PROFESSOR PROCTOR'S ASTRONOMICAL LECTURES. Professor Richard A. Proctor, the distinguished English astronomer, recently delivered a series of lectures in this city. The course began with masterly discourses upon the sun, the planets, and comets and meteors, which were illus trated with photographic views and diagrams thrown upon trated with photographic views and diagrams thrown upon
the screen by the magic lantern, and which consisted in clear the screen by the magic lantern, and which consisted in clear
explanations of the present state of scientific knowledge regarding these heavenly bodies. As the subjects above noted have, however, already found full and recent elucidation in our columns, notably in the published abstracts of the lec tures of Professors Young, Morton, and others, we pass at once to the consideration of the very interesting topic of the fourth discourse-the moon.
The moon's diameter is 2,100 miles, and she is distant 238,828 miles. Her surface is less than our globe in the proportion of 1 to 134 , or, in other words, includes about $14,600,000$ square miles, equal to the combined estent of North and South America. The volume of the moon is to that of the earth as 1 to $49 \frac{1}{2}$, and the relative masses as 1 to 81 .
The speaker had heard that the observatory to be established on the Rocky Mountains will bring the moon within thirty miles of us; but that is impossible. The optical image formed by the object glass of the astronomer has defects, and if you magnify it you magnify the defects. you magnify the defects. When you get beyond a
certain poini it is useless certain poini it is useless
to magnify the image as it appears, and there is no hope of any telescope larger than Rosse's to get a close view of the moon. It is hopeless to expect to find signs of life on to find signs of life on by the fact that shadows has no atmosphere. This is shown by the fact that shadows thrown by the lunar mountains are seen black, whereas, did an atmosphere exist, they would vary in intensity. Also, when the moon passes over a star,
the latter flashes out suddenly; if there were an atmosphere, the star would be seen precisely as our sun when sinking The moon has no water, for if she had, and if even a shal low atmosphere existed, the water would be raised into the latter, and decrease or increase the streaks or marking which appear on the great floors. In answer to the ques tion: Where then has the water gone? four suggestions are made. The first is that a "comet carried away the lunar oceans and atmosphere. The second, that the surface is cov ered with frozen snow. The objection to the latter is that there is no sign of the whiteness which would then ap pear, for. in fact, the color of the moon is about that of weather-beaten brown sand. The third idea is that the lu naroceans have been withdrawn into the substance of the moon; and the fourth is that the moon is egg-shaped, and that the center of gravity, being displaced on the further side, has carried to that side the oceans and air of the moon, and that the side of the moon never toward us may be a comfortable abode of life.

Several photographic pictures of the moon were then exhibited and commented upon by the speaker. He said the photographic study of our satellite was commenced by Dr. W. H. Draper, in 1840. Mr. De Draper, in 1840 . Mr. De
la Rue, of England, subsequently made many lunar plotographs, but the best are those of Dr. Henry Driper and Mr. Rutherford, of New York. From the craters called ('opernicus, Kepler, and Aristarchus, there is a radiation, and it appears clearly to observers that the strata were upheaved at different times; the later ones seem to break through those of earlier formation. It is hoped that, by this characteristic, we can learn some thing of the order in which the changes in the moon's surface,'took place.

Fig. 1.-PART OF THE MOON'S SURFACE AS SEEN BY EARTH LIGHT,

Other pictures were shown, to illustrate how far the ap lumination, so that it is difficult to say what changes are going on, from those apparently taking place. The moon changes and shifts not merely with regard to the sun, but o the earth, and Professor Proctor calculates that 1,300 years must elapse before any part would be again presented in precisely the same view. She is unlike our earth in general conditions. The total lunar day lasts $29 \frac{1}{\frac{1}{2}}$ of our days, but the year is very much less than ours, and is only 346 days. This is due to a slow tilting, corresponding to the precession of the equinoxes.
The two engravings which we present herewith show how the earth would look to an observer on the moon's surface,
termining the distance of the stars, is one of stupendous difficulty. A change of $383,000,000$ miles in the place of observation causes no perceptible alteration in the direction of many stars. α Centauri changes its position in a year apparently less than the distance passed over by the minute hand of a watch in $\frac{1}{2} \overline{0} 0$ of a second. It is 210,000 times further away than our own sun is. The largest star presents no disk to the telescope, hence its light must be measured. The star above named shines three times as brightly, and its surface is five times as large as that of our sun. Sirius is 100 times brighter, and in volume 2,000 times as large. The spectroscope shows that these stars are all suns.
Some stars are found to be double and show very well marked colors, some red, some orange, some blue, and so on. These owe their colors not to the inherent nature 0 their inner light, but to the qualities of the envelopes that surround them; and the idea is suggested that we have there a process by which these stars are perhaps passing down to a cooler state. Probably Jupiter and Saturn at one time may have been visible as accompanying stars, small complements to our sun, and they at that time may have shown some colors well marked in comparison with his. Compared with the stars' distance, the whole orbit of our earth sinks into insignificance. And remember that the least of these stars -its mere disk-has enormous heating power; then remember how great the distance from star to star; and then consider that the nebulous matter is spread through these stars, and continues from one star to another, and then you have an idea of the wonderful extension of that matter. For a long time the theory was that this nebulous matter was far out in space from the stars, but it is now proved that there is a ceal connection between the nobulous

Kepler imagined that the center of the universe was the solar system, and that the light and heat of the sun spread out and was caught by a shell 70 miles in thickness, inclosing the stars. Wright supposed that our starry system

Professor Proctor stated that he hoped to take one telescope and survey the whole heavens, counting the number of stars in different directions (not a field here and a field there, as Herschel did), little square fields, side by side, in the heavens, counting the number and mapping the results: and then seeing where the stars shown by that telescope are richly or poorly distributed. The stars have a wonderfully rapid motion. The process of change in a llock of granite is relatively greater than those processes in the still heavens, yet these stars are every one traveling 20 and 30 miles in a second, and not a star in the heavens but has
matter and the stars seen in the same view. was one of several and like a cloven disk. some motion.
at is, about $13 \frac{1}{y}$ times as large as the moon appears to us in Fig. 1 an earth-light scene is depicted; in Fig. 2 the sun There is a defect in these lunar pictures due to the imagination of the artist in introducing signs of weather.
As to the cause of the lunar craters, Professor Proctor went on to state that on the moon's surface there is a pound ing down of meteoric missiles, not necessarily solid ones, but a falling down of meteors on the plastic surface. At fall tresent day it is estimated that over $400,000,000$ meteor The speath the day, but the result is very $400,000,000$ years to have her diameter increased a single inch by them While the earth was still in a form of vaporous matter, the moon was rolling on, still plastic, and these meteors, falling down upon her surface, would produce that pitted appear ance.
the star depths
was the title of Professor Proctor's fifth lecture. He said that the problem which as u'onomers have to solve, in de-

Fig. 2.--PART OF THE'AMOON'S SURFACE, THE EARTH SHOWING ITS DARK SIDE.

Five of the stars of the Great Bearare traveling in a common direction, and apparently at a common rate. It is a well known fact that if we approached a star or other source of illumination rapidly, the waves of light will be shortened, otherwise they will be lengthened; the lines in the spectrum will be displaced, and we shall know whether the star is approaching or receding. Dr. Huggins found that these stars were receding at the rate of 11 miles in every second of time
There is another sign of change in the stars; a gathering in a certain region. There is, in point of fact, a vast variety where everything seems o regular. We see atreams, and modules, and branches of bright ess, and it of brightwhen the astronomer has penetrated into the recesses of the milky way, he has no more reached the bounds of the universe than he had at the beginning of his research

He ias only examined more and more minutely a particular corner of the star system. We find a group of suns of which our sun is a single member. Then again we pass to arstems brought into view by the telescope, and find that the star system to which our sun belongs is only a part of that one-an atom in space.

The concluding lecture of the course was entitled the bheth and growit of the solar sybtem.
If we look around at the condition of the planetary sys tem, we find much to lead us to the belief that it grew to its present state, that there was a process of its development bodies travel in tiue eame direction around the sun. Then every one of the bodits, whose motion has been determined turns in the same direction. There are in fact so man simalarities that we are bound by the laws of probability to
believe in the evolution process, for the chance of 142 planets believe in the evolution process, for the chance of 142 planets
going round in the same direction is 1 in $2,774,800,000,000$ $000,000,000,000,000,000,000,000,000,000$. Laplace, in his ex planation of this motion, bad the idea that there was a great nebulous mass having the sun in the cester, extending on either side far beyond the present extension of the path of the uttermost planet, that is, a path of $5,000,000,000$ miles diamfter. That mass was intensely hot and vaporous, and it was rotatiag; and as the rotating mass contracted and it
began to rotate more rapidly, would gitclually break up, its parts would gradually amal gamate ; many parts would have different rates of motion and dififerent parts would encounter each other, and in the into one mass, bebulous mass had, and traveling around a center which was the sun. 'That process would go on until one planet after another was formed. 'There was no light given by the La Place theory in reference to the questions connected with the asteroids; he simply ststed the general facts and left them there. It seemed to the speaker that they wer ed to another theory, and he would adopt a metiod of illustrating it which he deemed suitable. If an insect of a few hours' existence endeavored to trace the history of the growth of a tree in which it lived, it could not during its own life arrive at the truth; but by transmissions of slight knowledge, the result of study for ages, the epecies would ventually arrive at the truth. We know that as one nebu ous mass passes into another, by chemical means, light i
produced. There is evidence that these nebulæ are gaseous. There would be one center of aggregation which would grow continually in size and power, gradually dra wing more and more matter to it; and the more it drew in of these nebulous masses, the greater its power would become Professor Daniel Kirkwood took the paths of the asteroids, and arranged them in theirorder of distance, and he found ertain places where, for some distances, there were no steroids. He noted where the gaps occurred, and he found them corresponding to the paths of asteroids having periods commensurate with the period of Jupiter. Jupiter would lieturb the motion of the asteroids, if they had a period lke his own, and would prevent them from travelling, his mass being so murh greater. This supports the theory that the solar system arose from motion and aggregations, not rom the contraction of a great nebulous mass. The rings of Saturn give further evidence of the sare. In the star cloud s we find a multitude of stars discernible with the in thescope, and masses or cloudlets we see proof that the sidereal system is not a mere aggregation of stars, but contains all varieties, nebule, star cloudlets, and stars of all varieties nd that it resembles the solar system, not in unifurmity but in variety of structure. In studying its laws we have a problem of enormous difficulty, but one which must one day be solved. The lecturer then exhibited numerous beautiful diagrams, illustrating the existence and appearance of nebulous masses and stars under various circumstances round the great luminous bodies, and the immense variety of these nebulous masses. He concluded by portaging the glory of scientitic study, which brought man into a neare and closer Enowledge of his Maker. After the conclusion f the lecture, complimentary resolutions were passed, to which Professor Proctor appropriately responded.

A Mexican Motor

We are indebted to the Hon. Martin F. Hatch, U. S. Con sul at Merida, Yucatan, for a copy of a local newspaperLa Razon del Pueblo-containing an account of "An Astonisbing Motor," the invention of a young Mexican name Gonzalez. The Mesican editor is of opinion that the inven itn is of such extraordinary value that its mere fame wil make Mexico great among the nations. The new motor, he ays, enables mankind to navigate the air in the teeth of urricanes blowing at the rate of tbree huadred miles an hour. It permits of locomotion over the earth or under the urface of the sea, in all directions, with inconceivable elocity. We regret to say, however, that, after giving us a olumi and a balf upon the various wonderful capabilities of the new invention, the editor fails to present any clue to the principies or construction of the device. The only light iven upon this puint is that the use of the invention involve wo fyne, not even the employment of hand power, nor steam, yor air power, nor electricity. The inventor has put nto opration an example of the device in the form of a mall boat, hermeticaily sealed, which dices and moves in ay desirtd oirection under water, at any desired speed, as if guided by an invieible hand. The editor does not hesitate pray that it it the most astonishine work that, up to the present day, has ever been produced in the world. The many
mechanics who have seen it declare themselves utterly un Evid explain the phenomena
Evidently, here is another example of "psychic force." Dich we hope will be included in the new investigations of

By the soundings of John McKinney, an experienced nav igator and old resident in the vicinity of Lake Tahoe, Cal. the greatest depth of that remarkable body of water is found to be 1,645 feet.

PATENT OFFICE DECISIONS.

decisions of the codrts.
United states Circuit Court--Southern District or New York.

George Harding, for complainants,

NEW BOOKS AND PUBLICATIONS

The Preparation and Mounting of Microscopic Ob Jects. By Thomas Davies. Enlarged second edition,
edited by Professor John Mathews. New York: G. P. Putnam's Sons, 23d street, corner of Fourth avenue. Any one who destres to become skillful in this most dellcate species of andtcraft, will find Instructions here that are of undoubted value. The talns the concise directions pertaning to every branch of the subject, derived from the expertences of the most eminent practitioners of the art. or that tisue, shanances are to be employed to give transparency to thi splcuous, what will harden the soft membrdane, or of often the bard. It describes the various solvents of various objects, shows how to clean them, how to cut, treat, place, and secure. Shows the uses of polarized
light, and thechangeswhich the same object, prepared by differentmethodz, exhbits. In short, there ishardya point in the whole range of the art of microscopic preparation that is not here explained. Not ouly those who wish to learn, but all who bare acquired dexterity in the art, will find useful instruction in this book.
H.ilf hours with the Microscope. By Edwin Lankester, M.D. Illustrated br Tuffen West. Explanation of the Sons, Fourth avenue, corner of $\rightleftharpoons: 3 d$ street.
This little volume is intended as a popular gutce to the microscope, as a means of amusement and 10struction. It most admirably fultils its pur-
pose. It is crowded with useful and practical information pose. It is crowded with useful and practical information. We think it.
would be diftcult to find elsewhere, in the same compass, so much micro. scoplc instruction so clearly eet forth. Begloning with an explanatiou of the construction of the stmpler forms of the instruments, it gues on to those of more complicated structure, shows the arrangement of the lenses, the comblations of the binocular attachment, the various diaplaragms, camera lucida for drawing the magnified object sundry other tools and devices.
The chapter entitled "A Half.
and easy explanation of this curlous sublectarized Light" gives a clear whichany person of intelligence may construct a practical polariscope of bite of thin glass, at the cost of a few cents. A list of various crystaliza. thons, for the prodaction of the most pecullar forms and gorgenus colors seen under he polathopil git all of comparatively simple nature.
The chapter, "A Half-bour with the Microscope in the Garden," de.
scribzs some of the extraordfuary and magnfficent things that way be close at home. Plates dellneating the forms of some two hundred of these wonderful things are given, including the structure of garden plants, berrles, fiowers, and vegetables, showing formalions of astonishing beaut Then follow: "A Half-hour with the Microscope in the Country," ".
Half-hour at the Pondside," "A Half-hour at the Seaside,". A Half-tour Half-hour at the Pondside," "A Half-hour at the Seaside," "A Half-Hour and interesting objects that are mentloned. The book closes with an appendix, by Thomas Ketteringham, upon the preparation and mounting of microscopic objects. The frontisplece is a beautifully executed plate, in coliors, of splendid polariscope objects. Some ten thousand coples of
this ilttle work have been sold in England, which is an Indication that its

Free Hand Drawing: a Guide to Ornamental, Figure, and
Landscape Drawing. By an Art Student. 50 conts. Landscape Drawing. By an Art Student. 50 conts

zecent guncrican aud foreign eatents.

Improved Artificial Stone. 10 Bush street. San Franctico,

Ernest L. Kansome, 10 Bush street. process described in thls patent, it is clafreed that much of the chlorde of
callum hatherto wasted is collected and saved, and the stone is washed as many minutes as formerly days. The invention consists in the rapld blast of air, followed by a blast of air contalning water in a state of fine minutes, and that the cost of the apparatus required ts but small.

Mason W. Bosworth, Bind Grain Car Unloader.

apparatus for ualoading grain in uulk from railroad cars; and it consists In the employment of a movable endless chain or alyron, passlng overguide drums, and carrylng a projecting gudgeon or arm, whtch operates in conor scoops, arranged within the car. The invention further consists in at aching to the slotte gulde pulleys, and connected with the movable unloading scoops or scrapers so as to draw the same to the door of the car for discharglug the grain. The invenilon also consists in conaecting the unloading scrapers, by ropes, to the rectprocating rod, sald ropes passing over gulde rollers, the car for discbarging to load the draw rope of the other will be slack ened for permitting it to be retracted for the purpose of dilling it.

Improved Locomotive Furnace.

Andrew J. Stevens, Sacramento, Cal.-This invcntion s a boller dour pr vided with a damper on the outside, and an alr deflector on the tuside The lining of the fire box door is angular in form, and projecto from the
inside of the door, thelower portion of the lintaz belng cita away so that an opening is formed. The upper portion of the lining acts as a reflector to throw the alr downward to the surface or the furd, mangle with the gel.
bustion of the fuel

Improved Till Alarm.
Egbert O. Wood, Nashua, N. berof tumblers are all turned forward so that the tr short arms project upward, the drawer may be moved out $\begin{aligned} & \text { and } 10 \text { freely. Should one or more of }\end{aligned}$ the tumblers be turned back so thit their long arms project upward, the drawer cannot be drawn out without first forclug the sald long arm of the
tmbler or tumblers downard by operating the keys of the tumbler or tumbled forward ts operated the sbort arm of asid tumber is rated turned forward is operated, the short arm of sald passing out beneath lugs when an attempt is made to open the drawer with one or mure oit the tum. blers ralsed, a lug of the lock plate will strikc against the lug of a ratchet and, releasing the lever, willsoundthe alarm. As tbe thl or dry wer is closed, the lugs of the lock plate silde up the inclined rear sides of other lugs, and
drop down in front of sald lugs, the rear part of the sald plate resting upon drop down in front of sald lugs, the rear part of the salaplate resting upng
the upwardly projecting arms of the tumblers. The alarm Is set by turning one or more of the tumblers to the rearward: and tne comblnaticin is chang desired.
Improved Weather Strip.
OHver A. Vorce, Kentland, Ind.-This anvention conststs of a weather strip, which ts raised or lo wered in a groove at the bottom of the door, by befng connected to the spindle of the lock hy a sultable iever, bo that on opening the door part, which lowers the strip on the closing of the dcor by
spring at the tor

Improved Draft Equalizer

Elias H. Blake, Coatsburg, Ill.-This invention is an imploved equalizer Which is readily attached to a tongue or plow bean, so adjusted as to a:lc w to the single horse or to the \boldsymbol{r} alr, as may be de: Ired. The invention conslsts in a triangular equalizer provided with clan.ps for securing it to the tongue or beam, and having its forward arm elotted and provided with adjustable
perforated plates to recelve the hammer or pla by which the tripletree is
connected with

