Sriontifir Amerian.

MUNN \& CO., Editors and Proprietors. published weerly at
NO. 37 PARK ROW, NEW YORK.
o. D. MUNN. A.E. BEACH.

One copy, six months
Club $_{\text {ristr }}\left\{\begin{array}{l}\text { Ten copieg, one year, each } 82 \\ \text { Over ten coniee, same rate e each }\end{array}\right.$

\$3 00

vOLUME XXX, No. 9. [New Series.] Twenty-ninth Year
NEW YORK, SATURDAY, FEBRUARY 28, 1874.

patent monopolies in congress.
Another of the overgrown monopolies, which not only oppress the people but retard the progress of industry in this country, is now beiore Congress attempting to induce that body to give it another lease of life. Some forty years ago, an American residing in England, invented a machine for forming felt hat bodies, which he subsequently brought to the United States for the purpose of patenting. Owing to an informality, his application was rejected; but some years afterwards, the right was granted to Mr. H. A. Wells who presented the same machine, modified by one or two minor changes. Since 1846, the association owning this patent have held a complete monopoly of the business, and,
by refusing to license others to use the machine (except a few whom they bought off to prevent opposition to their last extension), they force all the manufacturers of the country to send their fur to the ring factories to be manufactured at ring prices. The actual cost of forming a hat body is but two cents, and the charge is from six to twenty cents, showing the enormous profit of from two hundred and over yearly produced in the United States. The actual loss to the hat makers over what the cost would be, if allowed to manufacture their own hat bodies, is estimated at over 42
per cent, and against this the trade can do nothing. If any per cent, and against this the trade can do nothing. If any
dealer complains, the ring refuse to make his hats, and his business is ruined. Severai years ago, Wells died, and since then, for the benefit of his "poor" widow, who has only made $\$ 111,000$ out of the job thus far, two extensions were granted. Now, the ring comes before Congress again and asks for seven years louger, making thirty-five years in all in which to carry on their monopoly, and this in the face of the fact that the original form of machine patented by Wells, is not used and has not been for the past twenty five years, but simply serves as a ground for litigation and the securing of damages for infringements. The hatters are resisting the attempt with all their influence, and they assert. that, with this oppressive tax abolished, they could not only produce more goods, and regain their lost forengn trade, but sell cheaper,and give their hands employment for the whole instead, as is now the case, of only two thirds of the year.
These Wells patents, in common with those held by the sewing machine combination and the Woodbury plane ring, are infamous taxes on the people, and as such the coun
try suffers for want of their abolition. We do not chink the fault lies in our patent system, for the principles on which our laws are based are primarily the encouragement of the useful arts and the dissemination of knowledge concerning the same throughout the coumunity. To foster their pro duction upon the ground of expediency, and not of justice limited monopolites are granted to the original and tirst dis coverer, which,in accordance with the value of his invention may yield him an ample remuneration for his thought and labor. Now if the inventor of a valuable article or process fails within a certain period to gain a just reward, then he may with justice be granted longer time; but if,on the other hand, he, or those representing him, succeed in obtaining a fair and adequate raturn during the lifetime of the patent then there is clearly no reason for continuing the monopoly Mr. Sayler, of Indiana, has recently introduced a bill in the House of Representatives, the object of which is the suppres sion of the abuses we have pointed out, but the means taken are not such as will secure the desired result. It is provide that any article made under a single patent may be used, etc. by any one on payment of a royalty of 10 per cent on the
market value, and that the user shall secure the patentee by market value, and that the user shall secure the patentee by
a $\$ 10,000$ bond, filed in the Patent Office. The royalty on a $\$ 10,000$ bond, filed in the Patent Olfice. The royalty on
patents for improvements, or on inventions covered by tw
or more patents, is to be fixed by the courts, and the same provision applies to copyrights. The trouble with this meas ure is that it strikes both ways; while benefiting the buyer it injures the seller. It reduces the profits, perhaps, of the big corporations, but in like manner those of the smaller in
ventord whom it should protect. It puts into the hand ventord whom it should protect. It puts into the hands
of one man, the right to absorb the labor of another, carried on through years and at great expense, into a slightly improved device, giving the former individual all the profits while the real worker must be content with a ten per cent
royaity. Finally, apart from the crudity and ambiguity of its provisions (foron ting equivalent varying with locality, season, etc., to be estimated!), the law is open to the same objections as those re lating to usury, as it arbitrarily restricts an individual's right to his personal property, and this we believe to be contrary to public policy, unless the need be imminent, clear and apparent, as in event of war.
We might urge otherobjections to the act-which we trust will not pass-but we dismiss it for the present to consider that which we believe to be the only true remedy to the exist ing diticulties. Mr. Sayler, in hisargument, brings forward a mass of suggestive statistics; the india rubber industry pays 59 per cent on the capital employed, the cabinet organ busi. ness, 69 per cent, agricultural implements, 52 per cent. In seventeen months the capital invested in sewing machines doubles itself, besides paying all expenses; and finally comes he Wells hat manufacture, with the immense profits al ready pointed out. Now, with the full comprehension of these and other like cases: and there is no reason why a perfect understanding of the nature of these grinding incubi on the industries of this country should not be afforded us, for we, in common with other journals, have reverted to the his associates in Congress not strike directly at the roots of the evils and end them at once by refusing to extend their existences when the prescribed limits.are reached? This hat body outrage has been fastened on the country for the last even years by an innocent looking amendment tacked on he end of a bill on the last night of a session. Members failed to investigate, the measure passed, and the work was
done. In other instances which we might mention, wealth is unsparingly used, opposition is bought off, professional alent employed, "poor" widows brought out as figure eads, Congressmen coaxed and cajoled, if not bribed, and, in fact, every art and trick of the lobby practised to ensure the passage of a desired bill-the object of which is simply oimpose additional burden on the backs of the people
The remedy needed is an enactment which will do away with these Congressional extensions, which will fix certain limits to the lifetime of a patent, subject to the discretion of the proper officials in the Patent Office. These limits hould include one extension, to be acceded after careful investigation and for cause ; but beyond the period so granted, not a day should be allowed. During twenty one years, i the invention be of value, abundant remuneration can be be effectually abolished and rendered impossible.

slippery pavements.

It takes but a ehort stroll along Broadway, during winter time, to convince one that, excellent as the Belgian pavement is in many respects, it nevertheless becomes, when wel worn down by use and when covered with snow or ice or ven with thin mud, a prolific cause of falls and injury to the heavily burdened horses constantly traveling over it. We know of no statistics which will show the average yearly amount lost through animals thus becoming maimed; but udging from our own observation and from the isolated fact that,quite recently, in passing once up and down Brosd way on a single frosty day, we counted fifteen falls and four orses left by the roadside to die, it may be imagined that he ag gregate must reach a considerable figare. The street and hence doubly perilous for the to pedestrians in crossing, and hence doubly perilous for the horses from the insecure
footing of their metal shoes. It would seem that the wooden ooting of their metal shoes. It would seem that the wooden reat advantages in point of security over roads of stone but experience has so proved the unsuitability of the former to meet the requirements of a street constantly alive with a heavy traffic, that their use on such thoroughfares as Broadway is practically out of the question. The subject is one o which we think the attention of inventors might be pro fitably turned, and a substantial pavement, combining the durability of stone with the supporting capability of wood, produced. In this connection, we notice that an investiga ion has been conducted in England, by Mr. William Hay wood, engineer and surveyor to the Commissioners of Sewors of the city of London, which mainly consisted in obser vations as to the number of accidents befalling horses on asphalt, wood, and granite pavements. The investigations extended over fifty working days, and were principally made during the rainy weather of apring. The granite was found o be most slippery, the asphalt next so, and the wood the east. Considered in respect to moisture, asphalt was most
slippery when merely damp, and safest when dry; granite most slippery when dry, and safest when wet; wood most slippery when damp and safest when dry. Wood, on the whole, is less slippery than either asphalt or granite in a marked degree, it being only inferior to granite when the pavements were wet, and the difference then between the wood and the granite being considerable. Of the accidente most obstructive to traffic, as well as most injurious to horses, asphalt had the greatest proportion, granite next and wood least

HERSCHEL, TYNDALL, AND DRAPER ON THE SUN BAY

 Studying the solar spectrum, about the beginning of the present century, the elder Herschel passed a sensitive thermometer through the successive colors and observed that the greatest heating effect was not at all coincident with the brightest illumination. At the violet end of the spectrum, the heat was scarcely apparent. As thethermometer passed toward the red, the temperature slowly increased, the maximum appearing sometimes in the red, sometimes at a distance beyond the red, where no rays were visible.The inference which he drew from these observations was that the heating rays were separate and distinct from the luminous rays and of a lower refrangibility. By the use of photographic papers, it was subsequently ascertained that the chemical action of the sun ray appeared to be greater toward the violet end of the spectrum, the maximum pow. er apparently residing in the violet or ultra-violet radiations. Thus, as the rays of high refrangibility diminished in bril. liancy, they seemed to increase in chemical power, much as the rays of low refrangibility increased in heaing power with their lessened brightness. Hence arose the belief, which the scientific world has generally entertained of late years, that the solar radiation was triple in constitution, and so likewise the emanations from other self-luminous bodies. A favorite illustration of this view has been a cable woven of three strands, which were regarded as being separated by the prism into three independent yet slightly overlapping spectra: a visible spectrum culminating in the yellow; a heat spectrum at the red end and beyond the red; and a chemical spectrum chiefly in and beyond the violet.

In the spectrum produced by a prism of Hint glass and prisms of highly refracting gems, the greatest heat was found below the red; with a crown glass prism it was associated with the pale red; with a prism filled with alcohol it appeared in the orange; while a prism of water gathered the heat chiefly in the yellow. Yet in spite of the evident connection which these facts would seem to point out between the position of the heat spectrum, so called, and the nature of the prism employed, no attention was paid to the suggestion, made by Dr. Draper as early as 1844, that the phenom ena observed must be due not to any inherent property of the sun ray but to the prism, which crowded together the rays of the red end of the spectrum and greatly dispersed those of the blue and violet portion. In other words, the red end of the spectrum is warmest as the earth is warmest at the equator, not because the heat rays tend chiefly to that region, but because a greater number of solar emanations fall upon a given area there.
Perhaps the person who has been most influential in giving currency to Herschel's error is Professor Tyndall. In the eighth of his classic lectures on "Heat, considered as a Mode of Motion," he illustrates the subject with characteristic force and felicity. Using the thermo-electric apparatus devised by Melloni, he brings to bear upon the face of the pile the spectrum of electric light passed through a prism of bisulphide of carbon, and says: "I turn the handle and the slit gradually approaches the violet end of the spectrum; the violet light now falls upon the slit, but the needle does not move sensibly. I paas on to the indigo, the needle is still quiescent; the blue also shows no action. I pass on to the green, the needle barely stirs; now the yellow falls upon the slit; the motion of the needle is now, perhaps, for the first time visible to you; but the deflection is small, though now expose the pile to the most luminous part of the spectrum. I will now pass on to the orange, which is less luminous than the yellow, but you observe, though the light diminishes, the heat increases; the needle moves still farther. I pass on to the red, which is still less luminous than th:e orange, and you see that I here obtain the greatest thermal power exhibited by any of the visible portions of the spectrum. The appearance, however, of this burning red might lead you to suppose it natural for such a color to be hotter than any of the others. But now pay artention. I will cause my slit to pass entirely out of the spectrum, quite beyond the extreme red. Look to the galvanometer; the needle goes promptly up to the stops. So that we have here a heat spectrum which we cannot see, and whose chermal power is far greater than that of any visible part of the spectrum. In fact, the electric light with which we deal emits an infinity of rays which are converged by our lens, refracted by our prism, which form the prolongation of our spectrum, but which are utterly incompetent to excite the optic nerve to vision. It is the same with the sun
Subsequently Professor Tyndall, by means of a prism of rock salt, determined a heat curve in the region of the dark rays below the red, which, ss he expresses it, "suddenly shoots upwards in a steep and massive peak, a kind of Matterhorn of heat, which quite dwarfs by its magnitude the portion of the diagram which represented the visible radiation." The same teaching was represented in the American lectures, the "Matterhorn" diagram occupying page 148 of Appleton's edition of the lectures. These lectures, it will be remembered, were delivered many times among us during the winter of 1872.3
In the month of August, 1872, Dr. Draper published, in the leading scientific periodical of Great Britain, a memoir a digest of which was shortly after given in the Scientific American) on the distribution of heat in the spectrum, in which he not only repeated his belief that the method em. ployed by Herschel and subsequent investigators must necessarily lead to incorrect results. but furnished an overwhelming array of observations disproving them. As for Professor Tyndall's estimate of the proportions of heat on the two sides of the "extreme red," he held that "they were valueless for lack of care in determining the point of divis. valueless for lack of care in determining the point of divis-
ion." The red light shades off gradually, so that it is almost
infossible to tell where it really comes to an end. "A lin-
e? thermopile, such as is commonly used, is liable under $\%$: thermopile, such as is commonly used, is liable under in its indications counts in a double manner; it not only diminishes the value of one spectrum, but adds that diminution to the value of the cther." Thus an error of only two millimeters in estimating the position of the extreme red would have taken so much from the invisible and added it to the visible that the two would be brought to an equality; then the slightest turn of the screw, that carried the pile toward the dark space, would have given a preponderance to the visible. "It is obvious, therefore, that there cannot be certainty in such measures unless fixed lines are resorted to as standard points.
This done, the destruction of Tyndall's position is com plete. The optical center of the spectrum is the ray which, according to Angstrom's determinations, has the wav length of 5,768 . Now if the rays on two sides of this line be brought to seperate foci and their thermal effects care fully measured, it is obvious that any excess of heat at either end of the spectrum will be speedily detected. By an in genious apfaratus described at length in the memoir, Dr.)raper did so compare the heating power of all the less reragible rays with that of all the more refrangible, using prisms of various material, and making some hundreds of observations on an unclouded sun. Taking 100 as the stand, ard for the heating power of the entire spectrum, the mean four sets of measures, with a prism of rock salt, gave 53 for the heat of the more refrangible region, and 47 for the less refrangible. Another series of three sets gave for the two regions 51 against 49. With a prism of flint glass, two series, one of ten seta of measures and the other of eight gave respectively 49 to 51 and 52 to 48 . Two series of the same number of experiments with a prism of bisulphide o carbon gave $5:$ to 48 , and 49 to 51 , respectively for the more refrungible and the less refrangible rays. With a quart prism, twenty-seven experiments gave 49 to 51 ; while an ther set of twelve gave 53 as the mean for the more refrangible and 47 for the less. These are given as fair example of results obtained by a multitude of experiments during sev eral months, including winter and summer. The heating powers of the two halves of the spectrum show such closs correspondence that we may safely follow Dr. Draper's lead and impute the differences to errors of experimentation.
The second memoir on chemical action of the spectrum published in December, 1872, proves even conclusively tha every part of the spectrum, no matter what its refrangibil ty may be, can produce chemical changes: and that the ' actinic curve," so-called, does not represent any peculiari ties of the spectrum, but simply the habitudes of certain compounds of silver. As a logical consequence, the supposed riple consticution of the sun ray must be dropped among the myriad other dead delusions that mark the onward course of Science, as the skulls of perished camels mark the course of a caravan. There is in the sun ray neither light nor hea nor chemical power, as such, but simply vibrations, which when stopped, may manifest themselves in one or other or all of these phases of phenomena according to the nature of the extinguishing substance. "The evolution of heat, the sensation of light, the production of chemical changes, ar merely effects, manifestations of the motions imparted to ponderable atoms
It was a matter of surprise to many that, during his lec tures here, Professor Tyndall did not so much as mentio these important researches, not even to question the just ness of Dr. Draper's conclusions. It is perhaps still more surprising that he has since as carefully refrained from pub licly discussing them, yet still continues to teach the old doctrine.
It would be asking too much, perhaps, to expect Professor Tyndall to reconsider his subject in the face of the numerous and imperative engagements, that had been made for him here, but surely time enough has since elapsed to allow him to do so. The omission of any reference to Dr. Draper's later work, even in a foot note in the edition of the lectures published by the Appletons, might be excused for the same reason. But what can we think, when the English reprint retains the old teachings without the suggestion of a doubt in regard to their correctness? To put it in the mildest form, places Professor Tyndall in a slightly equivocal position for one who boasts himself an unprejudiced seeker after truth for the truth's sake.
It is reported that, when his attention was called to Dr. Draper's researches, Professor Tyndall-repeating his favor ite Alpine figure-said that his investigations had raised such a Matterhorn of heat at the red end of the spectrum that it was impossible to get over it, short of a year at least I he year has passed; is there still a Matterhorn of pride to be surmounted:

WHIT WORTH STEEL.

Sir Joseph Whitworth has recently published a valuable work, in which he gives an exhaustive ac:ount of his method of casting and rifling ateel guns. It will be remembered hat, some time ago, we pablished an account of the remarka be performances of the nine pounder cannon of the abov inventor, and also referred to the crucial test caused by the explosion of $1 \frac{1}{2} \mathrm{lbs}$. of powder in a cylinder of fluid com pressed steel, in which no other opening was left save that of the vent. The cyliader was a copy of the breech of the ine pounder gun, and it was estimated that the strain woul he piece greater than if the shot were allowed to leave fired. Although all the gas escaped through the vent which was thereby enlarged from one to two tenths of an inch, no
alteration could be detected in the external or internal dimensions of the cylinder.
In explaining the nature of his steel, the author states hat it is impossible to cast a large gun of highly carbon jzed steel that can be reiied upon as perfectly sound. With a small amount of carbon in its composition, however, the metal becomes so ductile that it will elongate under pressure from 30 to 50 per cent before breaking, and then will not tly in pieces, but only bulge and tear. To obviate the efect of honeycombing in steel of this description, recourse was had to extreme pressure upon the metal while in a fluid state, equal in some cases to twenty tuns per square inch. As a measure of the quantity of air expelled by this process and the consequent improvement in density aud soundness, it is stated that, within five minutes after the application of press ure, the Huid column will be shortened by an inch and a half per foot of length; and drawing out and forging de. elopes,in a still higher degree, the strength of the material It is cast in hollow cylinders, for reasons connected with rapid cooling and the more complete exclusion of air, and is manufactured in thirteen qualities, ranging from a tensile strength of 40 tuns per square inch to one of 72 tuns, the ductility at the two extremes being respectively 33 and 14 per cent.
The invention is of the highest importance, not only in its pplication to weapons of war, but to the more useful imlements of peace. For steam boilers and railroad axles, it ould seem that steel of such extreme strength must be in aluable.

a paper and glass debate

A correspondent sends us a couple of interesting questions, which, he informs us, are to be the subject of a debate, re lating to the merits of paper and glass. The first is: " Pro. iding we had no paper, what other substances may be men toned that would take its place?" and the second "Provid ing we had no glass, what are its possible substitutes?" Of course the idea is to bring out, in the present connection, not aames of substances which may be advantageously used in. stead of the above named almost indispensable materials, but f such aa we probably would employ (and of many of which in fact our aucestors did avail themselves) did glass or paper cease to exist or become unattainable. The case is imaginary but leads to much instructive thought.
In lieu of glass, we can find materials suitable for window panes, for drinking vessels, aud in some cases even superior to it for small lensys, but nothing that combines all its properties, or is capable of its ready manipulation into desired forms. For windows, perhaps the best substance other than glass is :imple mica, which may be readily split from the rock in thin translucent sheets It is now used for doors of toves, to protect paper shades around gas lights, and in ther common employments. The Romans filled their win dows with lupis specultris, a fossil of the class of mica, which is readily cloven into thin smooth lamine. The same sub. stance is found in the Island of Cyprus, in masses a foot in breadth and three inches in thicinness. It is used for the construction of hot houses, and for the protection of delicate plants. Cp to the present day it is also much employed in Russia, in place of glass for windows.
Horn cut into sheets is still used for lanterns, and for drinking vessels, and, if made sufficiently thin, would anwer for illuminating purpoaes. Oiled linen or other fabric, similar to that now used by draftsmen for tracing, would
also be available, and so would very delicate sheets of india also be available, and so would very delicate sheets of india
rubber. Skins, prepared like parchment or vellum, would rubber. Skins, prepared like parchment or vellum, would might be treated with bichromate of potash so as to be in soluble, and if it would stand the weather would give quite clear window lights. Collodion films, we should imagine, i made thick enouch, could also be used for the purpose, as lso animal membrane.
In addition of mica, the mineral kingdom offers a variety of substances. There is the Brazilian pebble, a species of quartz, now used in an immense extent for spectacles and other lenses. We bave seeu perfect spheres of this mate rial three inches in diameter, withut a : ingle speck or Haw to blenish its`complete transparency. Rock crystal and other arieties of quartz might also be emp loyed, if mtans could devised to cut them properly; so could plates of selenite, of thin alabaster, or even of rock salt, though the latter would not be very durable. Some shells are sufficiently thin to be ranslucent, and ivory could be made into plates having the ame property. Imber would be transparent enough but difficult to obtain while, like ivory it would be ratuer costly. Large leaves of trees, if chemically treated, might have their texture preserved and serve to cover windows if other means failed; or if the dwelling were located in polar latitudes one might follow the exampie of the Eequimaux and use blocks of clear ice.
In recalling substitutes for paper, many of the materials, suggested in place of glass owing to their translucency, would, from their flexible nature, answer even more suitably for writing purposes. Such is evidently the case with parch ment, membrane, cloth, horn, rubber, collodion, or gelatin sheets. We might go back to graven tablets, like the Moa bite stone, or write with the stylus upon wax, as did the an cients; in fact, there are numberless modes of inscribing our thoughts on solid substances. But paper has a multitude of ther uses, especially in these days of paper clothing, paper furniture, paper churches, and paper money. Hence mate rials are needed with more of its attributes than simply its use as a vehicle for the dissemination of our ideas. The same ource of supply, open thousands of years ago, is still at hand, or the papyrus tree flourishes yet in Egypt and Sicily. Th for the papyrus tree flourishes yet in Egypt and sicily. The
by ingenious machines we can cut shavings of fine grained wood to serve in place of hangings fcr our walls. Sbeets of metal, rolled to almost infinite attenuation, would, how $\in v \in r$, probably form the most favored substitute. About two years ago the Upper Forest Tin Works, in Wales, rolled the most delicate sheet of iron ever made. The metal was worked in a finery with charcoal and the usual blast, then forged into a bar, and finally passed through the tin rolling mills. When finished, the sheet was 10 inches by $5 \downarrow$ inches in dimensions or 55 inches in surface, and weighed but 20 grains. It would require 4,800 such layers to make up a mass one inch in thickness. Latters have been sent across the Atlantic on iron thinner than ordinary paper, and nearly as light. Steel, iron, and copper could thus be pressed into service; and where Hexibility was necessary, probably alloys could be made to answer the purpose.

SCIENTIFIC AND PRACTICAL INFORMATION

a test of the adtomatic telegraph

A public test of the automatic system of telegraphy recently took place on a single wire between this city and Wasbington. The matter transmitted was the President's late message, with the Spanish protocol attached, numbering 11,130 words, it having been selected in consequence of the declaration that its transmission over eight wires by the Western Union Company, on December 2, 1873, was a fact un paralleled in telegraphy.
The President of the Automatic Telegraph Company submits a report, which is corroborated by the testimonials of various well known gentlemen who witnessed the trial, to the effect that the entire document was copied complete in New York in 58 minutes from the time of the beginning of the sending in Washington. Ten perforators, thirteen copyists, and two Morse operators were employed, as against sixteen expert Morse operators by the Westean Union people. The average pay of perforators and copyis's is $\$ 40$ per month ; of operators, $\$ 100$.

A NEW ACOUSTIC PYROMETER

It will be remembered that, some time ago, we gave an ac count of an acoustic pyrometer, devised by Professor Mayer, of the Stevens Institute. The principle on which the instrument is based is the variation of the length of a sonorous wave in air, when the temperature of the later is clanged.
Mr. Chautard states, in Les Mondes, that in bis opinion the method proposed by Dr. Mayer is difficult in application, and he suggests the following arrangement as more suitable for practical requirements
The sound is produced by the aid of an organ tube, Ut 4, for example, disposed with reference to a resonator which is put in relation with the two branches of a König improved interference apparatus. To the movable branch is attached a long tube of copser, which enters the furnace or other locality, the temperature of which it is desired to determine. This tube returns on itself and communicates with a small manometric capsule. The fixed branch of the apparatus is terminated by another capsule, which, like the first, is in relation with the same source of heat. The arrangement is completed by a revolving mirror, in which the state of the flame is seen
Thus disposed, if the pipes which separate the resonator from the capsules each contain an equal number of half wave lengths, the flame will be edentulated; in the contrary case, the indentations will diminish, and this as much more as the difference of length of the tubes is muse nearly equal to an untqual number of half wave lengths. In the latter event, the flame takes, in the mirror, the aspect of a ribion; and by neting the changes in its appearance the calorific state of the air in the tube in the furnace is determined. If the temperature is elevated, the length of wave augments, and a clearly defined interference is shown by the flame in the mirror. If, during the continuance of the evperiment, the movable tube be gradually elongated, it will be easy to bring the flame back to its primitivestate, that is, to cause the indentations to re appear. Then, by the aid of a scale previously determined and empirically translated into thermometric degrees, the degree of temperature in the tube can be easily noted.

TO NEW SUBSCRIBERS.

All subscriptions to the Scientific American will be commenced with the year, unless persons, at the time of remitting, request to the contiary. Nearly all subscribers preserve their numbers for binding; and in most cases where subscriptions are received during the first quarter of the year, if the back numbers are not sent, they are subsequently ordered. To save both the subscribers and ourselves trouble, the back numbers from January 1 will be forwarded, unless we are advised to the contrary. This course will be pursued till April 1, after which date the paper will be sent from the time of receipt of remittance; but subscription. may commence at any time, at the request of the subscriber, The above regulation applies only to those who give no instructions, at the time of remitting, as to when they de-
ire to commence
G. D. says: "I think there is a great deal of humbug about the Troy chainwakers, in the paragraph from the Troy Times. Any good smith can make chain, and England is full of them; they would be glad to get one half of the wages mentioned.'

A correspondent, O. A. O., reports that in Sebastopol, Cal., from November 1, 1873, to January 14, 1874, the enormousquantity of 33 inches of water fell, in the form of rain and snow.

