging burr, of a knitting machine. It is fitted on a vertical screw stud of the permanent arm, and has a thumb nut below and a Jam nut above, together with a steady pin in
one of the arms working freely through the other, whereby the vertical one of the arms working freely through the other, whereby the vertical
adjustment of the burr relatively to the needles, and to the other burrs,
can be easily and accurately eftected, and the arms be rigidly and permanently fastened.

Improved Button Hole Bouquet Holder.
Kimball, New York city.-A hooked plate
J. Albert Kimball, New York city.-A hooked plate is attached to the
under side of the lapel of the coat, just below the button hole, through under side of the lapel of the coat, just below the button hole, through
which the stems of the flowers are to be passed. An elastlc strap ts then which the stems of the flowers are to be passed. An elastic strap is then
passed around thelr stems, and secured by a loop passed over a projecting hook on the plate.

Improved Blacksmith's Tongs.
Danel Kunkel, Oregon, Mo.-This is an Improved Instrument for use for other uses. It conststs in a pair of plvoted jaws, arranged in surtable frames with a screw shaft, and so comblned that the Jaws are worked by
moving the shaft out or in.
William Kelly, Susquehanna Township, Elevator.
are set in the ground and cross bars are passed through mortises in them. The upper sides of the cross bars receive longitudinal bars, a pair of which notched upon their upper edzes, to recelve the gambrels mhen suspending the carcasses. The upper ends of the posts are connected by a beam, In
which is a pulley, around which passes a rope; in one end is an eye, to recelve a hook attached to the gambrel. The rope if passed around a bar,
which is plooted to a mortise an the lower part of the post. With this conwhich is pivoted ta a mortlse an the lower part of the post. With this con-
stiuction, by ratsing the outer end of the bar, the exd of the rope runs stiuch,
down, that tis ese may be placed upon the hook. Then, by lowering the free end of the bar, the animal will be raised, so that the gambrel may be
turned to rest upon the bars.

Wlllizm H. Walker, Charlestou, S. C.- โhe followe
tationary press head, and is connected by rods with the crosshead. The under side of the later is cam-shaped, and rests on friction rollers in the
upper ends of segmental wheels, turning on axes, and having the pcwer upper ends of segmental wheels, turning on axes, and having the pcwer
applied at the lower end for working them. Slotted heads connect with applted at the lower end for working them. Slotted heads connect with rod of whtch theyare connected, and the slots are curved so that the
diminution of the throw of the head, which takes place as the wheels approach the verticallines of the plvots, is to some extent compensated by the pirots betng forced up said curves.

Improved Fluting Iron.

Charles Anders, with grooves therein of any destred form. The lowe side of the upper portion of the device is grooved to correspond. In this upper portion is a cavity to recelve a beated flat fron, so as to allow the heat from the flat iron to be transmitted to the fluter indirectly through a heat from the fiat iron to be transmitted
stratum of air, and thus to be tempered.

Improved Wind Wheel.

George Candee, Paddy's Run, Ohto.-The wiogs consist of a frame and
panel, the said panel fitting snugly into sald frame. The ends of the pane eplvoted are plvoted eceentrically to the ends of the frame. A weight of sufficlent
size is arranged to hold the panel in line with the frame, under ordinary cumstances; but should the wind greatly increase in force, the pane will turn upon to axis, presenting its edge to the wind, the weight bringing It back to its place as soon as the force of the wind abates. The wings are
held agatnst the wind by another welght, and mechanism is provided so that. should the wind Increase in force, stop blocks will be pushed back ralsing the weight. Tue wheel will thus be stopped by an excess of wind with sultable wings, udapted to serve as a governor, and so arranged that, a the wind increases in force, the outer ends of the wings are forced back which raises a belt shifter and prevents the machine from betng dirven any
faster by the increased velocty of the wind wheel. Should the wind still increase in force, the other devices are operated to throw the wings of the wind wheel out of the wind. As the force of the wind abates, the belt
shifterdrops downward, which increases the relative velocity of the mahifterdr

Stephen C. Taft, Franklln, Mass,-Tclangular breand

he truck frame, the angles of which are down, and the axles. There is a friction wheel on a shaft, the latter entering a bent ever attached to one bracket. This shaft is free to revolve, one end in the
bent lever and the other in the bracket. A chain wheel is fixed on another haft, which shath revolves in the brackets. A loose friction chain passes on the chaln wheel shaft, which extends to the locomotive, and is con engineer, by means of which he can apply the brakes to all the cars in the
train. When the rod is drawn to ward the locomotive, the friction chain 18 tratn. When the rod is drawn toward the locomotive, the friction chain is
ightened on the wheel, which drawa on the bent lever. One end of the
 belng revolved rapldly will cause the friction wheel and shaft to revolve winding up chains, one of which connects with the brakes of the cars in
front, and the other with the brakes of the rear cars. As the wheels cease orevolve, the friction wheel will cease to act, and thecars will stop. Th back motion of the rock shaft is produced by a spiral spring.

1 mproved Treadle.

James W. Staples, Blddeford, Me.-The treadle rod is plvoted to the sew ng machine table, and hangs down to a point a little abore the frame con its angle on the connectlog rod, and connected by one arm by means of rod to the crank, while the other arm is attached to the treade rod The driving pulleyturnsin a plane at right angles to that in which the treadle rod swings, and a link is employed for connecting the bell crapk with the rod

Improved Devices for Preventing Children from Falling Ont
of Windows. Of Windows.
Gabriel Konigsberg, New York city.-Horizontal rods are placed across
the lower part of the window, and supported in the lower part of the window, and supported in wooden blocks. Each
bock has a central perforation for the rod, which is cut exactly to the width of the window, the blocks being placed between the sash-guiding strips. A sufflicient number of blocks and rods are arranged in the window to prevent any possibility of accldent or danger to the children looking out. The uppermost block is secured, so as to bind firmiy the whole seriea of blocks together. By detaching the fastening device or sash, the uppermost blocks maybe raised and carried on the rod toward he center, 80 that
the upper rod may bereadlly taken out of the sash strips, and then the other rods with their blocks ralsed from their connecting blocksand deImproved Call Bell.
Samuel G. Levey, New York city.-This invention consists of a movable rack for holding advertising cards or bills, cannected with a call bell for otels and the like places, and provided with mechanism for moving it, so cause the rack to shift the breadth of one or more of the cards or bllls, to ated to attract attention.

Improved Telegraph Insulator.
Chas. L. Le Baron, Pensacola, Fla.-This invention consists in a peculiar construction and mode of fastening telegraph wire insulators, whereby

Improved Cooking Lamp

George P. Houston, Washington, D. C.-This invention relates to and consists in means by which alcohol may be utilized as fuel upon excursions, hunting, or other expeditions, and in localities or seasons where but little
are is desired. Tuls is accomplished by means of a folding stand, contructed to recelve the cooking vessel and heater in a novel and conventent

Improved Tool for Charging Piles of Railroad Rails and other Iron into Furnaces.
Smith W. Kimble, Spring field, ill.-This invention relates to and consists in means for charging rallroad rall plles into heating furnaces with conve-

Improved Piano Sound Insulating Attachment. of applying a non-conductor of sound to a plano, so as to prevent tits di-

Improved Pipe Mold Drying and Casting Pit.
Benj. S. Benson, BaltImore, Md.-This improvement relates to the floor of the oven and casting pit, and consista in providing the plates or sections
which compose the same, with a series of apertures, pecullarly arranged for the upward passage of the hot blast to act on the plpe mold, both interorlly and exteriorily

Improvement in Metal Pipe Mannfacture.
Benj. J. Benson, Balumore, Md.-The object of this invention is to pro-
vide an improved plt or oven for drying plpe molds and casting plpe therevide an mproved plt or oven for drying pipe molds and casting pipe there. in, together with improved appilances or apparatus connected therewlith
for hotsting, carrying, adjusting, supporting, and loeking or fastening the for holsting, ca
mold flaske.
Improved Combined Looking Glass and Photographic Frame. raac N. Shatto, Newport, Pa.-An inner frame is hinged to the outer rame. The hinged frame has the glass inserted in it, and is provided with Ith a back ich covered with velvet. The mainframe is also provided ecords are to be placed. By this construction, the device, when closed presents no appearance of betng anything but an ordinary looking glass.

Improved Mill Burr Dress.

John D. Mirer, Moffett's Creek, Va.-This invention relates to means
Whereby a mill burr may be dressed so as to prepare the gratn for flouring the eye of the stone, and thus save a large peicentage of the power
ordinarily required under llke circumstances, as well as permit the mill to cequired und rike circu

Improved Cream Suet Compound.

John Hobbs, Boston, Nass.-This invention consists in a novel and valu ande process, by which tallow may be so prepared and intermixed with
artially churned cream that the product will subsequently granulate and assume a waxy appearance. It will then have the odor and flavor of cream Whlle it possesses the property of remaining solld up to a temperature of 0^{\bullet}, and of allowing a clean cut at all time

Improved Low Water Indicator
Cbarles N. Myers, Chicago, ill.-A Aloat controls the valve by which the whistle or alarm Is sounded when the water becomes too low. The valve of the float case, and in the fort of an arm of an elbow lever connected with the float. This forked arm moves or slides the valve rod, when the foat rises or falls, by engaging fixed collars on projections on the rod
The rod is als) adapted for application of a device for turning it and grind ing the valve to to

Improved Surface Planer.
William C. Margedant, Hamilton, Ohio.-This invention relates to sarface planers, and consists in causing the apron, which prevents the collection of
sharings on the rollers, and the bonnet, which catches the shavings and hrows them on the apron, to serve together as an upper table.

Improved Vehicle Rein Guard.
Wllliam Levy and Wrillam H. Christian, Ashland, Pa.-This invention re limam Levy and wilam in. Christian, Ashand, Pa.-Ans invent on re ing reins with swingle trees, and many other accidents, mas
prevented.
Improved Machine for Molding Pipe Molds.
Improved Machine for Molding Pipe Molds.
Benjamin S. Benson. Baltimore, Md. -This invention is an improvemen on the machine for preparing the molds for casting metallic plpes, for
for h hich letters patent No. 33,178 were granted, September 3 , 1861. The mprovement relates to an adjustable counterbalance for the flask holder
whereby an equipoise is maintained during the vertical movement of the latter; also, to the arrangement of radial revolving fingers in the eand
hopper, to act in regular succession, to throw a constant and equable tream of sand into the flask; also, to a revolving cone for equalizing th distribution of sand within the hopper; also, in a spring balance or wetgh Improved Fertilizing Compound.
Benjamin G. Carter, Oatlands, Va.-This invention relates to fertilizir the plant all those elements of its composition in which the soll is liabia to be deficlest. It contains, in a cheap and easily transportable form, al to be defictert. It contains, in a cheap and easily
he tonts wnich give value to stable manure.

Improved Combined Ventilator and Chimney. onsists of an Iron-lined inner fue, secured within an outer casing with sultable bottom and top perforations for estabilishing a ventilatiog alr cur rent around the flue. The casing is securely attached to the celling and
roof, and supported on suitable hangers or straps. A detachable extension flue is set into the upper end of the inner flue, and provided with rain-pro ecting caps or sheds at its top and above the upper perforated end of the entllator.

Improved Hot Air Register.
Edward A. Tuttle, New York city.-This invention consists of the moving device for operating the fans of a register. It forms part of the registe ront or top, and is fitted, arranged, and secured in the stationary part by
lugs in front of and behind flanges on which the movable part slides to work the fans. The sald lugs and the flanges are so contrived that the part subject to wear are hidden from riew. The sald moving part is connected
with the fans, so that, when all parts are adjusted in place, its escape through the notches, by which the lags golng behind the flanges are intro
duced, is prevented.

Improved Lid for Closing Gas Retorts, Sugar Filters, etc.
James Dunselth, New Fork clty,-This is an improved lid for gas retorts James Dunselth, New York city.-This is an improved ild for gas retorts,
ungar filters, and other vessels that require to be closed airtight, and in autabley that they can be readily opened and closed, as rtquircd. B dhere to the mouth of the vessel, a few turns of the lld back aod forth Fill bring satd lid to its seat. and the eald substance, instead of dotng any barm, will be a positive benefli by serving as a seat to the ind. Afterward
by turning the lid in the direction to cause the rollers to roll up inclined by turning the id in the direction to cause the rolliers to roil up incined
beads, the lid will be forced firmly into its seat. This construction also nables the lid, should ft become worn, to be readlly ground to its seat, so

It.
Improved Corn Planter.
James W. Simpson, Dry Ridge., Ky.-The wheels carry the axle with them in their revolution when turning forward, and allow the axle to be stationry when the wheels are turned backward. To the axle are attached ccms,
Fhich, as the sald axle revolves, strike against a bar and push it formard. which, as the saldaxie revolves, strike against a bar and push it forward.
In the upper arms of bars, connected with the bar last mentioned, are ormed holes to contain seed enough for a hill, and in such positions as to enter the hoppers to recelve the seed as the bar moves back, and to pass
out of said hoppers, and over holes in the platform as the bar moves forward. As the seed drops through the holes in the platiorm. It is received adon lower arms of the second bars, and held until the first bar moves back,
when it drops to the ground. The driver, from his seat, by operating a lever, can ralse the furrowing plows from the ground when desired. The covering plows are placed a little in the rear, and at one slde, so as to foll che furrows opened and cover the seed. The covering plows may be raised
from the ground with and by the furrowing plows. Gmall V. fiaped barrows aredrawn in the rear of the covering plows. The same movement of the ever rases allt the plows and the harrows from the ground. By operating he dropplag device, and to the wheels ; and by means of a third lever, the roppling device can be operated by hand, or held from operating, as may e desired.

Improved Cotton Press.
John H. SImonson, East Norwich, N. Y.-The followers are fitted to sllde up and down inside of the case, the lower one having the long projections ered by gears. The upper one has the short projections extendiog through lots, to be connected to racks whlch are also operated by the gears. The of the wheels. The latter are geared with the drivigg shafts by a palr of eccentric toothed wheels, so adjusted that the leverage of the power ltcreases
progiessively as the work progresses and the resistance progiessively as the work progresses and the resistance increases. The
driving shaft is worked by ahand lever, pawl, and a ratchet wheel. The atchet wheel is made eccentric to increase the gatn of leveraze. The proby which the follow follower connect with racks by sldidng under bocks, the sald hooks, by which the follower ts raised when the racks are forced up. The racks also havea hook, by which they ergage with the cross bars
when ratied up to be held properly for the projections to engaga with them hen the follower ts mat one the press when it filled.
Improved Spring Rocking Chair.
Stephen Fallon, Brooklyn, N. F., arsignor to himeelf and Joseph A. Hodgens, of same place. The base frame conststs of two side frames con-
nected at their upper middle parta, and at their rear parts by rourds. To the seat frame are attached two or more springs, wh'cb are colled around, and thetr other endsare attached to the round, the ends of whith work in sockets in the frame. Thus the eprings form the only connection bet ween
the seat and frame, eo that the seat is both supported and rocked on them. By withdrawing a pln and turning the round, the tension of the springs may be increased or diminiehed, as derred.

Improved Fluting and Smoothing Iron.
F. St. John, Shelbyville, Ind -The handle has a
Benjamin F. St. John, Shelbyville, Ind - The handle has a base with a fange, which latter surrounds the smaller upper section of the tron wben iron. A spriog hook, attached by a pivot plo to the tandie, works through a hole in tbe front of the flange and enters a hole in the upper section. At and a hole through the flange.
Improved Sewing Machine.
John Speirs, New York clty, assignor to himeif and Henry F. Cox, aque lace.-This is a novel means for operating the looping hook of that class of sewing machines in which an under looping thread is used. It consists
in the mechanism for imparting a rocking lateral morement to the looning hook, for moving the hook to and from the needle in a longtudinal direction.
Improved Paper Bag Machine,
Truman Hotchkites, S'ratford, Conn.-This macnine is for making satche bottom bags of varlous sizes. The paper is drawn down over the gulde
roller, and forced along under the movable siear, over the stationary one, a table in front of the forming roller and the folding roller. One margin the paper strip also passes under the pasting roller to recelve the paste,
which the edges, jointd in the forming of the tube, are I asted y which the edges, Joint d in the forming of the tube, are I asted. It also
passes between the former and folder and under the preseer bar. As soen as the endof the paper strip comes to a gage, it stops and is cut off by the all of a cutter. The folders then commence to turn, and at the same time the pressure bar springs down and presses the paper against the forming roller, 80 that it will be drawn in between the folding rollers and folded. the same operation, the margla or the paper at the knife is drawn uade the pastlog roller on the cutter and pasted, for securing the folds of the ard formed the tube and untted the edges, they rest, whlle the sliding horl-
zontal end folders go forward just in front of the end of the former, and
fold intwo fold intwo sides of the extenston of the tube besond the former to form
the bottom. Then the vertical sl'ding folders move forward and fold in the bottom. Then the vertcal sl'ding folders move forward and fold in
the other two sides, and complete the bag. An ingenious device, lastly he upper side, so that the will pack. and folds the botiom down latwise on e upper stde, so that it
out injury to the bottom.

Improved Corn Husking Machine.
Edward Elison, Waverly, Md.-This invention relates to means wherebs con may not only be denuded of the shuck, but at the same time rolieved tem may be discharged separately, the leaves being left in a state read be used for mattrasses and kindred purposes.
Improved Floor Clamp.
James Carille, Springfield, Mass., assignor to himself and J. H. Hsskins, same place. -This invention conelsis of a pair of griping levers plvoted to
a hand lever, or to a pressure plate or board un 11, for acting upon the edge af the flooring. It ts arranged in connection with cam grooves in a plate he ponts near the lower, plate against the floortng, and the hand lever belngpressed forward in the alrection to clamp the floorlng together, Euch action will cause the gripers
to bind firmly against the jolst, and hold for a fulcrum for the hand lever io bind firmly against the jolst, and hold for a fulcrum for the hand lever fter pressing the flooring.

Improved Staging Clamp.
Charles E. Rtchards, Orange, Maes.-The clamps are made of fron rod one half inch, more or less, in dlameter. The bodies are of a length equal to the breadth of the ledger boards, and are bent at right angles to
passacross the edges of the same and the sides of the poles. Fhey are bent gain at right angles to overlap the outer side of the poles, and thetr end are bent Inward at right angles, and are made sbarp so as to be criven int the sald outer side of the poles. Thes are also arranged diagonally acios Che inner side of the poles, and their ends are bent inward in opposits,
directions to overiap the outerside of the poles from the opposite sides, so that the strain will come against the sald poles. The ledger boards are
kept from slipping in the clamps by wedges. By this construction, the kept from sllpping in the clamps by wedges. By this construction, the
soaffold is put up without the use of nalls.

Futuress and texqual.

Telegraph Inst's. M. A. Buell,Cleveland, 0 Wanted-A Position, by a thorough Meall tackle on the m :st tmproved plans for the manufac.
ture of Cast Water and Gas Pipe, and all castings requi. ture of Cast Water and Gas Plpe, and all castings requi-.
red for Water and Gas Works, as well as other heavy red tor water and Gas works, as well as oter heavy
Castings. The beat of references and expertence. Ad-
drest Castings. The bes or references nadexperterc.
dress Eogineer, P. o. Box No. sl, Loulsville, Ky. A First Class Pattern Maker wants a Situa-
tion. Best of refercnces 412, Gallon, ohio.
McCuloch's Microscopes magnifying 10,000
times. with pamphlet glviup explanations, free by mail times. with pamphlet glviug explanationg, free by mall
for \bar{T} centis. Adrees W. Bro wne, Box 489, P. . ., N.Y.
Anderson \& Son. Mechanical Engineers,
urnish Deelgas, Drawlags, Estmates, and new MechanIcan Movements for Experimeutal and other Machinery.
Vertical Tubular Boilers-all sizes. Send For Sale-A Gear Cutter, Thos. Robjohn's
make. Lathee, ,lewelers' Tools, we. F. Ward, 172 Front Street. New York.
Compound Propeller Pumps, for Mines, Quar-
res,
 Ridge Avenue, Phlladelphta, Pa
A machine that actually pays its cost in 30
dass! Made by Hamphrey Machine $\mathbf{C o}$., For Solid Wrought-iron Beams, etc., see ad-
vertsement. Address
Union Iron Mills, 1 Ittsburgh, Pa., Electric Bells for Dwellings, Hotels, \&c.telegraph outatas for learnerers. Ins's for Private Lines,
 Diamonds and Carbon turned and shaped
for Scienticic purposes ; also, Glaziers' Dlamonds manuHand Fire Engines, Lift and Force Pumps
 experterouph Fureman, oeitres employment. Addreess
Edward Cl'nton, Philadelpula, Pa. For Sale-Two Steam, Saw Mills and three
Farms, by C. Brldgman. St. Cloud, Minn. $\underset{\text { Deane s Patent Steam Pump-for all pur- }}{\text { poses-Strtcty urrot class and rellaboe. Send tor circular. }}$ Spinning Rings of a Superior Quality-
Whitinevile Spinning kng Co., Send for sample and price llit.
Wanted-The Manufacture of "Specialties" made mostly of Wood. Sayer \& Co.., Meadville, Pa.
The Pickering Governor, Portland, Conn. Portable Engines 2d hand, thoroughly over-
hanledat $\%$ Cost. $1 . \mathrm{A}$. Shearman. 45 Cortlandt St., N. Y . The Improved Hoadley Cut-off Engine-The
Cheapest, Best, and Most Economical steam-power in
 Mechanical Expert in Patent Cases. T. D.
Stetson, 23 Mul ray st.. New York. Gao, and Water Pipe, Wrought Iron. Send
for price list to Balley, Yarrell $\&$ Co., Pittsourgh, Pa. Forges- Fan Blast), Portable and Station-
ary. Kesstoce Portaole Forge Co., phlladel pha, Pa. The "Scientific Americin" Office, New York,
18 itted witn the Minature Electric Telegraph. touchng little buttons on the aesss of the managers, signalis are sent to persons in the various departments
of the establishment. Cheap and effective. Splendid
Ster

All Fruit-can Tools,F erracute,Bridgeton,N.J. Brown's Coalyard Quarry \& Contractor's Ap-
paratus for hootstine and conveying materalas by fron paratus for hootstine and conveyting materalas by tron
cable. W. D. Andrews \& Bro., 414 Water St., New York. For Solid Emerry Wheels and Mach Morry,
send to the Union Stone Co., Boston, Mass, tor circular, Lathes, Planers, Crills, Milling and Index
Machines Geo. S. Lincorn \& Co., Hartord, Conn. Hydraulic Presses and Jacks, new and sec-
and
 For best Presses, Dies and Fruit Can Tools,
Blisee Willams. cor of Plymouth \& Jay, Brooklyn,N.Y. Price only three dollars-The Tom Thumb
Electric Telegraph. Δ compact working Telegraph ap.
 electric IIIgLt, gIVIng alarms, and various other purposea.
Can de put in operation by san lad. Includes battery. yey nd wires. Neatily packed and sent to all parts of
the worid on recelpt of price. F. c. Beach \& Co., 263 Broanway. New York.
Rues "Little Giant" Injectors, Cheapest
and Beat Bonlet reeder th the market. W. L. Coase $\&$ For Surface Plyners, small size, and for
Box Corner Groorlig Machines, end to A. Davis, Lowell, Mass.
Peck', Patent Drop Press. For circulars,
sditese sillo. Heck \& Co., New Haven, Conn Small Tools and Cear Wheets for Models,
List free. Gooonow WIghtman,23 Cornall, Boston,M日,
The French Files of Limet \& Co. are pro-
nounced superior to all other brands by all woo use them. Dectied excellence and moderate cost have made
these goods popular. Homer Foot $\&$ C 0 ., Sole A gents
for America, 20 Platt street, New York.
Mining, Wrecking, Pumping, Drainage, or
Irrigating Machinery, for sale or rent. See advertiseAutomatic Wire Rope R. R. conveys Coal
Ore. *c.. without Trestle Work.
No. 34 Dey stieet, N. \mathbf{Y}
 Temples \& Oilcans. Draper, Hopedale, Mass.

St.. Puluadelph1, Pa. Bend for new circular.
Buy Boults Paneling, Moulding, and Dove-
tallige Machnine. Send for clrcular and sample of work. Buy Boults Paneling, Moulding, and
tallulu Maccine. Send for rircular and sample of
B. C. Mach's Co., Battle Creez, Mich... Box 227 .

J. E. H. will find results of experiments on Pocket Book", "F. C. B. will find directions for makin
 will find descriptions of pontoon and other bridges es Mahan's " CVIll Engineering."-W. P. D. will ind direc tuons for preserving entomological spectmens on p. 404,
vol. 29.-W. P. can repalt hls damaged looking glase by

E. H..Jr., asks: What is the proper length
of the inside of a link for an engine of
$3 \% \times 44$ inches,

C. B. C. asks: What is the theory or phil.
sophy of the Improvement of a violin by age? osophy of the improvement of a violin by ber If it
the use of the ingtrument, or tis age, or both, that pro. duces the tmprovement? A. VIollins doubtless improve by age, as they become bett er easoned; and the supe
riority of a few very old vilitis is due to their excellent
G. I. E. asks:
the same purpose as a steam pump
purn
Will a siphor nump ift the water 28 or 30 feet and deliver it 20 feet?
Wil as a regular steam pump? We use a steam pump, soc feet from mill. to draw water from well and through 1 to mill, sufflclent to make steam for 220 Inch cyllinder tngine. We take steam from mill to to steam pump. A
We think that your present arrangement will be mor
W. H. asks: How is the common gove the steama a it goesthrough the pipe to othe cylliner
A. Etther by closing or opening the turottle valve, ai

How inany hhs. of coal woula be required to reduce 4
tuns of $2 \mathrm{Fe}_{2} \mathrm{O}_{3}, 3 \mathrm{HO}$ \& A . It would depend somewha upon the process. You should consalt a good work on C. F
C. F. S. asks: Can I use a round belt to
run at quarter twist
from a 24 inch pulley (running at OA revolutlons per misute) to a 16 tinch pulles? A. Yee
W. R. H. ARks: When is it 12 o'clock, when
the clock trikes the frat atrove, or when 11 strikes the
A. Z. says: I made a tin blower, 10 inches ure 9 nches from end to end. I have a 22 Inch pulley
on fan shatt, and a 48 Inch fly wheel on foot lathe, from which I take the belt. I run the fan as fast as I can, bu It does not Dlow worth a cent. The openting in inde is
inches, outlet is $1 / 4$ of an Inch. What is the matter with inches, outlet 1 $\%$, of an Inch. What is the matter with
it PA. Probably you have made the fans so that, Instead of forcing out the alr, they just keep it in moticn within
S. says: 1. I have a hydraulic press, the much pressire e is there on the walls of the cyllinder?
mose the presare the ram is belng pushed out? A. The pressure per equare 1nch on the slde of the cylloder at any time, 1t
approximately the same as that on the ram. 2. By what
 fules for proportloning thlik cylinders in the Soirs tific Amgrican for June 21, 1873.
S. \& M. say: We have a 6 inch pipe in a 60 Yoot well. Can we attach a 2% inch cyllinder and pump
water as easily, as if we used a 14 inch plpe? A. Yes,
A. A. J. says: In a large steam saw mill, w nave to take water from a smamp, and a great deal ot
mud 18 pumped dno the bollers and fill the gage cocks and steam gag \ddagger with finely powdered earth, which also setwithatanding that we have a plpe leadilig from the
noter matn pond to a arge wooden tank, which the water goee
tato and from which we take the water. What then the best means of purifying the water? Do you think thould be fitered. and what would be the best ktind to eeadily fiter that amount by means of a nitier bed com posed of gravel and sand. By having two tanks, from
which to draw on alternate days, the water mlght be purified sufflelently by simply allowing the heary particles to sette at the bottom.
A. P. A. asks : Is it possible to store up mo air be compressed by mechantcal power? What amoun of power can be evolved from compresed air, propor-
tionally to the size of receptacle containning it A. Alr can be compreased and used asa motive forcee, in exactly
the same maner as an other permanent gas. We have heard of tis beling compressed to 300 atmospheres. What is the name of the metal whose exxistence in the
gun was discovered,through the spectrosco sun was discoverea, througn the spectroscope, before
Its discorery in our planet? A. We never heard of it.
$\underset{\text { with a lever }}{\text { W.eet }}$ ask : What force can be resisted diameter. with a plinion 12 tinches in dameter? It is to work simliarly to a sawmill carrage, only to be appllied
vertically. A. Neglecting fitcton, the pressare pro duced by the pinlon on the rack will be 8 times as grea
M. J. B. asks: Is six inches of air space,
Hned with two coatings of heavy manlla paper, beeween the double wooden walls of a refrigerator room as eftl-
clent as a non-conductor as the same space \#lled with air? 1ste equal to taree Inches of halr? A. Dry alr
T. McK. says: I desire to construct a saletaoscope tn such a manner as to enable me to pho
tograph the numerous designa theretin produced. I I pro
 be midway between the ends and enclosed in the case i. Can Yobtaln inght enough through the ground glas What k'nd of lens must I use? A. A. good achromatic glase of about 13 inches focus. s. is it necessary, in tasking photographtc pltcures, to expose the lens of the camera to all the light posiblie, or can a pliture be
taken with the lens enclosed or mhtelded from all llikht, taken with the lens enclosed or shielded from all 11 hht
except that from the object photographed, if that object be well lighted? A.
that from the design.
J. B. S. asks: What is the best practical
method of finding the lives for a curved rib, when the

$\begin{aligned} & \text { (1) } y=\sqrt{\sqrt{r^{2 \times 2}}-r-\bar{r}} \\ & y=\sqrt{4_{02}^{2}-16^{2}}-40-24\end{aligned}$
$y=(\sqrt{1344}-16)=36 \cdot 66-16=20 \cdot 66$ In the segment $a b c$, the hight at the center, or the
versed sine, is 24 feet, and to trace out a curve whose
 n ordinate, y, at right angles to the chord, $a c$. The
length of this ordinate depends upun the distance, x, hat it 18 rom the center of the segment, and is equal
ot the square root of the difference between the squar of the radus and the square of the datanace. lefs the
afference between the radus and the versed slioe, as difference bet ween the radius and the rersed stioe, as
expreseed by the formula (1). Thus the length of any expresed by the formula (1). Thus the length of any
number of ordinates may be found, and the curve raced; and in the esme relative manner the curve for ine segment of a clrcle of any radus may be found.
What is the best method of faw-kering What is the best method of saw-kering a plece to ft
any required circle? A. No good work of this kind any required circle? A. No good work of this kind How 18 held radial to the curve
ose of bullding a bridge? A. There are vartous metin

trument to measure angles, you may obtatin etther the Irect or the obllque span: Stake out the line, $a b$, par
 Place a stake, a, at a potnt observed to be where a line
at right angles to $a b$ will cut c. Then $59^{-40^{\prime}=150}$ ngle $d c b$. Then as the sine of 150 is to 120 , so is the the sine of 590 to $2825=a c$. If you canuot command

set two polnta, \mathbf{A} and B, one on each bank of the river, Upon the ground atretch a line from B to D, so as ange with the potit, A, on the opposite bank. At som
 tretch a line to and beyond G, parainel to the line DF. The angle C D F need not be a right angle, but the
distances CDand G E muts be buyul. so alos the the C G and DE musa be equal. Now select the pont A . in the line D F, so that it will be in ranze with G and A.
These pointe defintely established by stakes set to the round, the y afford homologous t thapkeles, by a compar
 respective lines and angles in proportion. Therefor
F:E G: DF:D A; and from this, $\mathrm{D}-\frac{\mathrm{DF}}{\mathrm{EF}}$ or the dietance DF multiplied by the ciltanice E E
and the product divided by the distance E F, the equo.

 Apon trinl let le be found that E F-z= feet then,
 herefore, 40:55: : 80: $110=\mathbf{A c}$.
Is the annexed rule correct for finding the radus when年 chord and versed oine are given? Rule: Add the ersea sine, and divide this rum by the versed stine. A No; there is an error in your statemen
You must divlde by tolce the versed sine.
F. S. C. says : Sidney Whiting, describing
he royal carrages in the sun. says: "In form, too t tue Carrages were coochala,, and were turnished with wheele Chout ree; for by a pecullar contrivance, each spok
oossesed an elasilc sping juat at the polnt of tits as ticulation with the aneve, ot that at every evolutlon an nward motion was imparted, independent or any pow.
the driser nimself mikht exert." Can such a thing
 we are conflent that no peaullar contrivance will en
 ter. I have been pumplng about as high as the pressure
of the alr will rate tre, and had no trouble untill tried to pump from a barrel that was supplied with water from another well by means of a steam jet pump. Now the barre is placed in the old well, gome two or thre feet
higher up than where I I pumped from before; but I can.
 hipger up than it was before. The water from the new
welli s not pure it it of a light color, and gets this from the blue e laye tit the well, and the whater from the eve
pump tis warmed by the team. What is the trouble pump to warmed by the steam. What 18 the trouble
wwth the water or the pump? A. The warm water seems
wh S. H. C. asks : At what part of the stroke of
the piston haould the steam be cut ofr, in a corllss engine,to be the most economical? A. Let your engine
do the required work, and then set the cut-off as near
E. asks: Is glass a conductor or a non-con-
ductor of heat? A. Glass 18 one of the poorest of heat conductors.
J. S. asks: Is there a patent instrument by
which the correct alstance of an object can be told Fithout measurlng? A. We know of no such machlne J. G. H. Saps: I have been running an en-
Rine; and to get speed to thresh wheat, I Lad tu therease the driving pulley, which I did by putting on wood rom 2i Inches in dlameter up to 47 Inches. The engine
Is rated at $4 \not /$ horse
power, and works very well wnile atached to the thresher, and runs steadily; but in rui-
ning alone tit runs very lrregularly, and sometimes will top. The governor seems to act rreely, and the engine it not run as well w hen dolng nothtng out pumpling? A The trouble may bee elther with the governor or the
pump. We could not give a positive opinon, from your
H. asks: What are meant by the following,
viz: eng. ne lathe, Montor lathe, inctis n pulley, atad
 onethable volving rest, having several tools fastened in it at the same time ; th 18 generally used 10 s small work. A fric-
tion pulley 18 a pulley which drives or de driven by the riction caused by its face beting forced againat anothe iace. A blowing cylinder is tie
blast engine, used In iron-smelting, etc.
T. H. W. asks: How can I best anneal iron ooller tubes, so as to make necesary flanges on the ende
when nneerting them? A. Heat them to a red and sillow them to cool tn flie ashes or slaked llme. 2. Would not
some method by which the tubes of locomotive bollers ome method by which
could be removed or replaced more readily than by the present ssstem, be valuable? A. Yes.
It can fulminate of mercury, bbout an ounce in quan
Hity, be salely sent throuph the malls? highly dargerous and criminal to send 11 b bmall. 2. How When the A. See p. 90 , vol. 31 . Iie, with what should it be coated to preserve tits polisn? A. Wtth lacquer
$\mathrm{J} . \mathrm{S}$. says: I have no appetite, and am quite
weak, with coid sweats every yight. What ehoula 1 do? A. Take a 1 rastin cltrate of fron and quintine pill every C. R. asks: Can boiled starch be kept fresh
for some time, without getung sour? A. Lee, rom F. C. K. asks: Is there any process for ren-
dering woolen cloths impervious io water: A. Cloth 18 rendered waterproof by slmply paestug it through a hot solution of weak glue and alum. To apply it to the
cloth make up a weak solution of glue; and while it to then brush it over the surface of the cloth while it is not, and then dry th. Cloth in pleces may be run through
this solution and dried. By adding a little soap, the goods williteel softer. Woolen gooda are plepared by
orushing them frrtat on the ingide, and then with the grain or nap of the cloth.
the air, and then in a store room at low heat. Cloth thus prepared is impervilous to water, but pervilous to $\underset{\text { C. B. N. asks: What do brewars use to }}{\text { Li }}$ dently due to carbonic accid gas but what the the precess
by which beer is charged with this kas? A The effer. yy which beer is charged with th18 Ras? The enter-
vescence you speak of 18 due to carbonic actd generated
G. J. E. says: Conch and similar shelly,
when held close to the ear, produce sound similar to
 N. A. W. asks: What is the resulting com-
pound from mising an acld and an alkalland als known
 of an acti with a base is what is nown as a salt, of
which there are mauy hundreds. Their effects on the uman system are as numerous and as varied ; for in-
tance muratic acld and sods comb Lable salt, comparatlvely harmeles, while hydrocyantc
acld and potasi forms one of the most deady poliens
nown.
Is ilpht bread, made by ustng an actd and an alkall, sused
 tann ctrcumstances. That amount of gas taken Into tard the digestion of the food contalning it.
J. S. asks: What is the color of the pure
futce of lovage? A. "Ligurticum levisticum (lovage) io an umbelliferous plant, gruwing wild in Southern Europe, and often cult trated in gardens. The whole
plant hasa atrong, sweetish, \mathbf{a} ' omatic odor, and a warm, ongent taste. When wo nta
juice, which concretes Into a brownish, reesinous sub. srance, not unlike opoponax. The roots, stems, leaves,
and seeds have all been emploged, but the last have the - amatic propertles of the plat degre
E. F. B. asks When will a balloon rise
more easill when the alr 18 heavy or whea the alr it H1ght? A. The ascending power of a balloon does not
 Darometer stnks, the gas expands or incre
ume tn exactiy the same ratio as the alr.

Minerals, fTC.-Specimens have been re ceived from the following correspondents, and examined with the results stated
G. W. . .-It oontaing no silver. It is a fint coated
with oxide of iron. - H. D. B. We cannot spare the time to make an organic analysis. Your spectmens resemble buttons made of pressed paper, and a hard
gummy substance. with a waterproor black varnis upon the outer surface.-A. M. B. - Nos. 1 and 2 contain red jasper; No. 4 ts minct pally sillica and iron. No. 3 is gives every indicatiou of an ore containing an. No. centage of manganese ; also tron. No. 6 is felspar. No iscarbonate of lime, sllica, and traces of iron. No. 8 on silltea, alumina, etc. No. 10 ts hematite.

COMMUNICATIONS RECEIVED

The Editor of the Scientific American acknowledges, with much pleasure, the receipt of original papers and contributions upon the following subjects

On Storms. By S. A. M.
On Perpetual Motion. By F. V. F On Mesmerism. By G. H.
On Beveled Arrow Heads. By A. E. D
On a New Motor. By D. D. P.
On Some Magnetic Experiments. By A. F.O. On Steam Cars. By F. G. W

HINTS TO CORRESPONDENTS

 Correspondents whose inquiries fail to ap pear should repeat them. If not then pub lished, they may conclude that, for good rea sons, the Editor declines them. The address of the writer should always be given.Enquiries relating to patents, or to the patentability of inventions, assignments, etc., will not be published here. All such questions, whan initials only are given, are thrown into the waste basket, as it would fill half of our paper to print them all; but we generally take pleasure in answering briefly by mail if the writer's address is given.
Hundreds of enquiries analogous to the following are sent: "Please to inform me where I can buy sheet lead, and the price Where can I purchase a good brick machine Whose steam engine and boiler would you recommend? Which churn is considered the best ? Who makes the best mucilage? Where can I buy the best style of windmills?" All such personal enquiriesare printed,as will be observed, in the column of "Business and Personal," which is specially set apart for that purpose, subject to the charge mentioned at the head of that column. Almost any desired information can in this way be expeditiously obtained

official.

Index of Inventions
FOR WHICH
Letters Patent of the United Stater
were granted in tre week ending August 11, 1874, and each bearing that date, Those marked (r) are relssued patents.]
Alr brake, J. Steger.
 Animal fat, separating, W. E. Andrew.
Annunclator, electric hotel, L. Finger Bath, vapor, R. N. Harlan.
Bearing, self. oliling, G.
Bed bottom, F. Mahler
Bed bottom, spring,
Boller feeder, automatic, L. P. Hawe
Botler, wash, J. H. and E. W. Jenkin
Bollers, tire tube for. J. H. Wilkinso
Boot, etc., stretcher, Fay et al Bracelet, M. Lechner

Brick machine, P. He

Bridge, tloating draw, J. Lawle
Bridges, guard gate for draw, J. Elilingso
Buckle, suspenston, C. J. Weldon ackle, trace, C. B. Johnson Buggy tops, blat Iron for, A. L.
Burner, areand, C. E. Hearson Car brake, c. Matthews........ Car coupllyg, L. Fleckenst Car coupling, D. S. Moore....
Car coupling, w. M. Underhi Cars, drenching stock on. H. Smith Carbureter, J. F. and G. E. Lockwood (r) arpet lining, C. Amazun.. Carrlage lamp, T. Boudren arrlage seat backs, clamp Case, stamp, P. J. Lefebvre
Chair and bench, folding, Myers et Chair, dentist's, A. W. Morrison Chatr, rocklng \&nd reclininge, C. C. Knell Chairs, bra cket for dentis
Clothes dryer, J. shellenberge Cock, ateam rage, P.
Corset, G. B. Dyer
Cough sirup, compound

Cultivator and ridger, o. W. Goslee...
Cultivator, equalizlng, M. Eichholtz (Cultrator, gang, Baker and Land Curtain rod, \mathbf{B}. Wellington.
Dental vulcanizer, J. R. B. Ransom
Dog power, D. E. Paugburn Dog power, D. E. Paugburn..........
Door cheok and ouffer, o. c. Plummer Door check and fastener, E. Getz Door spring, Steed and Nash Drawing apparata, perspecive, A. Morse Drill, swivel head rock, W. C. Bulloc Elevator, C. Whittler
Elevator, hay, L. B. Sprout Elevator, water, J. F. McCalmont..........
Elevator, safety attachment, C. L. Page.. Elevator, as ety attachment, C. L. Page..
Embroidery, 1 mitation, H. F. T. Mégrand
Envelope machlue, Allen and Lester
Equalizer, draft, H. H. Stevens
Equa lizer, draft, н. н. stevancen w. P.
raucet, W. P. Clotworthy
F'uucet, Deer, J. G. Adams
suucet, beer, J. G. Adaed
Fence, barbed. \mathbf{c}. Kenned
Fence, barbed. C. Kennedy...........
Fence, portable farm, F. P. scott
Fence spring, wire. J. C. Hanna..
Fence, wire, H. Darlington
Fertlizers from sewage, H. Y. D. Scott. Fifth wheel for vehicles, R . W. McCielland Fire extingulsher, H. S. Parmelee...
Fire plug and hydrant, C. H. Robert Frult box holder, E. H. Tu
Furnace, hot a arr, D. Buyd
urnace, hot ar, D. Buyd
curnace, hot atr, w. H.
Furnace, coal burning, L. Stevens. Furnaces, lining for plpe welding, Matheson et
Game apparacus, H. seher.
Gas carbureting machine. L. P. Hawes
Gas returts, closing, Herzog and Bulloc Gate, automatatc, J. Ellis.
Glass, etc., for etching, C. Frederic
Glass, ornamenting, C.
Glass tool, A. F. Whison
Grain drill, R. Kuhns.
Grain drill, , R. Kuhns
Gune, mounting and setting, J. L. Aver Halter, horse, P. Reed.
Harnees saddle tree, s. E. Tompkins (r) Harrow and chopper, cotton, G.
Harvester rake, J. F. Seiberling Hatchway, self-closiug, W.A. Morrison Hide stretching frame, Hog-ringing nippers, A. L. Hill. Holsting machine, W. C. Willtamson Ice cutter, R. Moseles
In
Incut
Indicator, statlon, J. and A. T. Harp
Ironlng board, Reading and Good.
vory, coral, etc., artiflital, J. Frauenberger.
Jack, liftlng, E. E. Lewis
Knlfe and skewer pull, \mathbf{o}. \mathbf{w}. Taft (r)
Lamp, carriage, T. Boudren......
Lamp chimney, v. W. Blanchar
amp screen, rall way, J. Spencer..
Lathe, J. H. Sinkinion
Lathe dogs, die for torging, c. E. Billing
Leggings, J. Cave..............
oom, corset, etc., C. Gahren
Loom picking mechanism, G. Richardso
Loom weft stop, Isherwood and Nuttall (r)..
Lubricator, D. Jones.............................
Mattress frames, head rest for, A. Hentzache
Mattress frames, head
Meat chopper, D. Peters
Milk recempound, B. C. Hobson..
Hirror, W. F. Johasto
Mrror, hand and stand, A. M. Rontey
Motion, transmitting, L. Bingaman
Motive power, transmitting, C. E.
Muck roll appliances, C. Zug
Vall distributor, Young and
feck the retainer, J. Hayden
Nozzle, sprinkling, B. K. Moflett.
Vut blanks from bars, shearing,
Nut blanks from bars, shearig,
Onl rock preserver, H. A. Snow
Paper, damplng, J. \& E. W. D. Gr
Pen and pencll case. J. Holland...
Planoforte. Mathuspek \& Dunham..
Ylanoforte attachment. W. I. Mille
Planoforte attachment. W. K. M1e
Planofortes, organ pipe, I. Cordley
Pipe molding apparatus, B. s. Benson
Pipe molding machine, B. S. Benso
Plpe molding flask, J. F. Andrews
Plistol, tre cracker,
Plow, E. S. Wataon
Pat
Plow coupltng, J. M. Gardn
Press, cheese, 'T. D. Powers.
Press, lard, s. R. Bartl
Prison, Cook \& Heath
Propeller, marine, F. G. Fowler...
Pump and engine, G. F. Blake.
Pump bracket, M. D. Temple...
Pump, drect acting steam
Pump, rotary, W. H. Beal
Pump, rotary steam, W. B
Pump, stean, Tesseyman \& Barney.
Rallway lamp screes, J. Spence
Railway rail jolnt,J. H. Bean..
Rallway rall joint, C. A. Blomquat
Railway signal, electric, A. A. D.
Rallway switch, Burgett \& Mc
:aillway truck, w. H. Wright.
Range, portable, F. J. Kenny
Relishing machine, thillpp \& Blake
Roonng plate, illuminatig, Hyath Jacobs.
kuunting gear, C. Jackman...
Running gear. R. W. McClellan
Sash fastener, S. W. Couc
Saw, S. Vobburgh..........
Saw swage, A. G. Rouse.
Saws, bevel attachment for, G. A. Osgood. Separator, grain, J. T. Hiclilln.:

3,745.-D. E.Cooke, Brantford, Ont. Improvements on
refrigeratori for refrigeratora for preserving meat, butter. etc., called
"The Goold Refrigerator Trused Ract." Aug. 18. 3,46.-H. Vandewater, Phelps, N. Y., U. S. Improve ments in turbine water wheels, called " Vandewater Improved Turblue Water Wheel." Aug. $13,1874$. on methods for equallzing or d 'stributing pressure called " Miller's Method of Equalizing or Distributing Pressure." Aug. 13, 1874.
 Pipe Vise. ,i49.-A. L. Trudel, St. Antolne de Tilly, P. Q. Nouveau system de propulsion des chaloupex, bateaux, etc.
dit"Le Propulseur Trudel." (New system of propel dit "Le Propulseur Trudel." (New soats.) Aug. 13, 1874.
ling ber 3, 550 .-C. Buchner, Tilsonbury. Ont. Improvements on a machine for washing clot.", Aug. 13, 1874 .
proved Champlon Wasber.,
3.751,-R. Gadonas, Montreal, P. Q. Improvements on s,751.-R. Gadonas, Montreal, P. Q. Improvements on
gage for center bits, called ic Gadonas' BIt Gage. gage for cent
Aug. 13, 1874 .

on tles, called "Co

 3,753.-E. Caswell, Lyons, N. Y., U. S. Improvements ou a carrlage and wagon hub borer, cHub-Borlng Machine." Aug. 13, 1874.
3,754.-T. A. Savard. Quebec, P. Q. Amel orations aut
horloger ordinaires, diles il horloges ordinaires, dites "Le Cadran Unitersel Sar ard." (Improvements in clocks.) Aug. 13, 1874.
$3,755 .-$ T. Burns on well-boring machines, called "Burns' Well Bern Macbine." Aug. 18,187
,756.-H. G. Thompson and B. T. Bergh, Milford, Conn.
U. S. Improvements on tack-driving machines, called Thompson and Bergh's Tack Driving Mang

provem Scott and S. L. Cook, Cote St. Paul, P. Q. Im provements on the manufacture of spades or shovels
called "The Patent Socket Spade." Aug. 13, 1844.

adutertisements.

APPLICATIONS FOR EXTENSIONS.
Applications hava beeu duly tiled andare now pending
or the extension of the following Letters Patent. Hear-
ngs apon the respective applications are appointed io
the days heretnafter mentioned: the days heretnafter mentioned

EXTENBIONS GRANTED.

2,694.-Clothrs Dryrr.-D. K. Hic 27,70 .-Coltivator.-T. W. McDill.

29,72i.-Shaping and Molding Machink.-H.D.Stove
DESIGNS PATENTED.
7,627--Oil Clotr.- J. B. Virolet, Paris, France.
$7,688 \&$ 7.629.- Rosertrss.-A.
7,628\& 7.629.-Rostriss.-A. H. Austin, New York city
7.630.-COFFIN HANDLE TIP.-G.W. Bunnell, Meriden,Ct. 7,631.-Door Bolt.-A. W. Hirschfeld, Meriden, Conn.
7,632.-VEIL.-S. M. Meyenberg, Paterson, E. J. i,699.-Boot JACEs.-M. E. Nichols, Clarksille,

TRADE MARES REGISTERED.

1,925.-Ground Corn.-Pearl Hominy Co., Baltimore.Md
$1,926 .-$ Trrra Cotta.-R Elin \& Co., New York city. 1,927.-SODA WATER.-Harrison et al., Davenport, Iowa.
1.928.-GAs MACHINES. - Keystone Safety G.M. Co., Phil. City, N.J.

SCHEDULE OF PATENT On each Caveat......
On each Trade Mark
On alling each applica tion for a Pate................. On lashing each origlnal Patent...
On appeal to Examiners-1n-Chief.
On appeal to Commisatoner of Patent
On avpliteation tor Retissue...............
On application for Extenston of Patent. On granting the Extens: On fillng a Dlaclaimer On an application for Design (3x
Onapplication for Destgn (7 years)
On application for Destgn (14 year).

CANADIAN PATENTS

List of Patents Granted in Canada Adgust 3 то 13, 1874.
,735.-P. J. Devlan, Jersey City, N. J., U. S. Improve
ment on treating sponge, called " Devlan's Process o Treating Sponge, for Different Purposes." Aug. ${ }^{1874 .}$, $736 .-$ H. Bolton, Ellzabethtown, Ont. Improvement on washing machines,
Washer." Aug. 3 , 1874 .
Washer." Aug. 3, 1874 .
7ij7.-C. C. Kinney, Dereham Township, Oxford county Me., U. S. Improvements on sask holders and fasten
ers, called "KInney's Sash Holder and Fastener ars, called
Aug. 3,187 . ,is8.-H. Weodwardand M. Evans, Toronto, Ont. Im-
proveinents on the art or process of obtaning artif. ctal light by means of electricity, called "

.-W. Lockoo, Elfria Ing machines, called "Lockwood's Improved Rising latiformand Holsting Machine." Aug. 8. 1874.
740.-S. H.\& D. W. Davis, Detrolt, Mich., U. S. (Ex-
tension of Patent No. 252 , New Brunswick). Freezing and preserving apparatus to be used in freezing and preserving fresh
cles. Aug. $8,1874$.

cles. Ang. 3, 1874.

on on Ras machine, call
Generator." Aug. 4, 8874
county, Ont. Extenelon of No. 64, for a self-cleantng and adjusting gate hanging. Aug. 13. 1854. ,743.-J. B. Brown, Philadelphia Pa., I. s., assignee o
R. W. Wethertll, Chlcagol, pli., U. s. Improvements on burglar alarma, called "The Keystone Portable Burglar
Alarm." Aug. 13, 1874.
,744.-D. C. Grant, Houghton, Mich., U. s. Improve
ment on toe plow and ram attachments for vessels,
called "Grant's Ice Plow and Ram Attachment for
Vessels." Aug. 13, 1874.

W ANTED-A second hand Lathe. suitable

SWAN QUILL Action!

SPENCERIAN
STEEL PENS.
These Pen, are comprifed in 15 numbers; of the
SUBRE ONE PEN Alone we Bold more unan

5,000,000

In 1873 ,

To accom modate those who may witsh o ory these
receipt of 2 s.ent.

H
WES STEAM TRAP-This Trap sur-

NOTICE TO MANUFACTURERS OF CAST IRON WATER PIPE

and ind ide

\bar{A}
$\mathbf{A}_{\text {portratt, character and }}^{\text {GOOD THBos. A. Scorrs, }}$

$\overline{877}$

To Electro-Platers.

Cooper＇s Engine \＆Mill Works， First－Class Stationary Engines，

 PORTA

 MPORTANT FOR ALL LARGE CORPO．

COLDRENT RED SHAFTING

隹

A Set of 12 Steel Lathe Dogs，
 1 Set of stee tot clamp

人里的hussey＇s national Cottage Architectare．

Geo．W．Read \＆Co．，
 186 PLANK，BOARDS， 20 VENERES， 186 to ${ }^{200}{ }^{2}$ Lete

 $\$ 475$ MoNit to AaENrs．Adareon C． C ．

MASN＇S PATM FRIOTION CLUTCHES

MAGNETS－Permanent steel Magnets of any form or Aize，made to order by Fr．C．BEACH

SAMPLES OF MACHINES，TOOLS，and
 The Toll－Gate！Prize Pittere sent freet $\Delta \mathrm{n}$

Planing and Matching
 THIS MONTH \triangle WELL KNOWN FIRM

 $\mathrm{F}_{\text {Intringemanta }}^{\text {OR ADVICE CONCERNING }}$ THECHAMP1ON SILVERSTEEI

mo

$\$ 70$ A WEEK TO AGENTS－Sure．Forr now Pat－
$\mathrm{F}_{\text {Firtures and Tools complete for macing gung，sew }}^{\text {ORGING }}$

BLAKE＇S PATENT Stone and Ore Breaker

A FORTUNE For ALL tite Rebber Stamp
 The Amoricar Theorbine Wator Rocentily provtroidd abmitted to

RISDON＇S IMPROVED TURBINE．

0TIS＇
SAFETY HOISTING
Machinery．

TO MANDFACTURERS \＆AGENTS

PORTABLE STEAM ENGINES，COMBIN－

Machinery，

 Sturtevant Blowers．

Cold Rolled Shafting．

Niagara Steam Pump． OHAB．B．HARDICK，

The join hardick Nlagara Steam Pump．

pUNCEMSG

WOOD－WORKING MACHINERY GEN

 $\$ 5$ \＆$\$ 20 \begin{aligned} & \text { per day at home．Terms Free．} \\ & \text { Gro．Stinsos }\end{aligned}$

Vho union Iron mule，Fiblisourgu，ra

 $\operatorname{OH} A$
$\theta+\infty$
 B ANKRUPT＇S SALE OF HORIZONTAL Band Vertical Steam Engines．Also new and secon
hand Machnilit Tool．Send for cricularat
THE YALE IRON WORES，New Haven，Conn SHINGLE \＆BARREL MACHINERY
 TOR SALE－AN UNFINISHED IRON COR SALE－AN UNFINISHED IRON，
Bottom and water STEAM VESSEL，having double Leagth bet ween Perpendiculars

Breadth of Beam．．

Deptisplacement at 22 feet draugh
Area
．．．．．．．．． 390 feet．
$45 \quad$.
$24 x_{2}$
$6,$.
890 tons．
89.
Area of Midship Section．．．．．．．．．．．
Number of Transverae Bulkhead
$\stackrel{\text { ENGings．}}{ }$
Two pars，each pair driving one Screw．
Dlameter of Steam Cyllinder．．．．．．．． Diameter of Steam Cylinder．．．．．．．．．．．．．．．．．．．．．．．．．．．i2 inches．
45
Stroke of Piston．．．．．．．．．
Dismeter
Pitch．．．
Dlamete
Pitch．．．
Number

N
Ten inn
Tubular Type
boilers．
in n mber：Ordinary Horizontal Mire
Type．
total He
Total Heating
This vessel was intende．．．．．．．．．．．．．．．．．． 876 ＂ 1 nd the For was carrled on under the direction o

Mice－Chancelllor AMZI DoDD，of Newark
Honorable Mestrs．W．W．SHIPPE N，and S．B．Dod，of

R．H．THURSTON，
Consulting Engtineer to the C
Hoboken，Neso Jersey，
United States of A

P．BLATSDEIT \＆CO．，
 E．M．MAYO＇S PAT＂BDT COTTRE． Andrew＇s Patents．
 ${ }^{8}$

 R ICHABDSON，MERIAM \＆CO．

910 A DAX．Employment tor all．Pacen Nove

Fifth and Last Gift Concert Public Library of Kentacky，

November 30， 1874.
DRAWING CERTAIN AT THAT DATE．

WOOD WORKING MACHINRRY

 Centennial Anniversary
 International Exhibition

APPLICATIONS FOR SPACE

 Park ecure space for exhibits in the Builing of the eciosian

GOSHORN,
Director-General

. L. CAMPBELLE

PATPNTS

forelgn countries for more than a quarter of a cea tury. More than Firty thousand inventors hav cured through this agencyrecelvea spectal notice in the Soientiptc Amprionn,
chasers for the patent.
Inventions examined, and adrice as to patentabilty free
Patents obtsined in the Patents obtained tle delag as posible Caveats preparcd to
fled in the Patent office at short notice.
Special examinations as to the patentability of inventhans made, at the patent ince, on recelpt of model on drawing and description ; cost for this bearch and re
port, 85. Trade Marks.-The necessary papers for secarin
protection to manufacturers and merchants in tha country and abroad are prepared at this office. Design Patents, for protecting artists and designer obtained through this offlce.
Copyrights obtained.
Forelgn Patents are solicited in all countries wher patest ams exist. Pamphlets, contan.
full particulars, mailed on appication.
Canada Patenta.-Canada is one of the best countries for patents. The cost depends apon the length of time for which a pat
We shall be happy to confer with ine heir moaele and drawings, and adyise with them as to obtaining patents without consultation fee. Every kind of information pertaining to patente, at home or abroad cheerfally given.
Send for pampalat. 110 pages, containing lawsand full
ections for obtaining patents. Addres
MUNN \& CO.,
3y Park Row, N.

 TITHANTE NGOM COMPANY ImeryVheels TANITEGEEryGGinders

Working Models
PRATT'S
ASTRAL
0 T I.
 $\mathrm{F}_{\text {Hon }}^{\text {OR SALE-2nd }}$ hand Portable and Sta

CHAS.A.CHEEVERT N N 98 CHAMBERS ST
 MACHINIST'S TOOLS,

AMERICAN SAW CO. TRENTON, N. J.
GREAT REDUCTION ${ }_{\text {m }}$ PRICES mOVABLE-TOOTHED
CIRCULARSAWS. Sent ior net, 1874.

THE AMERICAN TWIST

Asbestos Materials.

GREATEST INVENTION of the AGE. ELECTRIC \& VAP0R CHAIR

SUPER-FPATERS

BESSEMER

SteclWireRopes

THE HEALD \& SISCO
Patent Centrifugal Pumps,

GEORGE BARNES \& C0.,

Manufacturers. Syracuse, N. Y. TANNATEOFSODA,

The Chilian Exposition

KEYSTONE PATENT FORGES

H. S. MANNING \& CO., Agents,

人

E NGINES AND BOILERS, New and Sec
 Crane Bros. Mfg. Co., chicago.

Water Wheels
More than fout tite en

TONE SAWING MACHINERY. DDERRICKS \& TRAVELLERS, thomas ross, Rutland, Vt. Todd \& Rafferty MachineCo.

HARTFORD

STEAM BOILER Inspection \& Insurance

COMPANY.

 hartaord, cons

PORTLAND CEMENT

\triangle Practicai Trearise on cement turnabed Rry.

Rilies, Shot Guns, Revolvers Reat weatern sint in work
MBE GODE

musqu

OF THE

SCIENTIFIC AMERICAN.
THE BEST MECHANICAL PAPER IN THE WORLD.
TWENTY-NINTB YEAR.
VOLUME XXXI-NEW SERIES. The publishers of the SCIENTIFIC AMERICAN D aew volume commences. It will continue to be the alm
of the publishers to render the contents of the new
volume more attractive and useful than any of tis pre

The best Mechanical Paper in the World ! A year's numbers contain over 800 pages and severa
hundred engravings of new machines, useful and nove inventions, manufacturing establishments, tools, and

To the Mechanic and Kanufacturer I No person engaged in any of the mechantcal pursuits - N . Every number contains from 8 ix to ten engraving new machiues and inventions which cannot be found any other pubilication.
The SCIENTIFIC AMERICAN 18 devoted to the inter tures, Inventions, Agricalture,Cummerce, and the indus tial pursuits generally; and it 18 valuable and instruc the Household, thorkshop and manufactory, but an TERME.
One copy, one year.
83.00
1.50
1

One copy, $81 \times$ months.
One copy, four months...................................... 1.00 one copy of eagraving, "Men of frogress".. 10.00 One copy of Sclentificamerican for one year, and one copy of " Sclence Record " or 184...... 5.00
Remit by postal order, draft or The postage on the Sclentific Americai per quarter, payable at the oflice where recelved cent ada subscribers must remit, with subscription, 25 cent Adra to pay postage.

