comoved and others substituted in their places, and the gun kppt in working order at all times, on the field of battle This is a feature of great importance, as the locis mechan ism is the most essential part of a machine gun, and is practically the only part liable to get out of order from use The lock mechaniem of many other machine guns forms an eutirety, and is so united and encased that, should any part of the same get out of order. a circumstance which is liable to happea in long and coatinued firing in time of action, the whole machine would become disabled aud would have to be taken to a machine shop for repairs. In such a contin gency, it is needless io remark, the enemy would not be likel to await the completion of the job.
All the locks in the (iatling gun revolve simultaneously with the barrels, carrier, and inner breech, and the lock have also a reciprocating motion when the gun is revolved. If the barrels had to be brought to a state of rest at the time of each discharge, the in ventor cousiders, the rapidity of fire would be greatly lessened. The Gatling gun, it also mas be noted, is the only firearm in which the three sets of parts, bame'y, barrels, locks, and inner breech (Fig. 3) all revols at one and the same time, and it is the only gun that load and fires incessantly while these several parts are kept in continuous motion. It is im ! ossible to load and fire the gu when either the barrels, locks, or inner breech are at rest Each lock in the gua revolves once, and moves forward and back once, at each and every revolution of the gan
The piece fires a shot at a time, in rupid succession, and thus by dividing the time in rapid firing into equal part between the discharges, and preventing an accumulation of ecoil, it admits, it is claimed, of large charges and bearg ballo, and cons-quently exceptionally great, sange. The ex reme range of the largest Gatling gun, which discharge half pound solid lead balls, is said to be over two and a hal miles.
The peculiarity of no recoil existing is of special value in the defense of bridges, fords, mountain passes, etc., whic are fr:quently attempted during darkness, fog, or storms as also in the smoke of battle, when the movements of th enemy cannot be accurately observed. Firing a shot at time also allows a lateral motion of the gun to be kept u during the time of rapid firing, which result is attained b the traversing mechanism connected with the breech of th gun and the carriage, as shown in Fig. 1
This improfid traversing mechanism not only allows the gun to be trastred without moving the trail or wheels. of the carriage, but enables the operator at will, and in a sec ond of time, to cuavge the angle of fire so as to play on the en $\because \mathrm{m}$ y should he move either to the riglit or to the left. In otler words, the shots can be spread along the enemy's front or can be all concentrated to one point or upon one object at will.
Britfly described, it consists in a horizontal cylinder which carries, on its upper side and near the right hand end, a flange to enter in a Γ groove upon the lower side of the breech of the gun (Fig. 2) e that the latter may slide upon the flange and thus gain the necessary sweep. On the low-r part of the same end of the cylinder, the ball of the elevat ing screw is received in a transverse groove. The cylinder ex tends to the left गf and below the breech, and in it is longitu dinally inserted a screw which carries a nut, a portion of which proj cts through a slot in the front side of the cylinder The screw is actuated by a hand wheel at its extremity, by which means the nut is caused to travel along the slot. The nut hason its projecting side a socket, and in this, held by suit able catch mechanism, is a pin. The crank shaft of the gun Fig. $3, \stackrel{x}{ }$ xtends through the breech and terminatesin a groover cylinder, in the channels of which the pin just mentioned en ters, except when it is thrown out of gear. It is eviden that, when the grooved cylinder is rotated, its curved groove acting against the pin, which is held immovable after being adjusted by the hand wheel, causes the T groove on the gun to slide along the flange on the cylinder first mentioned. By this means, the plece is caused to sweep the horizon by merely actuating the ordinary firing crank. The groove cylinder has two grooves, one curved to correspond with the number of degrees over which it is desired to swing the barrels, and the other straight, the effect of which is, of course, to allow the gun to remain stationary.
We are informed that the smallest sized Gatling gunwhich fires over 400 shots per minute and which weighs onls 125 lbs .-when mounted oa a tripod, can be, in an instant raversed so as to fire to any point embraced in an entire cir ce, thus furnisting its own support and precluding the lia bility of it 3 capture by a flank att ack. Finally, the invento adde that his system admits of either large or small caliber Eight different sizes of the guns are now made. The small est size is the only machine gun in existence which admits of b -ing nounted and fired from a tripod, and its lightnes and effectiveness specially commend it for cavalry service mountain warfare, boat service, etc. From Figs. 2 and 3 the two principal divisions of the arm will be easily under tood. Fig. 2 shows the frame and breech, and Fig. 3, the ,arrels, locks, and firing crank, both riews being from above.
The improved training mechanism was patented through the Scientific American Patent Agenry, December 16, 1873 Furcher information may be obtained by addressing R. J Gatling, whose manufactory is at the Colt Works, Hartford Conn.

Australia has set a good example to many other countries, In that colony it has been decided to attach swimming batte o all the State schools, so that swimming may be taught as an essential part of education.

Surutitio Smmeran.

MUNN \& CO., Editors and Proprietors. published weerly at
NO. 37 PARK FOW, NEW YORK.

o. D. MEN

A. E. beach.

TEMINS

One copy, one year.
8300
 2500
volume xxx, No. 6. [New Series.] Tioentyninth Year.
NEW YORK, SATURDAY, february 7, 1874.

IMPORTANCE OF ADVERTISING.
The value of advertising to so well understood by old establighed busines matn midatarer through which to do it.
lo tho mathr, abocre determine that papers or magazines having the largest circulation, among be the cheapest, and bring the quickest returns. To the manufacturer o 1 k kids of machinery, and to the vendors of any new article in the echanical line, we belleve there ts no other source from which the adver hiser can get as apledy
Scientific american.
We do not make these suggestions merely to facresse our advertising atronage, but to direct persons how to increase their own business. The Scientific Ayerican has a ctrculation of more than 42,000 copte the other papers of its kind published in the world

is vitality vital

The line of progress along which Science has come down rom the past is thickly strewn with dead and dying terms, he empty husks of theories which have had their day and ceased to be. Many of these terms have dropped entirely out of use. Others have survived in form, but with so many changes of meaning that they remind one of the tenements of hernit crabs, shells whose original occupants have long ince gone where good mollusks go.
Oue of the most significant of recent word demises, real or reputed, is that of "vitality," as the name of the principle of life, a peculiar something in living matter unrepresented in ther or "dead" matter. To not a few of our leading think rs, the word has ceased to harbor its original tenant; and sme go so far as to insist that it should be dropped from the vocabulary of Science as useless, if not mislading. Huxley humorously compares the imagined force it represented to a supposable " aquosity," which might be thought to enter the oxide of hydrogen at the moment of its formation to give rise to the properties and phenomena which make water so unlike its constituent elements, and asks: What better philosophical status has "vita:ity" than " aquosity?" "And why," he continues, with a mildly iron cal turn, "should 'vitality' hope for a batter fate than the other 'ities' which have disappeared since Martinus Scriblerus accounted for the operation of the meat jack by its inherent meat-roasting quality, and scorned the materi alism of those who explained the turning of the spit by a c. rtain mechanism worked by the draft of the chimneg?" In his very ingenious discussion of the correlation of "life orce," so called, and the other "forms of force," Professor Le Conte insists that the term vitality still lives, for the excellent reason that it stands for, not a vague assumption. but a demonstrable reality. Each "form of force," he says though what a form of force may be it is hard to conceive "gives rise to a peculiar group of phenomena, and the study of these to a particular department of Science. And since the group of phenomena called vital is more peculiar and different from other groups than those are from each other, and the science of physiology is a more distinct departmen than physics or chemistry, therefore the force which determines those pheromena is more distinct and better entitled to a eefarate name than either physical or chemical force."
The investigations which lead to this conclusion Profesecr Le Conte basrs on the assumption that there are fourdistinct
be considered as lying in vertical order and rankidg accord ing to position. These planes are, ccunting from the first and lowest, (1) the plane of elementary existence ; (2) chemical compounds; (3) vegetable life; (4) animal life. Correst ponding to these planes of matter are four planes or forms of force, similarly related. The first and lowest, called physical force, operates alone on the plane of elementary matter A higher form, chemical force, enters upon and operates on the next plane in connection with the first. The third plane is the field of operation fir three furms of force; the two already named and the new and peculiar one, vital force. On the fourth material plane, the force peculigrly characteristic of animal life, the will, operates in addition to the other three. A fifth plane, the human, with free will as its characteristic, ra
metaphysics.
Each of th
Brof the groups of phenomena currently called nhysic al, chemical, vital, rational and so on, are thus to be inter preted as determined by distinct and peculiar kinds or forms of force. It is the function of chemical force alone to raise matter from plane No. 1 to No. 2, and to produce the phenomena of No. 2, which together constitute the scitnce of chemistry. Similarly it is the prerogative of regetable life force to raise matter from No. 2 to No. 3, aud to execute all movements on that plane, which together constitute the science of vegetable physiology. But there is no force in Nature capable of raising matter at once from No. 1 to No. 3, or from No. 2 to No. 4, "without stopping and receiving an accession of force of a different kind, on the intermediate plane

All this forms a consistent and very plausible system, but what foundation has it in the eternal verities? Is it demonstrably true that the alleged superimposed parallel planes of force and phenomena are not figments of the imagination, and misleading ones at that? The two upper ones crrtainly approach each other at one edge (to continue the figure) so closely that they seem to be in actual contact. In their lower fields, the animal and vegetable kingdoms come so nearly together that it is quite imposisble to discover the line which separates them, if such line there be. Again the products long supposed to be the peculiar work of vital force (as distinguished from the force which determines ordinary chemical combinations) have been so numerously built up from their elements in the luboratory, without the intervention of life, that the suppostd necessity for a peculiar force for such work has been greatly reduced, if not quite destroyed. And still further, is it not a sheer assumption to say that the movements of matter in the hypothecical satu, which we term elementary, must be due to a kind of force differing absolutely from that which determines chemical compounds?
The real state of the case appears to be something like this that we find it convenient to group certain varieties of phenomena into arbitrary classes, with boundaries more or less distinct. For like reasons, we are accustomed to say that the impelling cause or causes in one group are chemical, in another vital, and so on; and sometimes we forget that these terms have reference solely to our classifications, and do not necescarily designate separate entities, forms of force or whatever we may call them. The expansion of steam under diverse conditions produces the most diverse and dissimilar results; but it is the same motor all the time.

To denote a broadly characteristic order of activity, the term vitality is useful and convenient. As indicating a force inherent in and wholly peculiar to living matter, sometting sui generis, so to speak, it is evidently doomed.

THE DOVER AND CALAIS TUNNEL

There seems at length to be a definite project prozosed for the construction of a tunnel across the Straits of Dover, between Eogland and France. An Anglo French committee has for some time past had the matter under consideration, with the object of inquiring into ways and m tansand of discovering the most practical method of accomplishing the work. This body, among the members of which we find the names of Lord Richard Grosvenor, Mr. Thomas Brassey, M. P., Admiral Elliot, and Messrs. Hawkshaw an l Brunlees, engineers in the English section, and of MM. Cbevalier, Paris, Talabot and other distinguished men of the French delegation, have adopted a plan which calls for a tunnel open only at its ends, and without the intermediate establishment which has been proposed in the middle of the strait. Its length from the South Foreland, 5 miles east of Dover, to Cape Gris Nez, 4 miles west of Calais, will be about 21 miles; and it is stated that, with the new Branton perforating machines, the bore can be finished in four or five gears. The estimated total expense is $\$ 40,000,000$, and the probable revenue to be desired, it is believed, will reach about $\$ 4$, 000,000 per year. With regard to ventilation, the ordinary arrangements for making a draft as used in mines will be employed. One of the ends of the tunnel will be permanently open; the other will be provided with doors which will have to be opened to admit the passage of trains when necessary. Just within the doors, a jarge orifice wiil be opened to the summit of the vault of the tunnel ard in communication with a fire. By the draft thus caused, the air will be constantly drawn in from the open end of the tunnel and hence continually renewed.
The demand for a concession presented by the AngloFrench Commission, says Les Mondes, is now under public consideration at Arras, in the Pas de Calais, and it is believed that the execution of the project will before long be begun.

THE SIAMESE TWINS

The celebrated Siamese twins, which for the last half cen tury have been the foremost of living curiosities, both is tury have been the foremost of living curiosities, both is
Europe and America, recently died at Salisbury, N. C. Thes-
remarkable personages were born in Siam in 1811, and con.| binationsthroughout the country that they have been comstituted part of a family of fifteen children, several of whom were twins, though none save these two were in any wise deormed. Chang and Eng, however, were linked together by a teshy ligature, which was about a foot in length, two inches broad and four inches thick. Through it ran a large artery and many veins, making their circulation identical Each brother had, however, an entirely separate existence and, with the exception of the ligature, which was equally sensitive to both, their senses were totally disconnected
In 1850 Barnum exhibited them throughout the country and out of their salaries they managed to amass some $\$ 40$, 000. With this money the brothers purchased two adjoining plantations in North Carolina, assumed the surname of Bunker and, strange to say, married. The courtship, it is stated, was done by proxy, and the wives, English women, who had only seen their husbands once at a show in London, ware selected by the twins from likenesses forwarded by an agent. Λt the time of their marriage the brothers were forty four years of age and their wives, who were sisters, respectively twenty-six and twenty-eight. Their domestic separate homes and the husbands alternated, staying one week at Chang's house and the next week at Eng's. Each weeked after his plantation and other business during the weeks of his living at his own place, and the visiting brother was not supposed to interfere. The families increaced rap idly, Chang having six children and Eng five; of these four were deaf mutes, though not deformed, while the rest were strong and healthy. The domestic life of the brothers was not happy, and serious difficulties occasionally took place resulting in the estrangement of the families for long peri ods. They were slave owners and cruel masters, and during the war manifested strong southern proclivities. At the end of the rebellion, their wealth was very much reduced, and they again went into the show business, with only partia uccess
The brothers were of medium size and of peculia-ly repul sive faces. Chang was the most robust and good natured while Eng was often sick and morose. Chang also was the mental superior, although both were ignorant and had intel igence that scarcely rose above low cunning. As they grew old, the almost certainty of the death of one resulting in that of the other rendered them fretful and nervous. While in Burope, they consulted the best physicians regarding the pos sibility of a separate existence; but when the ligature wa ompressed so that all travsfusion of blood between them stopped, Evg fainted, proving that neither could sustain separate circulation. About a year ago Chang had a para-
lytic stroke which rendered his bealth the worse of the two ; and as a r lijef from suffering, he drank freely. His death occurred first; and the shock, or more probably the cessation of circulation, aff \cdot cted Eng so strongly that delirium, followed by stupor, almost immediately set in. At the end of two hours, he also expired.

THE ONE HONDRED THOUSAND DOLLAR CANAL REWARD
The Canal Commission of the State of New York, "charged with the duty of trying and examining the various boats that were presented last year in competition for the reward of one hundred thousand dollars, have lately made their re port to the Logislature. They say that, owing to the technic alities contained in the law under which the reward was offered, they have been unable to make an award to any of the competitors. They ask that the law may be modified and new trials allowed. They report that two of the com peting boats very nearly filled the requirements. These were the steam canal boat William Baxter and the steam canal boat William Newman. The requisition was that each boat shou!d be able to carry 200 tuns of cargo besides motive power, and make au average speed of three miles per hour.
The William Baxter was built especially to compete for the prize. She is 96 feet long and 17 feet beam, and has much sharper lines than the ordinars carial boats. Her bot tom is porfectly flat, and her sides, stem, and stern, vertical The outlines of the immersed portions of her bow and stern are the same. She has an overbanging deck at the stern to piotect her propellers, and with 200 tuns of cargo she draws $5 \frac{1}{2}$ feet of water. Her machinery consists of a Baxter up right boiler, and a pair of Baxter compound condensing en gines, 7×12 and 12×12. Her boiler is 0 feet high, 46 inches diameter, and has 152 two inch flues, and a grate surface of 7 fect. She is propelled by 2 three bladed twiu screws of $4 \frac{1}{2}$ feat diameter and 4 feet pitch. Theamount of coal consumed in runoing from Syracuse to Utica, a distance of 56 miles, was 830 pounds
The William Newman has a Hubbard hydraulic propeller She has a horizontal tubular boiler, 8 feet long and 44 inches in diameter, and a grate surface of 13 feet; and she is driver by a single 12×12 upright engine. The propeller is 4 feet 8 inches in diameter and 3 feet long. The amount of coal consumed from Syracuse to Utica was 4,500 pounds.
The time for competition has now expired. If the Legisature at its present session should renew the reward, wo shall promptly inform our readers.

THE TURNER CAR BRAKE.-APPLICATION FOR AN

 EXTENSIONAn application for extension of the car brake patent of Charles B. Turner, dated November, 1848, and extended in 1863 for seven years, is now before the Senate Committee on Patents. Messrs. Batcheller \& Thompson, the assignees of the inventor, submit their claim on the ground that they have received no adequate compensation for the use of the
device, having been opposed so strenuously by railroad com.
pelled to expend
The railroads, which are represented by Mr. Wm. D. Bishop, President of the New York and New Haven R. R. Co., and Mr. Joseph Howard, counsel for the Pennsylvania R. R. Co., cont.nd that adequate compensation has been received, and that the patent is invalid by reason of a prior invention. This last assertion seems to be in direct variance with Judge Drummoud's decision in a recent infringement suit brough by the assignees against certain railroads in Illinois. master in chancery reported adversely to the defendants, who had associated themselves together, and found heavy damages. The railroads filed a bill of exceptions, but the pinien of the appellate court, as delivered by Judge Drum mond, sustains the master in every particular. The decree s that the patent is good and valid; that the inventors have never neglected or abandoned such patent; that the instru ment covers the connecting of all the brakes of a car with windlasses, so that a brakeman, by operating any one of the latter, can apply all the brakes to the wheels; and that the Stevens brake, used by the defendants, contains all the covered combinat'on.
The railroads, as represented before Congress, are strongly pposing the extension; and after the presentation of the ase by Mr. S. D. Cozzens, of connsel for Messas. Batcheller © Thompson, a postponement was obtained by Messrs Bishop and Howard, in order to afford necessary time for consultation as to the nature of the reply they will make to
the application. The matter, therefore, is adjourned for ome days

THE NEW ENGLAND ASSOCIATION OF INVENTORS AND

 PATEN I OWNERS.
To tice Editor of the Scientific American:

Many of your subscribers were surprised to see, in your ssue bearing date January 10, 1874, a leading articl mentioning the New England Association of Inventor and Patent Owners in a spirit tending to mislead you readers. I would ask you to amend what evidently pro ceeds from insufficient information. I have sent pou a prospectus of the Aesociation, and trust that its perusal will lead you to see that its objects are neither as limited nor as selfish as you atate them to be.
The objects aimed at are "to collect and diffuse statistics ending to demonstrate the usefulness of patent laws, and he growth of our arts and manufactures under their influnce ; to draw from the Congress of the United States such recognition of their general value as shall secure a just and liberal basis of patent protection; to bring together all per ons interested, and reconcile their differences, and to tak uch action as may best promote the general prosperity of the classes represented in its membership.'
As no inconsiderable number of your subscribers are mem bers of this Association, and there seems to be no question of its being able to be put to good uses, and assuming that ou desire to give only reliable intelligence to your readera would ask, on behalf of the Association, that you correc the impression created by the strange animus of the article in question. Very respectfully,

Theo. A. Dodgr, President of the Association.
Remarks by the Eidtor.-In respect to the above associ ation, our language was as follows (iee page 16 of our curren volume): "The objects of this Association, so far as we can gather them from the proceedings, are to render mutual aid and benefit to the members in the management of the patents, to secure the extension of their severa! patent mon opolies, compel the payment of fair prices for fatents by
railway companies, and in other ways to promote the general prosperity of the country."
We have received the prospectus above referred to, whic consists of a report signed by Mr. Dodge, upon the expected scope of the Association. It is a very creditable document and contains various excellent suggestions, to which we shall hereafter have occasion to allude. It does not, however, purport to be a statement of the proceedings of the original meeting of the Association, and has therefore no bearing upon the question of the accuracy of our remart oncerning those proceedings.
We think, if Mr. Dodge will refer to the reports of the meeting once more, as contained in the Boston daily papers, he will find that our statement was substantially correct The "strange animus," the impression of which Mr. Dodge on behalf of the Assoziation, asks us to correct, refers, we presume, to the objections we presented to the Hill resolu an endorsement by the Association of one of the Vienna propositions, to the effect that governments ought to fix the prices at which patents shall be sold ; in other worde, that the inventor, after he has received a patent, ought to b deprived of its control. Now, if there is any one poin which imparts a distinguishing excellence to the American patent law over the continental system, it is that we give to the inventor the free, untrammeled right to make use and dispose of his patent during the entire term for which it is granted, according to his own best judgment. We permit no government interference with him, and have no neaking government detestives to dog his footsteps, as in some parts of Europe. The mere suggestion of an alteration f our patent laws, to authorize such interference, is abhor ent to the feelings of American inventors, and contrary to public policy.
These views of ours we believe to be fully in accord with he feeling of the great mass 'of our readers. Mr. Dodge
is mistaken if he supposes that many of our subscribers, in the A

In so far as the New England Association shall actually do anything to promote the interests of inventors, or encourage the progress of the cseful arts, its members well know that they may always count upon us as being with them, heart and soul. But when they go for the approval, even indirectly, of government interference in the sale of patests, we are not with them, because we believe it to be a wrong policy.

THE PHILOSOPHY OF THE SAND BLAST

At first sight, the cutting of a diamond or other hard rub tance, by another so much softer as fand is, $\mathrm{s} \in \in \mathrm{ms}$ flatly ontradictory to common experience. Still, to any one who has ever fired a rifle ball against a rock, the fact that a flying soft body will bruise or crush a harder one is ntither sor prising nor new. The possible perforation of a pine board by a tallow candle, fired from a musket, is an illuctration of the same fact, familiar to every school boy. In the sind blast, however, the effect seen is so marifestly dieproportion$a^{+} \theta$ to the momentum of the individual particlos that the explanation usually given in the grosser cases fails to hold good. Grains of sand, of very unequal s'ze, appfar to do precisely the same work when moving at thes ame rate, thus directly contradicting what has hitherto been an uncuestioned Jw of impact.
Whence arices the discrepancy betwect what is and what might be expected? To answer this question, as English in vestigator has reconsidered the lawe of impact, and finds that one of great significance and importance bas heretofore bef n entirely overlooked. It is this: At the moment of first contact, the pressure between impinging bodies is independent of their size.
This law has been undetected heretofore, simply because the laws of impact liave been considered mainly with rt fer ence to the centers of gravity of the bodifs, while little or no attention has been paid to the points of impact and what oes on there between the instant of first coatact and the time when the center of gravity is changed. Evin with the compacted bodies, it takes time for the pressure to extend to the inner particles
Hence, on the instant of impact, it is only these particles in contact which are affectcd, and the rest of the body might be removed without altering the f ffect. In oiher words, the effect of impact is independent of the quantity of matter behind the particles which actually impinge.
That the effect of the sand blast is-as this law indicaterbattering, not a grinding, action is clearly sbown by the microscope. A polished glass surface, that has been exposed for an instant to the blast, is spotted with points from which scales of fractured glass bave been broken away in irregular direction. Each spot appeared as if a pellet of glass bad been driven in by the collision, and the wedge-like action thus set up had driven away the surrounding glass. The polariscope confirms this idference. When thus tested, ach spot shows a colored halo, proving that the surface of the glass is under strain

BCIENTIFIC AND PRACTICAL INFORMATICN

tife vulcanization of hydrocarbon compounds
In treating bituminous substances, such as a\&phaltum, rahamite, petroleum residuum, the different mineral resins, coal tar, etc., with sulphor, chloride of aulphur, or sul phur in combination with various basep, such as sulphure of iron, etc., a definite chemical compound is formed, differ ing from its constituent parts in many mattrial respects, be ng harder, tougher, and more capable of resisting ieat The sulphur should be in just sufficient proportion to form his compound, as an excess would mix mechanically with the mass and render it too brittle for usc. Dificulty is usu ally experienced in detelmining the proportion of sulphur as it varies according to the hydrozarbon used. To overcome this difficulty and to avoid all danger of having an ϵ xcess of sulphur, it is best to use in addition some metallic oxides (such as litharge, for example), which will con bine with any free sulphur, forming a metallic sulphuret. The hydro carbons are first heated till the water is entirely evaporated and the sulphur, chloride of sulphur, or metallic sulphuret s then added. The sulphur may be dissolred in bisulphide of carbon or any of the etheteal or fatty oils, or it may be mixed directly with the mass.

antimony blete

C. Kraus obtains this color by boiling tartar emftic with yellow prussiate of potash, and adding hydrochloric acid The antimony does not enter into the composition of this color, but merely facilitates its formation.

white coal

A new kind of fuel has recently been discovered on the Australian continent, which has rectived the name of white oal. It consists of felted vegetable fibers, like peat, which ontain, interspersed between them, fine grains of sand. It a easily combustible and burns with a light flame. The white coal covers large tracte, requiring no mining, and is already used in large quantities as fuel

Cymogene (?chymogene) writes to say that our corres pondent, I. S. Pret, is wrong in adding rbigoline to the list f products of coal tar, as this body does notexistin the oal tar, but belongs to the highly volatile postions of petro coal tar, but belongs to the hig
leum, being second in the list.

