proceedings of the american absociation for

 THE ADVANOEMENT OF BCIENCE.We coninue below our abstracts of the papers read before the Hartford convention. Professor E. S. Morse, in a paper on the ascending process of the astragalus in birds, ex pressed the beliof that the above process represented the in termedium of reptiles. This view he has confirmed by stadying the embryo of the common tern.
Professor Wheildon,on the lobster,said that the process of shedding the shell is generally known, excepting perhap that relating to the large claws. The body opens in a straight line in the length of the back, while the tail, legs, and claws are drawn out from the shell, leaving it entire, as it has been called, an articalated skelet \mathbf{n} which is thrown off periodically. It is found that in that portion of the claw near the body a part of the shell decays and falls out, mak ing sufficient room for the passage of theclaw. The portion of shell indicated is that small,smooth part that lies flat upon the body. The lines indicating this portion are to be distinctly seen in all lobsters which are approaching the period of shedding the shell,and these become gradually more dis tinct until that partbecomes semit.transparent and finally de cay.
In a paper on the significance of classes among vertebrates, Professor Gill considered that no groups of animals should be combized in classes which are more widely differentiated morphologically from each other than are the birds and mammals. The differences between the extremes of the groap of fishes are immeasurably greater than are those between mammals and birds, and still more than those between birds mammals and birds, and still more than those between birds Gshes, we should have eight,combined in an entirely different manner, namely: (1) Mammals, (2) birds, (3) reptiles, (4) batrachiana, (5) fishes, (6) elasmobranchiates, (7) marsapo branchiates, and (8) leptotardians.

Professor B. A. Gould, referring to

the numbers and distribution of the fixed stars, tater that, if we assume, according to hypothesis, an equa number of stars in each hemisphere, there are altogether not less than 15,300 stars as bright as the seventh magnitude. But since the count indicates an excess of bright stars in the northern sky, there may be a thousand more, as given by the formala. The numbers of the Durchmusterung imply the sistence of over 200,000 stars as brightas the ninth magni tades, though the magnitudes of faint stars in that work seem given on the average a little too bright. The two classes of considerations-the approxmate method fur
nished by the hypothesis of an equable distribution nished by the hypothesis of an equable distribution of stars and the existence of a well marked zone of as the equator is to the ecliptic, may assist in determining he position of our sun with reference to its own cluster, that of the cluster itself, and the scale of distances between ts constituent stars.
Mr. J. H. Kuppart read an interesting paper on the EXTINCT HOGS OF OHIO,
in which he alluded to certain fossil remains of animals of the Iuidae family, found in digging sand in the city of Columbus, O. The skeletons have a close resemblance to hat of theSouth American peccany, and are the first complate ones ever found. There may be sufficient differences o constitute a new species, the most striking pecaliarities bout the head of these fossils being the small incisors, the omewhat longer canines, the thinner and more compressed cranium, and the eversion of the lower and posterior angles of the lower jaw.

he disintegration of rocks

was the subject of an address by Professor T. Henry Hunt. The change of the rocks in question is a chemical one, which most obvious in the case of crystaline rocks; the felspa loses its alkalies and part of its silver, being changed into clay, and the hornblende its lime and magnesia, retaining its ron and peroxide. From this results a softening and decay 0 greater or less depths of the strata, so that, while the bed still retain their arrangement, and are seen to be traversed by veins of quartz and motallic ores, the strata are often so mach changed, to depths of one handred feet or more from the surface, as to be readily removed by the action of the water. This phenomenon is well seen in the crystaline rocks of the Blue Ridge, and not less remarkably in those of Brazil.
According to the speaker, it has been a subserial process, which has been at work during past ages, when the compo sition of the atmosphere and the climatic conditions differed rom those of today, and when carbonic acid, aided by warmth and moisture, abounded. He connected it with that slow purification of the atmosphere which from very early times has been going on. He thought it probable that the process of decay had gone on with decreasing energy to or own times, though it is now insignificant in its action, owing to changed atmospheric conditions.
the population of the united states
was discussed by Professor E. B. Elliott, in a curious paper in which he described calculations made by taking the differ onces between the figares as given by the various census, and making suitable interpolations for intervening years. Taking the average of thesedifferences, we find that, had here been no war, the population in 1870 would have been $41,718,000$ instead of $35,558,000$, showing a loss of fully $3,000,000$ people. In 1880 , the popalation would be $54,017,000$ but making the same allowance, he estimates now that it will be bat $50,858,000$. The popalation lor the present year 1874, is placed at $43,167,000$. To statisticians, the table, given far every year from 1780 to 1880 , is a very interesting
one, as is also a tabular statement giving expenditures of the government per capita of the population in periods of our yearseach. Except during war times, there has been reat uniformity, rarely exceeding $\$ 2$ per head per annum. The highest was during Lincoln's first term, averaging \$16.76 gold, and the lowest during Jackson's first term, $\$ 1.20^{\circ} 5$. The present rate is estimated at $\$ 1.69$ gold, deducting war in uence, or $\$ 637$ counting the same.
Professor W. A. Rogers described the Harvard College system of
sending time by telegraph.
The method consists simply in inserting, int the circuit passing through the clock, an ordinary telegraphic sounder. at every second beat of the pendulum, the circuit is broken nd a click of the magnet is heard. By a simple device the lock is made to omit every fifty-eighth second. When one, herefore, wishes to ascertain the error of his time piece, he has only to watch for the omitted break, and the first click hereafter is the exact beginning of a minute as shown by the time clock at the observatory. At every even five inutes, there is an omission of about 25 seconds preceding The same speaker, in a paper on the

PROPER MOTION OF $\boldsymbol{\varepsilon}$ DRACONIS

n right ascension, stated that he found evidence of an iregular proper motion, the star appearing to completeits revo ution in from 40 to 60 years. He also pointed out that no predictions of the plane of this star have been verified by ubsequent observations.
Professor Hough described an interesting apparatus for

PRINTING THE DIRECTION OF THE WIND,

well as the velocity hourly.

The apparatus for velocity consists of a movement forgiving motion to a set of type wheels, which is unlocked for each tenth of a mile of wind. Four brass type arms, on which are engraved the letters N. S. E. W., are placed on the prolongation of the shaft, carrying the type wheels for velocity; and these arms, by means of connecting rods, are ttached to the armatures of four electro-magnets. Teleraph wires communicating with the vane shaft and magnets cause one or more of the letters to be elevated for printing whenever the battery current is completed.
By means of a half second pendulum clock, an impression or direction and velocity is made hourly on a slip of paper wo inches wide and eightinches in length, as follows:

Tlme	Direction	Veloctry	Tlme	Direction	Velocity
0	N. E.	342	1	N.	360
2	N. E.	372	3	N. E.	885

The first column is the time, the second the direction, and the third the velocity in miles.
So far as Professor Hough is informed, this is the first and only mechanism for printing the direction and velocity. The total distance traveled by the wind in a day, month, or year is read from the sheet without computation; consequently, he device is eminently labor-saving.
Professor Gill, on the relations of certain genera of canidas, said that the division, into two groups of wolves and red and ray foxes, does not express the true relation of the animals. He cited certain characteristics to prove that all should be united in one group.
Professor Le Conte read a paper on the
REPLACEMENT OF INJURIOUS INSECTS,
and mentioned the replacement of one caterpillar which had become a great nuisance in Philadelphia by another, equally as troablesome. No sooner had the sparrows exterminated the first than the second variety appeared. Its family is orygia leucostigma. The birds will not eat it. Having attained its full growth on the tree, it crawls quietly to a
neighboring wall or fence, and, fixing its cocoon, undergoes aeighboring wall or fence, and, fixing its cocoon, undergoes ransformation. The remedy against the annoyance is, therefore, very simple. Direct the servants, with stiff brushes, to weep the cocoons from the walls and fences, and place around the trees to be protected rings of tin plate inclined at an angle. This will give the trees immunity, because the nsects are not provided with wings for flight.
Professor C. H. Hitchcock discassed the
PHYSICAL HISTORY OF NEW HAMPSHIRE,
givinga sketch of its growth from the earliest times, when an archipelago existed there, up to the present. The first period was characterized by the formation of porphyritic granite, then came a sories of gneisses composing the Mount Washington range of mountains. The Labrador period the acts of res compoed , nd then the Huronian formation, of very great thickness, ucceeded. The next period was the most extensive, the ocks consisting of mica schist; and the last period shows he area submerged by the ocean in the Helderberg period. It occupied the Connecticut valley to the depth of 1,000 feet. In a paper on the pottery of the mound builders, Profebsur Cox drew the conclusion that the art of manufacturing concrete or artificial stone did not originate solely with the ncient Romans, but that it
President Barnard delivered a briefaddress on the

EETRIC SYSTEM,

which he said that it will become the sole system in use by civilized nations before the year 1900. He added that the Metrological Society was urging the change in respect to uniformity-a change of only three tenths of one cent apon the dollar-upon our government. That Society will also urge a metrical international coinage; not for immediate use
within our territory, but for convenience in commercial exwithin our territory, but for convenience in commercial ex-
changes and to facilitate travelers in all parts of the world.

Whether such a coinage would eventually take the place of our usual carrency might be safely left to the fature.
Professor Elliot, in another paper on the United States government, said that its present borrowing power is 20 per cent superior to that of France, the rates paid by the former being 5 per cent, and those of the latter 6 per cent per annum. Professor Wm. H. Brewer,on the
distribution of american woodlands,
said that the flora of the United States contained over 800 trees. Of these trees about 250 species are somewheres tolerably abundant, about 120 species grow to a tolerably large size, 20 attain a hight of 100 feet, 12 a hight sometimes of over 200, and a few-perhaps 5 or 6 -a hight of 300 New England contains 80 or 85 species, of which 50 mw reach a hight of 50 feet. The Middle States have about 190 to 105 species of trees, 65 to 67 of which sometimes reach 50 feet in hight. Here were originally very heavy forerts. There are still large areas heavily timbered, but the tinber for all purposes is unquestionably rapidly diminishing and there is no compensating influence going on for increase. In the southeastern region-that is, extending from Virginia and Florida-we have ab at 130 species. In each case these form the conspicuous elements of the landscape. Seventy-five attain a hight of 50 feet or more, sad about a dozen species a hight of 100 feet. The northwestern region, from Ohio to Minnesota, and north of the Ohio River, is re presented by about 105 to 110 species, 68 or 70 of which may reach a hight of 50 feet. That is the district furnishing at present the largest production of sawn lamber within the United States. Michigan alone furnishei in 1870, of the $12,750,000$ of M. feet, 2.250,000: Wisconsin furnished over $1,000,000$-the two States thus producing more than one fourth of the whole yield returned in that year. The south. western region, extending from Kentacky to Texas and the Gulf, has about 112 to 118 species, 69 or 65 of which attain a hight of 50 feet, which the authoralso analyzed. West of these last two districts, this treelers belt, extending entirely across the continent from the Galf of Mexico to the Arctic Ocean, is 350 miles wide in its narrowest part, between latitude 36° and 37°, and 800 miles wide on our northern border. The Rocky Mountain region consists of from 28 to 30 species, but a vastly smaller number making ap the tim. ber region. With one single exception, all of the trees within the United States which attain a hight of 200 feet are found in \$ashington Territory and Oregon. The forests are entirely of cone-bearing trees and the number of species is large, the number of timber trees being very large and their size and value also being great. In Washington Territory, official reports state that the land will produce from 25,000 to 300,000 feet per acre, and that there are vast tracts that would cover the entire surface with cord wood 10 feet in hight."
Mr. Porter C. Bliss read two papers, one on a classification of the Indian languages of Mexico, and the other relating to marks of ancient civilization in that country.
Referring to the
REVERSION OF THOROUGHBRED ANIMALS,
Professor Brewer said that it is often claimed that, if the care of man be withdrawn, the improved breed will retrace the steps of its ancestry and revert to its original character. istics. For some years Professor Brewer has been investigating this subject by every possible means, and, finding no instances of the alleged "reversion" to be authenticated, he considers that the pernicious notion should be exposed and refuted.

Phosphor-Bronze Axle Bearings.

When two bodies are rabbed against each other (nnder equa) pressure, and at equal velocity), the harder they are, the greator is the amount of heat generated; or on the other hand, the greater the difference of hardness between the two bodies rubbed against eachother, the less is theheat produced. In the latter case the harder body is more heated than the softer, if of equal size. If, for instance, glass is. rubbed against cork, the heating is as 7 to 1 (the copper being heated seven times hotter than the cork); if copper is rabbed against cork, as 4 to 1
The ideal of a bearing which would wear little would be one made of the same material as theaxle revolving in it, if there had not to be taken into consideration the wearing of the axle itself and the heating. A bearing made of the softest material, in which an arle of the hardest material revolves, would be the ideal of a bearing which does not heat, and does not cut the axle, if the wear of the bearing, and deformation by presare, etc., had not to be takeninto consideration.
In practice the best mediam must be found which

1. Does not cat the axle.
2. Wears (in itself) as little as possible, and consequently quires a minimum of labrication.
3. Does not heat, even in case lubrication should be neg ected.
4. Is capable of resisting any possible shock without changing its form, or breaking.
Some railway companies desire to use few bearings, at the expense of many axles and mach lubricant-(the consumption of lubricant is always in proportion to the wear of the axle on the bearing)-and therefore use bearings containing from 17 to 20 per cont of tin and 83 to 80 per cent of copper, which alloy, andoubtedly, is too hard, and must attack the axle, as has been shown on many railways. Other railway companies use alloys of lead with more or less antimony, which certainly do not attack the axles, but require mach labricant and wear out very fast. A great number of railway companies in Germanytakerefuge in the so-called white metal, which,
certainly is the most expensive. The alloys of copper, anti mony, and tin, or so called white metal,are bad makeshifte, a well as the so called lead composition bearings of lead and antimony; for it is impossible to give these alloys a hardnese approaching that of the revolving axle without rendering them brittle. If an alloy is used sufficiently hard to avoid great wear, these bearings will heat much and are very brittle. On most of the English, Belgian, German, French, and par ticularly on American railroads, white metal, and especially lead composition, bearinge are little used, and this with good reason; for what would become, for instance, of a white met l begring on an American railroad, where the bearings ar subjected not only to heavy loads, but where they have to ravel thousands of miles on rails belonging to other com panies, and therefore are not much looked after.
Gun metal bearings, alloys of tin and copper, are not often homogeneous, with exception of the alloy of 17 to 18 per cent of copper, which is the most trustworthy alloy of tin and cop per. In alloye containing a lower percentage of tin, the latter eegregates in the form of tin spots, when the alloy cool lowly. All other compositions in use for bearings, such 812 to 17 per cent of tin and 88 to 83 per cent of copper do not make homogeneous bsarings, unless they are cast in chill molde, which in practice is impossible. This hetero geneity of gun metal bearings is dangerous, as it produces gripping, and thereby a rapid wear. This specific quality of gan metal bearings (to grip) is theoretically easily explained In cooling, the rofter metal (composed of from 7 to 10 pe cent of tin and 93 to 90 per cent of copper), being the les usible, sets first, forming the skeleton of the bearing; later the very hard and brittle alloy, containing 17 to 18 per cent of tin and 83 to 82 per cent of copper, eets and fills the pores of the softer skeleton. The particles of the harder alloy are asily torn away by the axle if the bearing is not sufficiently lubricated, and these tear the skeleton composed of the softer alloy; this I have frequently observed at rolling mills where the bearings were not sufficiently lubricated, and where par ticles in the form of small flakes peel off.
A good bearing which answers all purposes must not be homogeneous, but must consist of a strong and tough akeleton the hardness of which nearly equals that of the axle, in order to resist shocks without deformation, and the pores of thi skeleton must be filled with the soft metal or alloy
The nearer the hardness of the skelton approaches the hard aess of the axle, the better the bearing will resist the pres sureor shocks; and the softer the metal filling the pores, the better the bearing is in every respect. Such bearinge are now made by melting two or more alloys of different hardnessand usibility together, in such proportions that necersarily a se paration into two alloys of definite composition takee place in cooling
Phosphor-bronze bearings consist of a uniform skeleton of very tough phosphor brooze, the hardness of which may be easily regulated to equal the hardness of the axle, while th pores arefilled with a soft alloy of lead and tin
Such a phosphor bronze bearing may therefore be considered s having its wearing surface composed of a great number of mall bearings of very soft metal encased in the tough and tronq m etal which equals the hardness of the axle; on the planed bearing surface this molecular disposition cannot be detected by the naked eye, but, if examined with a magnify ng glass, the trath of the above will at once be seen. An other practical proof can be given by exposing such bearing oa dull red heat, when the soft alloy will sweat out, and the hard, spongy, skeleton-like mass remains.
Is this consist the great advantages of phosphor-bronz bearings, which is proved wherever tested ; for while the axl partly rans on a very soft metal and thus obviates heating ven if not sufficiently lubricated, the harder part of the bear ing, its ekeleton, does not allow of wear taking place; and a the hardness is arranged to equal the hardness of the axle, w

Use of Iron ingtead of Lead Shot in the Ringing or Bottles.
Lead shot, where so used, often leaves carbonate of lead n the internal surface, and this is apt to be dissolved in the wine or other liquids afterward introduced, with poisonous cesults ; and particles of theshot aresometimes inadvertently eft in the bottle. M. Fordos states that clippings of iron wire are a better means of rinsing. They are easily had, and the cleaning is rapid and complete. The iron is attacted by the oxygen of the air, but the ferraginous compound does not attach to the sides of the bottle, and is easily removed in wash ng. Besides, a little oxidized iron is notidjurious to health M. Fordon further found that the slight traces of iron left had oo apparent effect on the color of red wines; it had on white wines but very little; and he thinks it might be better to ues clippings of tin for the latter.

Fast Steaming.

One of the finest and fastest steamboats on the Hudson iver is the Mary Powell. Recently she made the distanc rom New York to Piermont, 28 miles, in one hour, while the actual running time to Poughkeepsie, $74 \frac{1}{2}$ miles, was 3 h 19 m ., or at the average rate of $22 \frac{1}{3}$ miles per hour. Boile pressure, 37 lbs. The Powell is fitted with the ordinary sin gle vertical cylinder, walking beam engine.

Parastres.-It is common to note that each apecies o animal has its own parasites, which can exist only apon creatures which have more or less kinship with their host Thus the ascarix mystax, which torments the domestic cat, is found in all species of felis, while the for, so closely resem bling the woll or the dog, is never troabled with the tenic senata, common in the last mentioned animal.

TEE VIBRATIONS OF 8OLIDS OPTICALLY BTUDIED. Profdesor Ogden N. Rood, of Columbia College, commun cates to the American Journal of science and Arts a now method of ascertaining whether two tuning forks, for ex ample, are in unison, or to determine the difference in the number of vibrations executed by them in a second. A hort piece of fine steel wire is attached to each of the forks, and the latter are supported as shown in Fig. 1. The forks

Fig. 1.
are now set in vibration, and the intersection of the wire rewed against a bright background with the aid of a smal elescope. When the difference in phase is 0 , an appear nce like Fig. 2 is produced, which changes to Fig. 3 whe he difference in phase has increased to one half a complete ibration. If the forks differ by an interval of an octave, an almost equally distinct figure will be produced, as is seen in Figs. 4 and 5, which represent the characteristic appearance in this case. Somowhat less distinct and more complicated gares are given by the quint, the duodecimo, and the doubl ctave.
It is easy with this mothod to bring a vibrating string anto unison with a given tuning fork, or to adjust it so tha he interval shall be a quint, octave, twelfth,or double octave bove or below. It is also easy to ascertain the number of ibrations made by a string in a given case, by the aid of a ridge and a properly selected fork making a known num ber of vibrations, the string being shortened till it furnishes one of the above mentioned figures, and executes hence a nown number of vibrations, after which the number of vi brations made by its whole length can readily be calculated by a well known law.
To bring two cords into unison, or to produce one of the bove mentioned intervals, a cork cat at an angle of 45° i placed bytween the strings on themonochord, and, supported this angle, is a small piece of looking glass of good quality. The reflected and vertical image of the farthe hen seen in the telescope crossed by the horizontal image of the nearer string; and the mirror being tarned no as to eflect,at the same time, light from the sky, all the condition vere fulfiled.
Rode or bars, supported at one extremity or at two nodes nd provided with fine terminal wires, can by this method e brought into unison, or have one of the above mentioned ntervals established between them. A preferable mode owever, is to study them in connection with the monochor nd a tuning fork. The entire string of the monochord is erst brought into unison with a tuning fork, or some definite interval established; the cord and rod or bar are then combined at right angles, and the bridge moved till unison as again effected, when it is possible to calculate the num er of vibrations actually executed by the bar or plate. I the fine wire is attached to one side of a bell, the number of ibrations executed by the bell can readily be obtained with he monochord in the manner already indicated.
Vibrating membranes can readily be studied in this way by attaching to them a small piece of fine wire bent with wo right angles, and using them in connection with the monochord or a tuning fork
The more important of these figures may be easily ren. dered visible to a large audience. Wires about a milimeter hick are attached to two tuning forke placed in front of a argic lantern; an image is formed on the screen with the aid of a lens of about 0.315 inch focal length; the figares re then well ghown along with certain of their detaile not particularly mentioned in this article.

Great Exponitions.

A correspondent of the New York Tribune writes from Vienna that the loss of the Austrian government, in its out ays on the recent Great Exposition of 1873, was nine milons of dollars. We have heretofore chronicled the recen aspension of the series of annual World's Expositions, which were inaugarated by the Exhibition Commission in London, and intended to continue until 1876. The losees were so heavy that the Commission was obliged to discontinue them. In view of facts like these, the American people may congratulate themselves that Congress, at its ast session, refused to aathorize the squandering of public money on the Centennial Exhibition at Philadelphia. The ruth is that this Grest Exposition business has "played out.' thas ceased to be an attraction for the masses, and is chiefuseful for the advertising parposes of enterprizing deal.
C. H. C. suggests that telegraph companies plant trees on which to hang their wires. In most sections of the counry, the tree first planted would cost but little more than a pole, and after two or three years in growth would be a per manent pole which not rot at the bottom or need resetting, and would be seldom struck by lightning. Having many times seen from three to a dozen poles, in a row, shivered by s charge of electricity running along the wires, the above question arose in my mind."

Pittobargh Manafacturers for 1873

Some weeks since, the Plttsburgh Dispatch of this city pablished a list of asles of houses in Pittsburgh doing a business of over $\$ 50,000$ a year. The list was very imper fect; but as it is so difficult to get statistics in Pittsburgh we have compiled from this list, which was copied from the assessor's list, the items relating to our iron, steel, copper and glass industries, believing that, imperfect as they are they will be of value. We do not give the totals of each in astry, as this would by no means give the volume of busi ness. We would also say that none of the Allegheny manu acturers are incladed in this
In the entire list there are but two houses outside of those connected with the industries given below that did a busi ess of over $\$ 1,000,000$. As will be seen, three houses in the iron or steel business did above this sum, namely: Jones \& Laughlins, J. Painter \& Sons, and Hussey, Wells \& Co.
 STEEL

IMPORTANCE OF ADVERTIBING.

 me that a hint to them fi unneoessary; but to persons eatablishing a new nanufacturer to work it : upou auch a class, we would impress the impor nce of advertisting. The next thing to be consldered to the medium through whith to do it.
In this matter, discretion ts to be used at Arst ; but experience will soon etermine that papers or magazines having the largest circulation, among the class of persons most likely to be interested in the article for sale, will在 an il kinds of machinery, and to the vendors of any new article in the echanical line, we belleve there is no other source from which the advercientific ambricak.
We do not make these anggestions merely to increase our advertising atronage, but to direct persons how to increase their own bualneas. The Scientific Amrition has a circulation of more than 42,000 coplos per week, which is probably greater than the combined ctrculation of all the other papers of its kind pablished in the woria.

NEW BOOKS AND PUBLICATIONS.

The american Garden, a Monthly Ilustrated Journal devoted to Garden Art. Edited by James Hogg. Terms
$\$ 2$ a year. Brooklyn, N. Y.: Beach, Son, \& Co., 76 Fal $\$ 2$ a year.
ton street.
This excellent journal la now in its third year, and the lesue for Septemer, 1874, commence日 a sem serles. It has been placed under the editorsblp Mr. James Hogg, whose renown as a gardener and as a writer on ded circuiation for tbls periodical, under the new management.

Ustille, Oil City, and Franklin Directory for 1874.
Compiled by J. H. Lant, Titusiile

zeceut gumtricau aud fortigu zateuts.

mproved Constraction of the Aiter Halls of Yachts, etc. Empan E. Midaleton, Southampton, England.-This invention has for itp
bject to increase the capacity of vessels for carrying cargo or ballast, to enable them to carry more canvas to improve thelr salling qualitles, and to make them asafer in rough weather and in heavy galesof wind. The invention consinta in the arrangement of the atern post of yachta and other ves. acha with its lower end inclined to the rearmard at an angle of 45°, more o Improved Saw Gammer
Jason W. Mixter, Templeton, Mass.-A an gamming machines have been the carriage and catter cannot be ad justed to alter the directlon of the cut ; and the catter belng placed apon the end of the shaft, but one journal bearingand but one crank can be used. In the present device, by attaching he carriage and cutter shaft and feed screw to an ad justaple "way" frame, the operator is enabled to vary the direction of the cutter so as to cut more toward the center of the saw, if desired. The cutter ahaft is aupported by for operating the macblne, which may be applied to elther atralght or clr. cular saws, and withont taking the latter from their arbors. The catter is made detachable, 10 that it may bo changed to adapt it to the damete or
alce of the saw. ee of the sam.

