certainly is the most expensive. The alloys of copper, anti mony, and tin, or so called white metal,are bad makeshifte, a well as the so called lead composition bearings of lead and antimony; for it is impossible to give these alloys a hardnese approaching that of the revolving axle without rendering them brittle. If an alloy is used sufficiently hard to avoid great wear, these bearings will heat much and are very brittle. On most of the English, Belgian, German, French, and par ticularly on American railroads, white metal, and especially lead composition, bearinge are little used, and this with good reason; for what would become, for instance, of a white met l begring on an American railroad, where the bearings ar subjected not only to heavy loads, but where they have to ravel thousands of miles on rails belonging to other com panies, and therefore are not much looked after.
Gun metal bearings, alloys of tin and copper, are not often homogeneous, with exception of the alloy of 17 to 18 per cent of copper, which is the most trustworthy alloy of tin and cop per. In alloys containing a lower percentage of tin, the latter eegregates in the form of tin spots, when the alloy cool lowly. All other compositions in use for bearings, such as 12 to 17 per cent of tin and 88 to 83 per cent of copper do not make homogeneous bsarings, unless they are cast in chill molde, which in practice is impossible. This hetero geneity of gun metal bearings is dangerous, as it produces gripping, and thereby a rapid wear. This specific quality of gun metal bearings (to grip) is theoretically easily explained In cooling, the rofter metal (composed of from 7 to 10 pe cent of tin and 93 to 90 per cent of copper), being the leas usible, sets first, forming the skeleton of the bearing; later the very hard and brittle alloy,containing 17 to 18 per cent o tin and 83 to 82 per cent of copper, eets and fills the pores of the softer skeleton. The particles of the harder alloy are asily torn away by the axle if the bearing is not sufficiently ubricated, and these tear the skeleton composed of the softer alloy; this I have frequently observed at rolling mills where the bearings were not sufficiently lubricated, and where par ticles in the form of small flakes peel off.
A good bearing which answers all purposes must not be homogeneous, but must consist of a strong and tough akeleton the hardness of which nearly equals that of the axle, in order to resist shocks without deformation, and the pores of thi skeleton must be filled with the soft metal or alloy
The nearer the hardness of the skelton approaches the hard aess of the axle, the better the bearing will resist the pres sureor shocks; and the softer the metal filling the pores, the better the bearing is in every respect. Such bearinge are now made by melting two or more alloys of different hardnessand usibility together, in such proportions that necersarily a se paration into two alloys of definite composition takee place in cooling
Phosphor-bronze bearings consist of a uniform skeleton of very tough phosphor brooze, the hardness of which may be easily regulated to equal the hardness of the axle, while th pores arefilled with a soft alloy of lead and tin
Such a phosphor bronze bearing may therefore be considered as having its wearing surface composed of a great number o mall bearings of very soft metal encased in the tough and tronq m etal which equals the hardness of the axle; on the planed bearing surface this molecular disposition cannot be detected by the naked eye, but, if examined with a magnify ng glass, the trath of the above will at once be seen. An other practical proof can be given by exposing such bearing oa dull red heat, when the soft alloy will sweat out, and the hard, spongy, skeleton-like mass remains.
In this consist the great advantages of phosphor-bronz bearings, which is proved wherever tested; for while the axl partly rans on a very soft metal and thus obviates heating ven if not sufficiently lubricated, the harder part of the bear ing, its ekeleton, does not allow of wear taking place; and a the hardness is arranged to equal the hardness of the Kune, w

Use of Iron instead or Lead shot in the Rinsing or Bottles
Lead shot, where so used, often leaves carbonate of lead n the internal surface, and this is apt to be dissolved in the wine or other liquids afterward introduced, with poisonous cesults ; and particles of theshot aresometimes inadvertently eft in the bottle. M. Fordos states that clippings of iron wire are a better means of ringing. They are easily had, and the cleaning is rapid and complete. The iron is attacked by the oxygen of the air, but the ferraginous compound does not attach to the sides of the bottle, and is easily removed in wash ng. Besides, a little oxidized iron is notidjurious to health M. Fordon further found that the slight traces of iron left had oo apparent effect on the color of red wines; it had on white wines but very little; and he thinks it might be better to use clippings of tin for the latter.

Fast Steaming.

One of the finest and fastest steamboats on the Hadson iver is the Mary Powell. Recently she made the distance from New York to Piermont, 28 miles, in one hour, while the actual running time to Poughkeepsie, $74 \frac{1}{2}$ miles, was 3 h 19 m ., or at the average rate of $22 \frac{1}{3}$ miles per hour. Boile pressure, 37 lbs. The Powell is fitted with the ordinary sin gle vertical cylinder, walking beam engine.

Parastres.-It is common to note that each apecies o animal has its own parasites, which can exist only apon creatares which have more or less kinship with their host Thus the ascarix mystax, which torments the domestic cat, is found in all species of felis, while the for, so closely resem bling the woll or the dog, is never troabled with the tenic senata, common in the last mentioned animal.

TEE VIBRATIONS OF 8OLIDS OPTICALLY STUDIED. Profossor Ogden N. Rood, of Columbia College, commun cates to the American Journal of science and Arts a now method of ascertaining whether two tuning forks, for ex ample, are in unison, or to determine the difference in th number of vibrations executed by them in a second. A hort piece of fine steel wire is attached to each of the forks and the latter are supported as shown in Fig. 1. The forks

Fig. 1.
are now set in vibration, and the intersection of the wire rewed against a bright background with the aid of a smal elescope. When the difference in phase is 0 , an appear nce like Fig. 2 is produced, which changes to Fig. 3 when he difference in phase has increased to one half a complet ibration. If the forks differ by an interval of an octave, an lmost equally distinct figure will be produced, as is seen in Figs. 4 and 5, which represent the characteristic appearance in this case. Somowhat less distinct and more complicated gares are given by the quint, the duodecimo, and the doubl ctave.
It is easy with this mothod to bring a vibrating string anto unison with a given tuning fork, or to adjust it so tha he interval shall be a quint, octave, twelfth,or double octave bove or below. It is also easy to ascertain the number of ibrations made by a atring in a given case, by the aid of a bridge and a properly selected fork making a known num ber of vibrations, the string being shortened till it furnishes one of the above mentioned figures, and executes hence a nown number of vibrations, after which the number of vi brations made by its whole length can readily be calculated by a well known law.
To bring two cords into unison, or to produce one of the bove mentioned intervals, a cork cat at an angle of 45° i placed bytween the strings on themonochord, and, supported this angle, is a small piece of looking glass of good quality. The reflected and vertical image of the farther hen seen in the telescope crossed by the horizontal image of the nearer string; and the mirror being tarned no as to eflect,at the same time, light from the sky, all the condition vere fulfiled.
Rode or bars, supported at one extremity or at two nodes nd provided with fine terminal wires, can by this method e brought into unison, or have one of the above mentioned ntervals established between them. A preferable mode owever, is to study them in connection with the monochor nd a tuning fork. The entire string of the monochord is erst brought into unison with a tuning fork, or some definite interval established; the cord and rod or bar are then combined at right angles, and the bridge moved till unison again effected, when it is possible to calculate the numer of vibrations actually executed by the bar or plate. I the fine wire is attached to one side of a bell, the number of ibrations executed by the bell can readily be obtained with he monochord in the manner already indicated.
Vibrating membranes can readily be studied in this way by attaching to them a small piece of fine wire bent with wo right angles, and using them in connection with the monochord or a tuning fork.
The more important of these figures may be easily ren. ered visible to a large audience. Wires about a milimeter hick are attached to two tuning forks placed in front of s magic lantern; an image is formed on the screen with the aid of a lens of about 0.815 inch focal length; the figares re then well shown along with cortain of their detaile not particularly mentioned in this article.

Great Expositions.

A correspondent of the New York Tribune writes from Vienna that the loss of the Austrian government, in its out ays on the recent Great Exposition of 1873, was nine milons of dollars. We have heretofore chronicled the recen aspension of the series of annual World's Expositions, which were inaugarated by the Exhibition Commission in London, and intended to continue until 1876. The losees were so heavy that the Commission was obliged to discontinue them. In view of facts like these, the American people may congratulate themselves that Congress, at its ast session, refused to aathorize the squandering of public money on the Centennial Exhibition at Philadelphia. The ruth is that this Great Exposition business has "played out.' thas ceased to be an attraction for the masses, and is chiefy useful for the advertising parposes of enterprizing deal.
C. H. C. suggests that telegraph companies plant trees on which to hang their wires. In most sections of the counry, the tree first planted would cost but little more than a pole, and after two or three years in growth would be a per manent pole which not rot at the bottom or need resetting, and would be seldom struck by lightning. Having many times seen from three to a dozen poles, in a row, shivered by s charge of electricity running along the wires, the above question arose in my mind."

Pittsbargh Manafacturers for 1873

Some weeks since, the Plttsburgh Dispatch of this city pablished a list of asles of houses in Pittsburgh doing a basiness of over $\$ 50,000$ a year. The list was very imper fect; but as it is so difficult to get statistics in Pittsburgh we have compiled from this list, which was copied from the assessor's list, the items relating to our iron, steel, copper and glass industries, believing that, imperfect as they are they will be of value. We do not give the totals of each in astry, as this would by no means give the volume of business. We would also say that none of the Allegheny manu acturers are incladed in this
In the entire list there are but two houses outside of those connected with the industries given below that did a busi ess of over $\$ 1,000,000$. As will be seen, three houses in the iron or steel business did above this sum, namely: Jones \& Laughlins, J. Painter \& Sons, and Hussey, Wells \& Co.

 glass.

importance of advertising.

解 rme that a hint to them la unnecessary; but to persons establishing a new manufacturer to work it : upou such a class, we would impress the impor nce of advertisting. The next thing to be consldered to the medium hrough whioh to do it.
In this matter, diacretion ts to be used at irst ; bat expertence will soon determine that papers or magazines having the largest circulation, among e clans of persons most likely to be interested in the artiole for asle, will toe kinda of machinery, and to the vendors of any new article in the fiser oan get as speedy returna as through the advertialng colnmna of the cientific americay.
We do not make these anggestions merely to increase our advertising atronage, but to direct persons how to increase their own bualneas. The Scifntific Amritican has a circulation of more than 42,000 coples per week, which is probably greater than the combined ctrculation of all the other papers of its kind pablished in the woria.

NEW BOOKS AND PUBLICATIONS.

The American Garden, a Monthly Ilustrated Journal devoted to Garden Art. Edited by James Hogg. Terms \$2 a year.
ton street.
This excellent joarnal la now in lta third year, and the fesue for Septem. er, 1874, commence日 a sem serles. It has been placed under the editorsblp Mr. Jamesioge, wise ed circulation for tbls periodical, under the new management.
tosville, Oil City, and Franklin Directory for 1874.

Yecrut ghurticau aud fovetigu ¥atents.

mproved Constraction of the Aiter Halls of Yachts, etc. Empan E. Midaleton, Southampton, England.-This invention has for itp
bject to increase the capacity of vessels for carrying cargo or ballast, to enable them to carry more canvas to improve thelr salling qualitles, and to make them asafer in rough weather and in heary galesof wind. The invenIon consinta in the arrangement of the atern post of yachta and other ves. an with its lower end inclined to the rearmard at an angle of 45°, more o

Improved Saw Gummer
Jason W. Mixter, Templeton, Mass.-As gumming machines have been eretofore constructed, the carrlage ways are cast on the machine, so that
he carriage and cutter cannot be adjuated to alter the directlon of the cut and the catter belog placed apon the end of the ahaft, but one journal bearingand but one crank can be used. In the present device, by attaching the carriage and catter shaft and feed screw to an ad justable "way" frame, the operator is enabled to vary the direction of the catter so as to cut more toward the center of the saw, if desired. The cutter ahaft is eapported by for operating the macblne, which may be applied to elther atralght or clr. cular saws, and withont takiog the latter from their arbors. The catter is made detachable, ao that it mas be changed to adapt it to the dlamete or tee of the sam.

