
a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

THE GATLING GUN.

We devote our initial page this week to the illustration of another of those engines of war which are destined to play no small part in the arbitration of disputes between nations. The more formidable the weapons become, the less likely are nations to attempt to de cide their difference by de cide their differences by re sort to arm structive the means for its pro secution the shorter the dura tion of the contlict, and the less theamount of evilinflicted upon ma nkind.
We deem it unnecessary to enter into any minute descrip tion of the mechanism of the Gatling mitrailleuse, depicted in our engraving, as it has al. ready, inits earlier and less im

THE IMPROVED GATLING GUN.

proved forms, received ample notice in our journai, and since has elicited not only commen dation from army officers, but substantial support from foreign governments. The attention of the reader is directed to the im provements which have lately been made in its construction endering it according to the in endering it, according to the in the most ef icient battery gun yet invented Rapidity and continuity of fire, together with simplicity and absence of complexity of parts, are the essential advantages to be noted. Each barrel is provided with its own indepen dent lock or firing mechanism and these are made interchange ble and Should ant able and strong. Should any get out of order, one or all of the
locks can, in a few moments, be
emoved and others substituted in their places, and the gun kept in working order at all times, on the field of battle This is a feature of great importance, as the loci mechanism is the most essential part of a machine gun, and is practically the only part liable to get out of order from use The lock mechanism of many other machine guns forms an entirety, and is so united and encased that, should any part o the same get out of order. a circumstance which is liable to happea in long and continued firing in time of action, the whole machine would become disabled and would have to be taken to a machine shop for repairs. In such a contin gency, it is needless io remark, the enemy would not be likely to await the completion of the job.
All the locks in the (aativg gun revolve simultaneously with the barrels, carrier, and inner breech, and the lock bave also a reciprocating motion when the gun is revolved If the barrele had to be brought to a stato of rest at the tim: of each discharge, the in ventor considers, the rapidity of fire would be greatly lessen ed. The Gatling gun, it also may be noted, is the only firearm in which the three sets of parts name'y, barrels, locks, and inner breech (Fig. 3) all revols at one and the same time, and it is the only gun that load and fires incessantly while these several parts are kept in continuous motion. It is im_{l} ossible to load and fire the gun when either the barrels, locks, or inner breech are at rest Each lock in the gun revolves once, and moves forward and back once, at each and every revolution of the gun.
The piece fires a shot at a time, in rapid succession, and thus by dividing the time in rapid firing into equal parts between the discharges, and preventing an accumulation of recoil, it admits, it is claimed, of large charges and heav balls, and cons quently exceptionally grtat range. The ex treme range of the laryest (fatling gun, which discharge half pound solid lead balls, is said to be over two and a hal miles.
The peculiarity of no recoil existing is of special value in the defense of bridges, fords, mountain passes, etc., which are fr:quently attempted during darkness, fog, or storms as also in the smoke of battle, when the movements of the enemy cannot be accurately observed. Firing a shot at time also allows a lateral motion of the gun to be kept up during the time of rapid firing, which result is attained by the traversing mechanism connected with the breech of the gun and the carriage, as shown in Fig. 1
This improved traversing mechanism not only allows the gun to be travtreed without moving the trail or wheels of the carriage, but enables the operator at will, and in a sec ond of time, to coavge the angle of fire so as to play on the en \rightarrow my should he move either to the right or to the left. In other words, the shots can be spread along the enemy's front or can be all concentrated to one point or upon one object at will.
Briefly described, it consists in a horizontal cylinder which carries, on its upper side and near the right hana end, a T flange to enter in a T groove upon the lower side of the breech of the gun (Fig. 2) so that the latter may slide upon the flange and thus gain the necessary sweep. On the low-, part of the same end of the cylinder, the ball of the elevat ing screw is received in a transverse groove. The cylinder ex tends to the left of and below the breech, and in it is longitu dinally inserted a screw which carries a nut, a portion of which proj ctsthrough a slot in the front side of the cylinder.
The screw is actuated by a hand wheel at its extremity, by The screw is actuated by a hand wheel at its extremity, by which means the nut is caused to travel along the slot. The able catch mechanism, is a pin. The crank shaft of the gun, Fig. 3,extends through the breech and terminates in a groover cylinder, in the channels of which the pin just mentioned en ters. except when it is thrown out of gear. It is evident that, when the grooved cylinder is rotated, its curved groove acting against the pin, which is held immovable after being adjusted by the hand wheel, causes the T groove on the gut to slide along the flange on the cylinder first mentioned. By this means, the pece is caused to sweep the horizon by merely actuating the ordinary firing crank. The groove cylinder has two grooves, one curved to correspond with the number of degrees over which it is desired to swing the barrels, and the other straight, the effect of which is, of course, to allow the gun to remain stationary.
We are informed that the smallest sized Gatling gunwhich fires over 400 shots per minute and which weighs onls 125 lbs.-when mounted on a tripod, can be, in an instant raversed so as to fire to any point embraced in an entire cir cie, thus furnistiog its own support and precluding the lia bility of its capture by a tlank att ack. Finally, the inventor adds that his system admits of either large or small caliber Eight different sizes of the guns are now made. The small est eize is the only machine gun in existence which admit of b-ing nounted and fired from a tripod, and its lightnes and effectiveness specially commend it for cavalry service, mountain warfare, boat service, etc. From Figs. 2 and 3 the two principal divisions of the arm will be easily under stood. Fig. 2 shows the frame and breech, and Fig. 3, the larrels, locks, and firing crank, both riews being from bove.
The improved training mechanism was patented through the Scientific American Patent Agenry, December 16, 1873 Further information may be obtained by addressing R. J Gatling, whose manufactory is at the Colt Works, Hartford Conn.

Australia has set a good example to many other countries, In that colony it has been decided to attach swimming batt f to all the State schools, so that swimming may be taught as an essential part of education.

Srimtifir

MUNN \& CO., Editors and Proprietors. published weekly at
NO. 37 PARK ROW, NEW YORK.

```
o. D. MUNN.
A. E. BEACH.
```


TERINS

One copy, one year...
 8.300

VOLUME XXX, No. 6. [New Series.] Twenty ninth Year.
NEW YORK, SATURDAY, FEBRUARY 7, 1874.

ImPORTANCE OF ADVERTISING.
The value of advertising is eo well understood by old estabilshed busines business, or having for sale a new artcle, or wishing to sell a patent, or find nea through which to do it
In this matter, discretion is to be used at first ; but experience will soo determine that papers or magazines having the largest circulation, among be the cheapest, and bring the quickest returns. To the manufacturer of mechanical line, we believe there is no otier source from which the adver tiser can get as speedy returns as through the advertising colnmns of the Sifentific American.
We do not make these suggestions merely to increase our advertising atronage, but to direct persons how to increase their own business, The Scientific Ayerican has a circulation of more than 42,000 copte he other papers of its kind published in the world

is Vitality vital?

The line of progress along which Science has come down rom the past is thickly strewn with dead and dying terms, the empty husks of theories which have had their day and ceased to be. Many of these terms have dropped entirely out of use. Others have survived in form, but with so many cbanges of meauing that they remind one of the tenements of hernit crabs, shells whose original occupants have long since gone where good mollusks go.
One of the most significant of recent word demises, real or reputed, is that of "vitality," as the name of the principle of ife, a peculiar something in living matter unrepresented in ther or "dead" matter. To not a few of our leading think rs, the word has ceased to harbor its original tenant; and some go so far as to insist that it should be dropped from he vocabulary of Science as useless, if not misl ading. Huxley humorously compares the imagined force it repre sented to a supposable "aquosity," which might be thought to enter the oxide of hydrogen at the moment of its formation to give rise to the properties and phenomena which make water so unlike its constituent elements, and asks: What better philosophical status has "vitaiity" than "aquosity?" "And why," he continues, with a mildy iron cal turn, "should 'vitality' hope for a batter fate than the other 'ities' which have disappeared since Martinus Scriblerus accounted for the operation of the meat jack by its inherent meat-roasting quality, and scorned the materi alism of those who explained the turning of the spit by a c. rtain mechanism worked by the draft of the chimney?' In his very ingenious discussion of the correlation of "life orce," so called, and the other "forms of force," Prefessor Le Conte insists that the term vitality still lives, for the excellent reason that it stands for, not a vague assumption. but a demonstrable reality. Each "form of force," he says, though what a form of force may be it is hard to conceive "gives rise to a peculiar group of phenomena, and the atudy of these to a particular department of Science. And since the group of phenomena called vital is more peculiar and different from other groups than those are from each other, and the science of physiology is a more distinct department than physics or chemistry, therefore the force which determines those pheromena is more distinct and better entitled to a serarate name than either physical or chemical forco.'
The investigations which lead to this conclusion Profesecr Le Conte basrs on the assumption that there are four distinct
be considered as lying in vertical order and ranking according to position. These planes are, ccunting from the first and lowest, (1) the plane of elementary existence; (2) chemical compounds; (3) vegetable life; (4) animal life. Correst ponding to these planes of matter are four planes or forms of force, similarly related. The first and lowest, called physical force, operates alone on the plane of elementary matter. A higher form, chemical force, enters upon and operates on the next plane in connection with the first. The third plane is the field of operation fir three forms of force; the two already named and the new and peculiar one, vital force. On the fourth material plane, the force peculis rly characteristic of animal life, the will, operates in addition to the other three. A fifth plane, the human, with free will as its characteristic, ra
metaphysics.
Ench of the
Ench of the groups of phenomena currently called physical, chemical, vital, rational and so on, are thus to be inter-
preted as determined by distinct and peculiar kinds or forms of force. It is the function of chemical force alone to raise matter from plane No. 1 to No. 2, and to produce the phenomena of No. 2 , which together constitute the scitnce of chemistry. Similarly it is the prerogative of regetable life force to raise matter from No. 2 to No. 3, aud to execute all movements on that plane, which together constitute the science of vegetable physiology. But there is no force in Nature capable of raising matter at once from No. 1 to No. 3, or from No. 2 to No. 4, " without stopping and receiving an accession of force of a different kind, on the intermediate plane
All this forms a consistent and very plausible system, but what foundation has it in the eternal verities? Is it demonstrably true that the alleged superimposed parallel planes of force and phenomena are not figments of the imagination, and misleading ones at that? The two upper ones c+rtainly approach each other at one edge (to continue the figure) so closely that they seem to be in actual contact. In their lower fields, the animal and vegetable kingdoms come so nearly together that it is quite impossible to discover the line which separates them, if such line there be. Again the products long supposed to be the peculiar work of vital force (as distinguished from the force which determines ordinary chemical combinations) have been so numerously built up fiom their elements in the luboratory, without the intervention of life, that the supposed necessity for a peculiar force for such work has been greatly reduced, if not quite destroyed. And still further, is it not a sheer assumption to say that the movements of matter in the hypothecical s'ate, which we term elementary, must be due to a kind of force differing absolutely from that which determines chemical compounds?
The real state of the case appears to be something like this. that we find it convenient to group certain varieties of phethat we find it convenient to group certain varieties of phe-
nomena into arbitrary classes, with boundaries more or less distinct. For like reasons, we are accustomed to say that the impelling cause or causes in one group are chemical, in another vital, and so on; and somttimes we forget that these terms have reference solely to our classifications, and do not necessarily designate separate entities, forms of force or whatever we may call them. The expansion of steam under diverse conditions produces the most diverse and dissimilar results; but it is the same motor all the time.
To denote a broadly characteristic order of activity, the term vitality is useful and convenient. As indicating a force inherent in and wholly peculiar to living matter, something sui generis, so to speak, it is evidently doomed.

THE DOVER AND CALAIS TUNNEL

There seems at length to be a definite project prorosed for the construction of a tunnel across the Straits of Dover, between Eogland and France. An Anglo French committee has for some time past had the matter under consideration, with the object of inquiring into ways and means and of discovering the most practical method of accomplishing the work. This body, among the members of which we find the names of Lord Richard Grosvenor, Mr. Thomas Brassey, M. P., Admiral Elliot, and Messrs. Hawkshaw an 1 Brunlees, ergineers in the English section, and of MM. Cbevalier, Paris, Talabot and other distinguished men of the French delegation, have adopted a plan which calls for a tunnel open only at its ends, and without the intermediate establishment which has been proposed in the middle of the strait. Its length from tho South Foreland, 5 miles east of Dover, to Cape Gris Nez, 4 miles west of Calais, will be about 21 miles; and it is stated that, with the new Brunton perforating machines, the bore can be finished in four or five years. The estimated total expense is $\$ 40,000,000$, and the probable revenue to be desired, it is believed, will reach about $\$ 4$, 000,000 per year. With regard to ventilation, the ordinary arrangements for making a draft as used in mines will be employed. One of the ends of the tunnel will be permanently open; the other will be provided with doors which will have to be opened to admit the passage of trains when necessary. Just within the doors, a jarge orifice will be opened to the summit of the vault of the tunnel ard in communication with a fire. By the draft thus caused, the air will be constantly drawn in from the open end of the tunnel and hence continually renewed.
The demand for a concession presented by the AngloFrench Commission, says Les Mondes, is now under public consideration at Arras, in the Pas de Calais, and it is believed that the execution of the projec: will before long be begun.

THE SIAMESE TWINS

The celebrated Siamese twins, which for the last half century have been the foremost of living curiosities, both is tury have been the foremost of living curiosities, both if
Europe and America, recently died at Salisbury, N. C. Thes
remarkable personages were born in Siam in 1811, and con stituted part of a family of fifteen children, several of whom were twins, though none save these two were in any wise deformed. Chang and Eng, however, were linked together by a fleshy ligature, which was about a foot in length, two inches broad and four inches thick. Through it ran a large artery and many veins, making their circulation identical Each brother had, however, an entirely separate existence and, with the exception of the ligature, which was equally sensitive to both, their senses were totally disconnected.
In 1850 Barnum exhibited them throughout the country and out of their salaries they managed to amass some $\$ 40$, 000. With this money the brothers purchased two adjoining plantations in North Carolina, assumed the surname of Bunker and, strange to eay, married. The courtship, it is stated, was done by proxy, and the wives, English women, who had only seen their husbands once at a show in London, ware selected by the twins from likenesses forwarded by an agent. Λ t the time of their marriage the brothers were
forty four years of age and their wives, who were sisters, forty four years of age and their wives, who were sisters, respectively twenty-six and twenty-eight. Their domestic separate homes and the husbands alternated, staying one week at Chang's house and the next week at Eng's. Each looked after his plantation and other business during the weeks of his living at his own place, and the visiting brother was not supposed to interfere. The families increased rap idly, Chang having six children and Eng five; of these four were deaf mutes, though not deformed, while the rest were strong and healthy. The domestic life of the brothers was not happy, and serious difficulties occasionally took place resulting in the estrangement of the families for long periods. They were slave owners and cruel masters, and during the war manifested strong southern proclivities. At the end of the rebellion, their wealth was very much reduced, and hey again went into the show business, with only partial uccess.
The brothers were of medium size and of peculianly repul sive faces. Chang was the most robust and good natured while Eng was of ten sick and morose. Chang also was the mental superior, although both were ignorant and had intel igence that scarcely rose above low cunning. As they grew old, the almost certainty of the death of one resulting in tha of the ocher rendered them fretful and nervous. While in Europe, they consulted the best physicians regarding the pos ibility of a separate existence; but when the ligature wa ompressed so that all transfusion of blood between them stopped, Evg fainted, proving that neither could sustain separate circulation. About a year ago Chang had a para ytic stroke which rendered his health the worse of the two and as a r lief from suffering, he drank freely. His death occurred first; and the shock, or more probably the cessation of circulation, aff ected Eng so strongly that delirium, followed stupor, almost immediately set in. At the end of two hours, he also expired.

THE ONE HUNDRED THOUSAND DOLLAR CANAL REWARD
The Canal Commission of the State of New York, "charged with the duty of trying and examining the various boat that were presented last year in competition for the reward of one hundred thousand dollars, have lately made their re port to the Logislature. They say that, owing to the technic alities contained in the law under which the reward was offered, they have been unable to make an award to any of the competitors. They ask that the law may be modified and new trials allowed. They report that two of the com peting boats very nearly filled the requirements. These were the steam canal boat William Baxter and the steam canal boat William Newman. The requisition was that each boat shou!d be able to carry 200 tuns of cargo besides motiv power, and make an average speed of three miles per hour.
The William Baxter was built especially to compete for the prize. She is 96 feet long and 17 feet beam, and has much sharper lines than the ordinars carial boats. Her bottom is porfectly flat, and her sides, stem, and stern, vertical The outlines of the immersed portions of her bow and stern are the same. She has an overhanging deck at the stern to protect her propellers, and with 200 tuns of cargo she draws $5 \frac{1}{2}$ feet of water. Her machinery consists of a Baxter up right boiler, and a pair of Baxter compound condensing en gines, 7×12 and 12x12. Her boiler is 6 feet high, 46 inche diameter, and has 152 two inch flues, and a grate surface o 7 fect. She is propelled by 2 three bluded twin screws of 4,2 feat diameter and 4 feet pitch. The amount of coal consumed in running from Syracuse to Utica, a distance of 56 miles was 830 pounds.
The Williqm Newman has a Hubbard hydraulic propeller She has a horizontal tubular boiler, 8 feet long and 4 inches in diameter, and a grate surface of 13 feet; and she is driven by a single 12×12 upright engine. The propeller is 4 feet 8 inches in diameter and 3 feet long. The amount of coal consumed from Syracuse to Utica was 4,500 pounds.
The time for competition has now expired. If the Legislature at its present session should renew the reward, w shall promptly inform our readers.

THE TURNER CAR BRAKE.-APPLICATION FOR AN EXTENSION

An application for extension of the car brake patent of Charles B. Turner, dated November, 1848, and extended in 1863 for seven years, is now before the Senate Committee on Patents. Messrs. Batcheller \& Thompson, the assignees of the inventor, submit their claim on the ground that they have recsived no adequate compensation for the use of the
device, having been opposed so strenuously by railroad com.
binations throughout the country that they have been com pelled to expend in litigation about as much money as they ave received.
The railroads, which are represented by Mr. Wm. D. Bishop, President of the New York and New Haven R. R. Co., and Mr. Joseph Howard, counsel for the Pennsylvania R. R. Co., cont:nd that adequate compensation has been received, and that the patent is invalid by reason of a prior invention. This last assertion seems to be in direct variance with Judge Drummond's decision in a recent infringement suit brought by the assignees against certain railroads in Illinois. A master in chancery reported adversely to the defendants, who had associated themselves together, and found heavy damages. The railroads filed a biil of exceptions, but the pinien of the appellate court, as delivered by Judge Drum mond, sustains the master in every particular. The decree is that the patent is good and valid; that the inventors have never neglected or abandoned such patent; that the instru ment covers the connecting of all the brakes of a car with windlasses, so that a brakeman, by operating any one of the latter, can apply all the brakes to the wheels; and that he Stevens brake, used by the defendants, contains all the covered combinat'on.
The railroads, as represented before Congress, are strongly pposing the extension; and after the presentation of the ase by Mr. S. D. Cozzens, of councel for Messss. Batcheller Thompson, a postponement was obtained by Messrs. Bishop and Howard, in order to afford necessary time fo consultation as to the nature of the reply they will make to the application. The matter, therefore, is adjourned for ome days.

CHE NEW ENGLAND ASSOCIATION OF INVENTORS AND PATENI OWNERS.

To the Editor of the Scientific American:
Many of your subscribers were surprised to see, in your issue bearing date January 10, 1874, a leading article
mentioning the New England Association of Inventors and Patent Owners in a spirit tending to mislead your readers. I would ask you to amend what evidently proceeds from insufficient information. I have sent you a prospectus of the Association, and trust that its perusa will lead you to see that its objects are neither as limited nor as selfish as you state them to be
The objects aimed at are "to collect and diffuse statistics ending to demonstrate the usefulness of patent laws, and he growth of our arts and manufactures under their influnce ; to draw from the Congress of the United States such recognition of their general value as shall secure a just and liberal basis of patent protection ; to bring together all per ons interested, and reconcile their differences, and to take such action as may best promote the general prosperity of the classes represented in its membership.'
As no inconsiderable number of your subscribers are mem bers of this Association, and there seems to be no question of its being able to be put to good uses, and assuming that ou desire to give only reliable intelligence to your readere would ask, on behalf of the Association, that you correct the impression created by the strange animus of the articl in question. Very respectfully,

Theo. A. Dodge, President of the Association.
Remarksby tue Eifitor.-In respect to the above associ ation, our language was as follows(see page 16 of our curren volume): "The objects of this Association, so far as we id and benefit to the members in the management of thei patents, to secure the extension of their severa! patent mon opolies, compel the payment of fair prices for patents b railway companies, and in o:her ways to promote the genera railway companies, and in o:
prosperity of the country."
We have received the prospectus above referred to, whic onsists of a report signed by Mr. Dodge, upon the expected cope of the Association. It is a very creditable document and contains various excellent suggestions, to which we ver, purport to be a statement of the proceedings of the original meeting of the Association, and has therefore no bearing upon the question of the accuracy of our remarks concerning those proceedings.
We think, if Mr. Dodge will refer to the reports of the meeting once more, as contained in the Boston daily papers, he will find that our statement was substantially correct The "strange animus," the impression of which Mr. Dodge on behalf of the Assosiation, asks us to correct, refers, we presume, to the objections we presented to, the Hill resolu tion. This resolution covered, indirectly, as we thought an endorsement by the Association of one of the Vienna propositions, to the effect that governments ought to fix the prices at which patents ehall be sold ; in other worde, that the inventor, after he has received a patent, ought to b deprived of its control. Now, if there is any one point which imparts a distinguishing excellence to the American patent law over the continental system, it is that we give to the inventor the free, untrammeled right to make use
and dispose of his patent during the entire term for which it is granted, according to his own best judgment. We permit no government interference with him, and have no neaking government detestives to dog his footsteps, as in some parts of Europe. The mere suggestion of an alteratio f our patent laws, to authorize such interference, is abhor ent to the feelings of American inventors, and contrary to public policy.
These views of ours we believe to be fully in accord with
is mistaken if he supposes that many of our subscribers, in the A

In so far as the New England Association shall actually do anything to promote the interests of inventors, or encourage the progress of the cseful arts, its members well know that they may always count upon us as being with them, heart and soul. But when they go for the approval, even indirectly, of government interference in the sale of patents, we are not with them, because we believe it to be a wrong policy.

THE PHILOSOPHY OF THE SAND BLAST

At first sight, the cutting of a diamond or other hard sub ance, by another so much softer as aand is, steme flatly ontradictory to common experience. Still, to any one who has ever fired a rifle ball against a rock, the fact that a flying soft body will bruise or crush a harder one is ntither sur prising nor new. The possible perforation of a pine board by tallow candle, fired from a musket, is an illuetration of the same fact, familiar to every school boy. In the sand blast, however, the effect seen is so manifestly disproportion$a^{+} e$ to the momentum of the individual particlos that the explanation usually given in the grosser cases fails to hold good. Grains of sand, of very unequal s:ze, appfar to do precisely the same work whes moving at thesame rate, thus directly contradicting what has litherto been an unguestioned law of impact.
Whence arises the discrepancy between what is and what might be expected? To answer this question, a) English investigator has reconsidered the lawe of impact, and finds that one of great significance and importance bas heretofore been entirely overlooked. It is this: At the moment of first coutact, the pressure between impinging bodies is independent of their size.
This law has been undetected heretofore, simply because the laws of impact have been considered mainly with rt fernce to the centers of gravity of the bodifs, while little or no attention has been paid to the points of impact and what goes on there between the instant of first contact and the time when the center of gravity is changed. Even with the compacted bodies, it takes time for the pressure to extend to he inner particles.
Hence, on the instant of impact, it is only these particles in contact which are affected, and the rest of the body might be removed without altering the $\in f f e c t$. In oiher werds, the effect of impact is independent of the quantity of matter behind the particles whichactually impinge.
That the effect of the sand blast is-as this law indicatesbattering, not a grinding, action is clearly sbown by the microscope. A polished glass surface, that bas been exposed for an instant to the blast, is spotted with points from which cales of fractured glass have been broken away in irregula direction. Each spot appeared as if a pellet of glass had been driven in by the collision, and the wedge-like action hus set up had driven away the surrounding glass. The polariscope confirms this inference. When thus tested, ach spot shows a colored halo, proving that the surface of the glass is under strain.

SCIENTIFIC AND PRACTICAL INFORMATIGN

the vulcanization of hydrocarbon compounds.
In treating bituminous substances, such as aspbaltum, rahamite, petroleum residuum, the different mineral resins, coal tar, etc., with sulphor, chloride of sulphur, or sul phur in combination with various bases, such as sulphuret of iron, etc., a definite chemical compound is formed, differ ing from its constituent parts in many matrial respecto, being harder, tougher, and more capable of resisting ieat. The sulphur should be in just sufficient proportion to form his compound, as an excess would mix mechanically with he mass and render it too brittle for usc. Difficulty is usu ally experienced in detelmining the proportion of sulphur as it varies according to the hydrocarbon used. To ovescome this difficulty and to avoid all davger of having an excess of sulphur, it is best to use in addition some metallic oxides such as litharge, for example), which will combine with any free sulphur, forming a metallic sulphuret. The lydro carbons are first beated till the water is entirely evaporated and the sulphur, chloride of sulphur, or metallic sulphuret is then added. The sulphur may be dissolved in bisulphide of carbon or any of the etheseal or fatty oils, or it may be mixed directly with the mass.

antimony blete.

C. Kraus obtains this color by boiling tartar emetic with yellow prussiate of potash, and adding hydrochloric acid. The antimony does not enter into the composition of this color, but merely faciliates its formation.

WHITE COAL

A new kind of fuel has recently been discovered on the Australian continent, which has rectived the name of white coal. It consists of felted vegetable tibers, like peat, which ontain, interspersed between them, fine grains of sand. It easily combustible and burns with a light flame. The white coal covers large tracta, requiring no mining, and is already used in large quantities as fuel.

Cymogene (? chymogene) writes to say that our correspondent, I. S. Peet, is wrong in adding rhigoline to tle list of products of coal tar, as this body does notexist in the coal tar, but belongs to the highly volatile portions of petro coal tar, but belongs to the hig
leum, being second in the list.

PROFESSOR COFFIN.

Professor James Henry Coffin, LL. D., was born in Williamsburg, Mass., on the sixth day of September, 1806. He wa sisty-six years old at the time of his decease, which occurred February 6, 1873, at Lafayette College, Easton, Pa., where since 1846 he had filled the professorship of Mathematics an Astronomy. He graduated at Amherst College in 1828
While at Williams College, Professor Coffin erected, upo the Greylock peak of Saddle Mountair, at a hight of nearly 4,000 feet above the ocean, an observatory, where continuous observations were taken, even through the winter season when for three months it was impracticable to ascend the peak In this interval the clock work faithfully did its entire duty. The anemometer had been changed by substituting for the stream of sand a series of cards half an inch square laid consecutively on a moving band that deposited one of them every fifteen minutes. Each card being inscribed with the day and hour it represented, when the receptaclemarked " North," for example, was examin ed, all the cards found in it indicated the exact quar ter hour in the past three months when the wind was from that direction
The work of Professor Coffin's life was the develop ment of his theory of the winds, under the auspices of the Smithsonian Institution. But the great work to which he owes his celebrity, in all parts of the world, is his treatise on " The Winds of the Northern Hemisphere," published in the " Transactions on the Smith sonian Institution," vol. vi., in 1853. The materials on which it was based were derived from all accessible ources, including 600 different stations on land, and numerous positions at sea, extending from the equato to the 83d degree of north latitude, the most northerly point ever reached by man, and embracing an aggre gate period of over 2,800 years. In this work Pro fessor Coffin was the first clearly to establish the fact by accurate comparison of observations, that there ar three great zones of winds in the northern hemisphere The first belt is that of the region of the eusterly trade winds, extending northward in the western hemisphere to about the 32 d degree north latitude and in Europe to the 42 d degree. The second is the great belt around the world of the return trades, in which the predominant direction is from the west. This extends northward in America to 56°, and in Europe and Asia to about 66° north latitude. Be yond this, principally within the arctic circle, is a belt of easterly or northeasterly winds. The common pole of these belts or zones has not the same posi tion as that of the geometrical pole of the earth. It appears to be in latitude 84° and longitude 105° west of Greenwich and has been denominated by Professor Coffin the meteor ological pole.
These results are in general accordance with the mathe matical deduction from the theory of the winds of the globe, which considers them as due to the combined action of the movement produced in the air by the greater heat of the equator, and the rotation of the earth on its axis.
The researches of Professor Coffin also strikingly exhibit the fact of the influence of the seasons in modifying the direc tion of the wind, or mproducing the results denominated mon soons. Thus, along the eastern coast of North America, as is shown on the maps, the tendency during the summer months of the opposing forces, is to lessen the dominant westerly wind and this effect is noticed even beyond the Mississippi, as wel as in the Atlantic Ocean along our coast. The effect is, un doubtedy, due to the change of temperature in the land-the temperature of the ocean remaining nearly the same during the year, while that of the land is greatly increased in summer above the mean, and depressed in winter. From this cause the air will tend to flow toward the center of the continent rom the ocean in
After the publication of the work on the winds, he continued
After the publication of the work on the winds, he continued finally extended his investigations to the winds of the entire globe.-Popular Science Monthly.
UTILIZATION OF COPPER SCRAPS IN ELECTRO PLATING.
M. Charles Guérin has recently invented a mode of avoid ing the use of a copper plate as a soluble anode in electro plating, substituting therefor a mass of pieces of the metal By this means he utilized cuttings and other scraps, previously deposited films, and, in a word, all the metal which would otherwise be thrown aside as useless for such a purpose
Fig. 1 is a representation of the receptacle used for hold

ing the copper scraps. It is simply a prismatic box about $1 \frac{1}{2}$ nches broad, sustained in the bath by the two longitudinal rods shown at the top. The acting sides are pierced each with about 100 holes, of $0 \cdot 1 \mathrm{inch}$ in diameter, per 16 square inches, and are of oak or beech wood, and about 0.2 inch thick. Before it is put together, the apparatus is plunged in a bath of melted wax or covered with several coats of gum lac varnish,in order to protect the parts from the action of the acid, and brass screws are used to connect it together

The following practical hints will be of use in selecting scraps to fill the receptacle: Choose pieces free from solder or rivets of brass or iron. Flatten out with a hammer such bits as are curled up, and divide with shears those of ir regular form, so that all may fit closely upon each other. With these, pack the receptacle as uniformly as possible For the band of copper, which serves as a conductor, choose a long piece so that it may bury anew in the mass as its ower end becomes dissolved. Every four or five days stir he pieces vigorously with a brass rod, so that they may be freed from any film of impurity which may form upon hem.
The decomposing action of a current acts in inverse ratio
to the distance, so that, under ordinary circumstances, the

deepest portions of the molds are the weakest. This is a decided inconvenience in cases of objects in high relief and which are liable to prolonged rubbing or repeated shocks. The soluble anode, in its rectangular form as before described, acts exactly as a plate, and hence gives proofs of unequal thickness; but if the active surface of the receptacle, instead of being flat, be so disposed as to form a sort of counterpart, following the contour of the mold, the deposit will
have a uniform thickness. This is illustrated in

MN is the muld in section; over it,at a distance of 0.3 inch, is arranged a gutta percha box, $O \mathrm{P}$, of which the bottom is perforated with a large number of small holes. This box first has its bottom covered with linen cloth,and is then filled with copper scraps, and the copper conducting band is inserted.
In order to localize or concentrate the gal certain places, it is only necessary to heap up the copper pieces at the desired points ; and conversely, when a part has become covered with a deposit of sufficient thickness, it is obviously unnecessary to employ the protecting coverings of wax or gutta percha ordinarily used with plate anodes. The mode of forming the gutta percha counterpart, consists in coating the interior of the mold with several layers of fine thin plaster for a thickness of $0 \cdot 3$ inch. This is allowed to harden. Into the hollow cast the gutta percha, softened by warm water, is pressed with the hand,so as to cause it to conform to the indentations of the plaster, care being taken to keep it of uniform thickness. After cooling, it is easily removed and, after perforation, is ready for use as above described. It is of course a reduced copy of the interior of the mold.

A GOOD advertisement in a widely circulated newspaper is the best of all possible salesmen. It is a salesman who never sleeps and is never weary; who goes after business early and late; who accosts the merchant in his shop, the scholar in his study, the lawyer in his office, the lady at her breakfast table; who can be in a thousand places at once, and speak to a million people every morning, saying to each one the best thing in the best manner.-Rowell's Reporter.
Professor Le Conte, in the American Naturalist, in his paperon economic entomology, gives an instance in which all the caterpillars in a nine acre piece of woods were destroyed by a disease which had been communicated to them by a sick silkworm. The same principle might be used in destroying the cotton worm and others of like nature.

On the evening of December 24, 1873, a brilliant meteor was seen in the States of Pennsylvania, Maryland, and the District of Columbia. The Washington Star gives the following particulars:

About 7.40 o'clock on Wednesday, December 24, one of the most brilliant meteors ever seen in this section of the country passed over the District. Its intense brightness strongly illuminated all terrestrial objects, and was visible even in gas-lit parlors, and it disappeared with a loud explosion. It was first seen a little south of east, and its course was about northwest by west. It seemed about half the diameter of the full moon, and left a track of light apparently extending thirty or forty degrees. Windows were rattled by the explosion, and one of the most dilapidated buildings in the district-the sixth precinct station house, cor ner of Ninth and K streets, was shaken so much as to throw down some of the plastering."
The Fairfax, Va., News says: "On Wednesday night, about the hour of 8 o'clock, an aerolite passed over this region, lighting up the country like midday, and is supposed to have exploded, from the sound which fol lowed, which was equal to that of the heaviest artillery, jarring the houses all through this section of country."
The Alexandria, Va., Sentinel says: " About \% o'clock on Wednesday evening, King street being at the time crowded with persons seeking the stores or enjoying the Christmas Eve sights, a meteor of most remarkable size and brilliancy shot athwart the sky from east to west, directly over the city.'
From an occasional correspondent near Vienna, Md. we have received the following: "About 7.30 o'clock on Christmas Eve night, a very loud clap of thunder was heard, and a most vivid flash of lightning seen in the country around Vienna, Falls Church, Langley, and Lewisville, Va. Just before the report a shock like that of an earthquake was felt, shaking houses, etc. and the very earth itself."

Residents of Coatesville, Pa., and vicinity report that they also felt a severe shock about 8 o'clock on Christmas Eve. They attributed it to an earthquake. Houses were shaken, windows rattled, and a rumbling noise was heard. From Sandy Spring, Md., Mr. Henry C. Hallowell writes to the Baltimore Americun as follows: "It was my happy fortune, last evening, to witness one of the most magnificent spectacles I have ever beheld-the passage of a meteor of surpassing splendor. At 8 o'clock I was startled by a brilliant light encompassing me, and by the rapidly moving shadows. On looking up I saw a meteor, about one sixth the size of the full moon, of elongated shape, the body of it of an intense greenish white, and the head or front part red or blué, with some scintillations. A trail extended about three degrees. When I first observed it, it was due south, and of an elevation of about fifty degrees. The light was so brilliant that the family within the house were startled by the dimming of the lamps and by the greenish light upon the wall, and rushed to the window to see the cause. The whole landscape was illuminated for the distance of a mile. A laborer about two miles from my point of view was startled by the sudden light and the moving shadows of the trees, and thought some concealed boys were playing a Christmas trick upon him. On looking up, he says, he saw something a great deal brighter than the moon, that moved about a mile and a half through the sky. After the disappearance of the meteor, at times variously estimated from one half minute to four minutes, the latter being my own judgment, there was a sharp report that shook the windows, and some say the earth. From the length of time after the disappearance of the meteor, I supposed it the report of a cannon. I confess I was too much startled and too lost iu admiration to make an accurate estimate as to hight and direction, but the above are approximately correct. My position is in Sandy Spring, Md., 600 feet above tide water, eighteen miles north of Washington, latitude $30^{\circ} 9^{\prime}$."

A Meteor in Nevada.

A meteor of uncommon brilliancy was seen at Virginia City, Nev., about 6 o'clock on the evening of January 6, 1873. A spectator, describing it, says that suddenly there came a flash of light, so dazzlingly white and bright that it caused him, for an instant, to close his eyes. Opening his eyes, almost instantly he beheld, falling perpendicularly from the heavens, a ball of what seemed white fire, of intense brilliancy, about the size of a wash tub. The huge meteor descended as swiftly as a flash of lightning, apparently falling directly to the earth. Just before it passed down, the meteor divided into a great number of fragments, apparently about the size of a man's fist. These, darting and showering down from the main globe of fire, presented much the appearance of the ribs of an umbrella when stripped of its covering, the streaks of fire streaming down on all sides of where the main ball or nucleus had been seen. Although the meteor was of a pure, dazzling white color, it threw a bright blue glare upon the buildings

A New Alkaloid from Morphia.
A new substance has been prepared, by G. Nadler, by the action of an ammoniacal solution of cupricoxide on morphia. Its chloride is of a brilliant white color, and is easily soluble in hot water, in which the ammonia throws down an amorphous precipitate, that remains unchanged in the air in the moist state. With concentrated sulphuric acid, it becomes of an intensely green color. From the potash solution, when boiled, the alkaloid separates in scales having the luster of silver. It is, moreover, distinguished from morphia by the trifling solubility of its sulphate, and from apomorphia by its stability in moist air.

NEW ENGLISH THRASHING

 MACHINES.We are indebted to Engi veering for the annexed en graving of some new thrashing machines, invented and manufactured by Messes. Ransomes, Sims, and Head, of the Orwell Works, Ipswich, England, and which recently attracted considerable attention at the Vienna Exposition. The at the Vienna Exposition. The construction of the various forms of the apparatus will be readily followed from the d tails in the illustrations.
Fig. 1 is a quick delivering double blast implement, especially suitable for the large corn-growing districts of the West, and made of very great capacity. The sheaves are fed into the hopper as fast as they can be delivered (for a speed of 1,000 to 1,200 revolutions is the working rate), pass upon through the narrow space between the dier and the concave, and thus being relieved of the greater part of the grain, the sheaves pass cut upon the first straw shaker, which extends from the concave with a considerable inclinadion upward, to about midway the machine, where they fall upon a Where they fall upon a ord and cline series of shakers, placed at a lower level, and by these are carried to the delivery at the front end of the thrasher. The shakers consist of a number of short curved blades set on an endless band, a series of these being placed side by side, so s to occupy whole and as the set of the blades is different in each row, the straw is seized by a very large number of points as it leaves the concave, and is so agitated that the grain is effectually removed.
The loose wheat sha ken out passes between the spaces in the shakens on to close trays, parallel to and immediately below them, and thence falls \mid vide by a vertical plate, which is placed below the edge of a double set of similar knives fixed in the concave, and these upon the large top riddle or "jog shoe," extending for about the sieve, so that the cataract of grain would only just fall effectually complete the bruising operation. Connected with two thirds the length of the machine. This is suspended in on one side if there were no blast; but the action of the fan this machine is an independent apparatus for raising the the usual manner, and the grain falls through holes in its is sufficient to throw out the dirt, light grains, chaff, etc., chopped straw as it leaves the drum and depositing it away bottom to the lower riddle, the larger bodies being shaken upon the other side of the plate, and effect a perfect division from the machine. This consists of an elevator on a seaoff the front edge of the top one. The lower riddle is driven of the grain. A special feature may also be noted in the rate carriage (Fig. 3), having at the lowest point a fan driven off the same crank as he upper one, exposed to the blast from the fan, and the chaff and other impurities are blown off, falling in the front of the machine, and, mixing with the large waste, shaken off the upper jog shoe. From the lower riddle the grain falls into the elevator box. the elena or which is eta and incised in a bertical outside the frame, lifts t nearly to the top of the machine and to a point just behind the drum and concave.
From the elevator the the grain, if very smut ty so as to necessitate hand winnowing, is de livened directly to the sacks, brat ordinarily it passes into a barley owner and chop cleaner, which consists of a con-

Fig. 1. -THRASHING MACHINES AT THE VIENNA EXPOSITION. the drum, which is made very heavy and is fitted with the cal drum, the inside of which is serrated; and the grain, be- bruised and softened. One previous! usual twisted beaters, and thence between it and the con- \quad ing driven against these serrations, is effectually cleaned. $\begin{aligned} & \text { section in Fig. } 2 \text {, can, when it is desired to deliver straight }\end{aligned}$ eave, which is made of malleable cast iron gratings, on to a From the cleaner the grain slides down an inclined plane to straw, be used as an ordinary thrasher, the crushing rollers wrought iron frame, the gratings being placed in sections, a sieve, the under side of which is exposed to a blast, which in this case being covered up and the straw delivered in the and secured so as to be easily removable. After being forced \mid strikes the grain as it pours into a hopper. The latter is di- usual way. But there are provided two drums of sheet iron
 their spindles in long bear ings in standard brackets. Both are driven off the main shaft, the upper one at a speed of 1,000 and the lower at 900 , revolotions per minute. In the top drum, attached inside and projecting from the outer face, are three spiral rows of knives. The latter are straight and slightly tapering, with the edges sharpened on all their sides. They are grouped in pairs, each two blades being only so far apart as to permit a single blade of simile construction to pass between them. These single blades are attached to the concave in connection with which this drum works, like the main drum at the back of the machine. The straw, passing off the shakers between these knives, is of. factually cut up into pieces of irregular size and form. Passing then upon the lower drum, it is still further bruised by the second set of knives; these latter, of which there are four rows attached in apipals around the bottom, are single and run between
arrangement for discharging chaff at the front end of the machine, where it mixes at once with the ears, broken straw, etc
Two other machines (not illus trated) are manufactured by the same firm, the object of which is rather perfect thrashing than quick work. The construction is essen tally the same as above described he straw shakers, however, being double, are provided with a pud der or transverse bar, which is isth forks, and serves to mote the straw. Th chaff can be delivered at the front chaff can be delivered at the front
instead of the back of the ma chine.
Messes. Ransomer, Sims \& Head have also recently exhibited machines of similar description, in tended for use in countries where the straw is extremely hard and he straw is extremely hard and unfit for the

(represented in perspective in Fig. 4), the action is such as to cut and bruise the straw and, at the same time, extract the grain. The relative position of the two cylinders is horizontal, instead of vertical. The grain passes to a stepped riddle, from which the chopped and bruised straw falls to a second one, and travels forward towards the front end of the machine, dropping the grain still contained in it until (by the ime it has reached the end, where there is a third roller for further bruising the straw, if desired) all the grain has been separated, and has fallen in the system of riddles beneath, where it is exposed to the action of the blast, and is treated as in an ordinary machine.

Corrxsyoudente.

The Relative atraction of the carti and the Sun

 To the Editor of the Scientific AmericanA correspondent suggests, on page 68 of your current vol ame, the construction of acales, of the capacity of several tuns and of the utmost possible delicacy, in order to decide whether really the solar attraction causes, under the equator, difference in weight at midday and midnight, and if so, to ascertain whether astronomers have not miscalculated the relative masses of the sun and the earth. This suggestion calls for a few remarks.
In the irst placa, most delicate scales are not those of great capacity, but those of comparatively small size. As the waight of any piece of machinery or structure in general increases as the cubes of the dimensions, very large scale have a great deal of their. own weight to carry, which of course interferes with their relative sensitiveness. The proposition to make a scale of 10 tuns capacity, able to show difference of some 34 lbs . more or less, suggests a delicacy of only 24 in 20,000 , or $8^{\frac{1}{3}} \frac{\mathrm{rld}}{\mathrm{rl}}$ part, and when weighing to within drams, a delicacy of one ten-thousandth part, of the load. It is doubtful if large scales could be made of such sensitiveness: while, on the other hand, the superior kinds of large sized chemical scales eazily indicate differences in weight of a one millionth part of the load. Therefore, in place of taking 10 tuns, we must rather make the exper ment with 100 grammes, and may then easily find the differ ence to within a milligramme, which is the hundred-th申u sandth part of the load.
But it must not be forgotten that the ordinary scales can not be used for such an experiment, as the diminished gravitation will act equally on both sides, and the equilibrium, when once established, will not be disturbed by any change in the amount of gravitative attraction. In order to ascer fin the latter, we must counteract gravitation by other forces, for instance, those of springs; and if we suspend weight by a proper system of springs (spiral springs would be best) and notice the different amounts of extension, unde different conditions but at the same temperature, we may arrive at some kind of measurement of the changes in th attraction of gravity. Such an arrangement was many years ago proposed by Sir John Herschel in order to practi cally verify the existence of the increased gravitative ac raction when nearing the terrestrial poles; he did not, how aver, rropose to use it as an instrument of measure, but a simple rough indicator; for mathematics applied to mechan ics give all the datce for calculating these amounts to any de sired degree of accuracy. It is so with the subject in ques tion; the difference in the amount of solar attraction on errestrial bodies under the equator at midday or midnight ha not only been settled, but, being the cause of one of the reat tidal waves (the other wave being due to the moon) has been submitted to a series of rigorous calculations and observations. The result of these calculations, combined with some other considerations, has been that we have al ready come to the conviction that the mass of the sun, as hus far adopted, has been overrated nearly one tenth, and ts distance one twenty eighth part; and that therefore all our astronomical tables have to be reduced by these two co effic:ents, except the table of the elements of the moon, which is correct. The reason that this has not been done already is that thera is still a slight uncertainty in these coefficients of correction, which will be definitely settled this very year by the observations on the transit of Venus, by which we shall be able to accomplish a full and precise settlement o this important question, and ascertain the distance of the sun, and consequently its mass, with an accuracy far surpassing anything which could possibly be accomplished by experi ments on gravitation, which, at the very best, can demonstrate nothing more than the reality of the changes in the solar at raction, but not, with any available degree of accuracy, the amounts of the same.
P. H. Vander Weyde.

New York city.

Towers and Spires.

To the Editor of the Scientific American:
There is an admirable illustration in your paper of Janu ary 24 , showing the hight of some of the most famous struc tures in the world, in comparison with the iron tower whic it is proposed to ere at Piniladelphia as a centennial monu ment. It has occurred to me, however, that your readers might infer from the picture, or from the description of it, tiat, the spire of Cologne cathedral has already reached its pr jected hight of 501 or 507 feet. The fact is that it has risen (or rather they have risen, for there are to be two of these lifty steeples at the west front of the church) only a little aloove the ridge pold of the edifica, which is about 250 feet high. The only completed spire is a slender iron one at the junction of the nave and transepts. I do not know the oxact hight of this light and graceful pinnacle, but it cannot much exceed a hundred feet above the roof. The other
spires, which are marvels of Gothic grandeur and beauty, ar slowly working upward, and it may be many years yet befor again in 1872 , and the progress made in the interim was ap parently but slight.
I may add that there are several very lofty spires that d not appear in your picture. The hight of the central spire of Rouen cathedral is a little greater than that of Strasbourg being 482 feet, according to good authorities. It is an ugly ffair of iron lattice work, built a few years ago to replace the ancient wooden steeple, burned in 1822. It forms a fearful contrast to the beautiful old towers of the west front, of which, by the way, there is an excellent picture in Black burn's " Normandy Picturesque," lately reprinted by Osgood \& Co. The author remarks: "The central spire in the background is really of cast iron, and stands out, it is fair to say much more sharply and painfully against the sky, than in much more sharply and painfully against the sky, than in our illustration; ${ }^{*}{ }^{*}$ our artist evidently could not
bring himself to copy with literal truth this disfiguring lement in the building.
Another of the loftiest spires of Europe, and a really fine ne, is in Bruges, in Belgium. It is the steeple of the ven rable church ef Notre Dame, which dates back to the 12th entury. The spire, properly so called, was rebuilt a few ears since, the original one having begun to lean and threatening to fall. Its hight is given by Baedeker, in the first dition of his "Belgium and Holland," as 442 English feet ut in the second edition (1870) it is put at 468 feet. I have een it elsewhere stated as 450 feet. Taking the most modrate of these figures, it is certainly one of the two or three tallest steeples in Europe or the world. It looks taller than the Strasbourg spire, probably because there are no very high buildings near it. Like many of the Belgian steeples, it is built of brick, and, though it lacks the profusion of Gothic rnament that makes the Strasbourg spire so beautiful, it is emarkably graceful in its outlines, and altogether one of the most admirable structures of the kind that I have seen. The chancel is the one that contains the tombs of Charles the Bold and his daughter Mary, world-renowned as works of onumental art.
The highest spire in Great Britain is that of Salisbury cathedral, commonly put at just 400 feet; but the tallest rections of any kind are two chimneys in Glasgow, which are respectively 450 and 468 feet in hight.

Application of Dr. Vogel's Recent Discovery in

To the Editor of the Sciencific American
The interest which you and some of your readers take in hotography may render the following worthy of note:
Dr. Vogel has discovered that a sensitive collodion film of odide of silver, when covered with some coloring matte which obstructs certain rays of light and does not interere with other rays, becomes sensitive to those other rays, that is, those rays which ary obstructed act photographically upon that film, just in proportion as they re obstructed. If the yellow rays are stopped, then the fim becomes sensitive to yellow light, and yellow objects, which have heretofore been considered non-actinic, can thus e photographed as easily as blue objects have been. If this be so, then it is one of the most important discoveries that have been made in photography since the discovery of that art. It will enable us to depict objects of all colors, the inability to do which has been a great stumbling block in the way of photography. I need not mention the numerous ways in which it may be applied : suffice it to say that hereofore only one of the four primary colors has been considered to be actinic, that is, the blue. As to the theory of the bove, you are well aware that there are two theories regard ng the action of light on the sensitive film, one called the chemical, the other the physical theory. In the first, it is laimed that the reduction of the silver is done while the ight is acting upon the film. In the second, it is claimed hat a tremulous or vibratory motion is communicated to the film by the vibrations of light; and that when the devel oping solution is applied, the reduction takes place. In either case, it is the vibration of the light that does the work. The eason why iodide of silver is more sensitive to the blue ay is, it is thought, that the wave length of that ray coin ides more nearly with the size of the particles of the iodide f silver, thereby disturbing or tearing them apart more. I sensitized iodide of silver film be held before white light, t will be seen that the only color apparent is the orange and that blue objects appear black when viewed through it showing that the blue rays are all obstructed. That film is therefore sensitive to blue light. Again, suppose we give that film a blue color, then the orange or yellow rays are stopped. As action and reaction are equal, the amount of resistance exerted by the film is equal to the amount of light stopped; and the ray which is then most obstructed has the reatest action on the film. Taking this view of the matter t keems to me quite reasonable that any ray may be made ctinic.
New York city.
D. C. C.

The Railways of Great Britain

The leading featuras of the railway system of the United Kingdom, at the end of 1872, may be thus summarized: A otal sum of $\$ 2,845,236,730$ had been expended on 15,814 miles of railway, or nearly $\$ 180,000$ per mile. There were 0,933 locomotive engines, or about 1 to every $\frac{2}{3}$ of ε. mile and 337,899 vehicles, or about $21 \frac{1}{3}$ per mile, besides the wagons of traders and companies other than railway companies. By the running of trains for $190,920,719$ miles, 256,520.570 wero received during the year, of which $\$ 128$, 61,915 were expended in working and maintenance, and
$\$ 128,258,655$ remained as net profit, so that as nearly as pos sible one half the gross receipts were expended in earning them. There were $422,874,822$ passenger journeys, besides 272,342 season ticket holders; and $179,302,121$ tuns of goods and minerais were conveyed. The average rate of dividend on ordinary capital was 5.14 per cent, and upon the total capital 4.95 per cent, including $\$ 164,507,380$ of ordinary capital, part of $\$ 212,913,135$ of total capital, which rectived no interest or dividend. The average cost of working each train was 64.64 cents, per mile, and the average rectipt from each train was $129 \cdot 12$ cents per mile; so that the average net profit from each train was 4.58 cents per mile; while the total cost of working was $\$ 8,110$ per mile, and $\$ 16,220$ per mile was received.

ASTRONOMICAL NOTES.

Observatory of Vassar College.
For the computations of the following notes (which are approximate only) and for most of the observations, I a indebted to students. M

Mercury
On the 1st Mercury rises at 7 h .24 m . A. M., and sets at 4 h .58 m. P. M. On the 29 th , Mercury rises at 7 h .26 m . A. M., and sets at 7 h . 18 m . P. M.

It should be looked for after sunset during the latter part the month, as it reaches its greatest angular distance from the sun on the 2 d of March.

Venus.

Venus rises on the 1 st at 7 h .6 m . A. M., and sets at 4 h . 42 m . P. M. On the 28 th it rises at 6 h .50 m . A. M., and sets at 5 h .48 m . P. M.

Venus is very unfavorably situated for observation ith ith the sun, and its apparent diameter is very small

Mars.
Mars rises on the 1 st about 9 A. M., and sets before 9 P . M. On the 28 th it rises about 8 A . M., and sets before $9 \mathrm{P} . \mathrm{M}$. It will be seen that it is above the horizon during the day ime, and can be seen only for a few hours after sunset.

Jupiter

Jupiter is coming into better and better position. It rises on the 1 st at $9 \mathrm{~h} .15 \mathrm{~m} . \mathrm{P}$. M., and sets at 9 h .25 m . A. M. On the 28 th it rises at $7 \mathrm{~h} .16 \mathrm{~m} . \mathrm{P} . \mathrm{M}$., and sets at 7 h . 30 m . on the morning following.

The various changes of the moons of Jupiter can be seen with a small telescope. On the 17th, (according to the American Nautical Almanac) the largest of these satellites will pass between the planet and the earth, and seem to traverse the disk of Jupiter. A powerful telescope will show it projected upon the planet's disk for several hours in the evening, while to glasses of low power Jupiter will apnear to have but three moons.
The same phenomenon can be seen on the 24th, but at a ater hour of the night, and again on the 3d of March, as this satellite revolves around Jupiter in about 7 days.

Saturn.
Saturn is above the horizon in the day time, rising at 6 h . 59 m . A.M. on the 1st, and setting at 4 h .35 m. P. M., while on the 28 th it rises at 5 h .20 m . A. M., and sets at 3 h .5 m . P. M. t will be seen that it is useless to attempt to make observaions upon this planet.

Uranus.
On the 1st Uranus rises at 4 h .44 m . P. M., aud sets at ih. 9 m . A. M. On the 28 th it rises at 2 h .52 m . P. M., and sets at 5 h .16 m . A. M. of the next morning. As its northern de. clination is about 19°, it attains an altitude of about $\left(6 i_{i}^{\circ}\right.$ when on the meridian, which it passes at midnight on the 31st of January, and near midnight during the first half of the month. It is among the stars of Cancer, can be readily found with a telescope of moderate power, and will be known from a star by its showing a measurable disk.

Neptune.
Neptune can be seen well only by means of a powerful elescope at any time, and at present is not well situated. It comes to meridian on the 1 st at 4 h .51 m . P. M. and on the 28 th at 3 h .7 m . P. M.

Barometer and Thermometer

The meteorological journal from December 14 to January 7 gives the highest barometer, January 17, 3048 , the lowest arometer, December 28, $29 \cdot 33$; the highest thermometer, anuary 4, at 2 P. M. 52°; the lowest thermometer, January 17 , at 7 A. M., -1.5°

mount of Rain.

The snow and rain which fell between the morning and vening of December 19 amounted to 0.27 inches.
The rain which fell between the morning and evening of anuary 2 amounted to 0.3 inches.
The rain which fell between the afternoon of January 5 nd the evening of January 7 amounted to 3.2 inches.
Auroras were seen on the evenings of January 15, 16, and 17.

Sun Spots.
The record extends from December 17 to January 19, inclusive, observations being omitted during the holidags on account of the absence of the observer. The clear days of the remaining time were the 15 th and 17 th of December, the 9th, 10th, 17th, and 19th of January. Spots have been small and generally few. Those of the 9 th aud 10 th were identical in appearance, their positions only differing by the motion of the sunon its axis. On January 19, eleven were scattered over the disk, eight being in pairs, the remaining three solitury. Some of these were identical with those of the 17th. Faculæ have been unustally scarce.

PROFESSOR AGASSIZ ON THE DARWINIAN THEORY.... interesting facsimile letter from the great naturalist.
The fact of the strong antagonism which the late Profess sor Agassiz al ways manifested toward the Darwinian theory is too well known to need any reiteration here. The recog. nized leader of the anti evolutionists, during the latter part of his life no small portion of his efforts were directed toward combating views which he believed not only merely erroneous, but both baneful and detri mental to true scientific advancement. In this connection the autograph letter which we produce (by the photo engraving process) in fac simile herewith, is invested with unusual interest, for in it, and in even fewer words than the concluding paragraph of the first essay of that se res which it was his fate never to com pete, the great scientist sums up his con demnation of the theory which to him was destitute alike of foundation and truth.
We are indebted for the letter to Mr James H. Parsons, of Franklin, N. Y. who, in an accompanying letter, tells us that, after reading ne of Agassiz's eec tares on "The Egg," in which Darwin ism suffered some heavy blows, he wrote tu the Professor on the other side of the question, and described some monstrosi ties or "sports" which he had lately en countered. Our correspondent suggested that these "sports" might perpetuate themselves, that subsequent generations might depart still further from the origina types, and so an entirely new species result. To which Agassiz replied in the letter we present. We need hardly add that to every inquirer into the secrets of Nature, to every seeker of scientific truth for its own sake, the words should remain indelibly impressed upon the memary.
Air Supply for Miners and Divers. Humboldt invented an apparatus, filled with compressed air, which could be carfried upon the back and was provided with a breathing tube and a mouthpiece with double valves, so that the fresh air was admitted from the vessel and the consumed air discharged into the irrespirable atmosphere. This apparatus was then improved by Boise and Combs, and Jater by M. Rouxquayrol, mining engineed, of St. Eticnne, and M. Denayrouze, manufacturer, of Paris, to such a degree that we now possess an entirely reliable arrangement, both for diving in water and foul air, and which, at the same time, will supply a submarine lamp or a Davy safety lamp with fresh air. The apparatus used in German mines are of several kinds. A watertight dress, with helmet and the air regulator, serves for diving in water, o_{r} the latter is used alone in combination
with a nose squeezer. In irrespirable or explosive air, the latter alone is employed, either as a low pressure apparatus, when the diver remains in connection with the air pump through a hose, or as a high pressure apparatus, when air compressed to 2.5 atmospheres (375 lbs . per square inch), is carried on a barrow in strung steel cylinders, which will make the dive and his light independent for three hours. The regulator of a very ingenious construction, and expands the compressed air just as much as the pressure of the surrounding atmosiohere will allow, and no high pressure air can ever enter in the lungs and endanger the life of the diver. The physiological effect of compressed air upon the human body has been noticed by Edmund Halley, who complained of pains in the ears when going too quickly under water. Some divers in (rerman mines noticed below water a slight giddiness and pains in eyes and ears, at a depth of only 30 feet, though many have descended over 130 feet. Professor Rameaux of Strasbourg, supposes that the blood gases, carbonic acid, ni trogen, and oxygen, are strongly compressed by the pressure upon the lungs and blood vessels, and when this pressure suddenly ceases they will at once expand and act just as air bubbles, which are introduced in the air vessels, namely they will cause pains, fits, or death. Dr. P. Bert has con firmed this view through experiments which he made with animals. He concludes from them that a diver can be exposed without danger to a pressure of five atmospheres75 lbs . per inch-or 130 feet of water, while at 230 feet to 280 feat danger becomes imminent; and Dr. A. H. Smith. of New York, examined quite healthy men with the sym graph, after they had been exposed one to one and a half hours to 15 to $17 \mathrm{lb} . \mathrm{s}$. pressure of air in caissons; he found that the beats had increased from 82 to 84 up to 114 and 126 per minute, that the volume or intensity of the pulse, however, had greatly diminished. The men also perspired free lv, which, however, was probably due to the very moist, almost saturated, air of the caissons. Under all circumstances it is well established as a principle that only perfectly heal. thy persons should be admitted to work in highly compressed air.-Enyiıecring.

Machinists in the Navy

Mr, J. O. Adams writes to inform us that an important in provement in the status and emolument of the machinists of the navy has recently been made. They are to be petty officers of a superior grade, and are to have a separate mess, which
be under their own control.
The pay has been increased, since January 1, 1874, from
 61.50 to $\$ 76.50$ per month, which latter amount is still furher increased, if the ration be commuted, to $\$ 84$, or $\$ 1,008$ per annum. The duty imposed is to take charge of the en give and fire room watches, under the direction of the eng neer officers. The qualification is to have had some expert once in running the engines of steamers. A candidate may enter the service by applying at any recruiting rendezvous, or o the commandant of any navy yard, for examination; or he may be examined by the chief engineer of a vessel going into commission.

Rite Hook.

A correspondent of The Field describes an old rifle hook as follows: "The blade, A, made of hard brass. folds down into the stock ; and when open, keeps so with a snap catch. In case of pursuit by a wounded buffalo, panther, or other dangerous game, you could hook the riti-I cannot forbear from saying after hooking it yourself-on a branch of some was no doubt added to prevent the blade from closing by was no doubt added to prevent the blade from closing by

the upward movement of the stock against a bough. Th rile I mention must lave been seventy or eighty years oi, and the workmanship and whole contour of the blade were evidently of coeval date.

WIEN taken in considerable quantities for a long time cool is apt to produce deposit of fat aud fatty degenera ion of organs, rendering a person not only less capable of work, but liable to succuss to disease.

Latest News from the Sun.
At a recent meeting of the Royal Society, Mr. 'ockye ave the results of his recent studies in relation ts the specrum of the sun.
The previous researches having shown that the former test for the presence or absence of a metal in the sun, name or absence of its brightest or strongest lines in the average solar spectrum, was not con-clu-ive, a preliminary search for other metals was determined on; and as a guide, Mr. R. Friswell was requested to prepare two lists, showing broadly the chief chemical characteristics of the elements traced and not traced in the sun.
The tables showed that in the main those metals which had been traced formed stable compounds with oxygen.
The author therefore determined to search for the metals which formed strong oxides, but which had not been traced.
The result up to the present time has been that strontium, cadmium, lead, cerium, and uranium, would seem with considerable probability to exist in the solar reversing layer. Should the presence of ctrium and uranium be subsequently confirmed, the whole of the iron group of metals will thus have been found in the sun.
Certain metals forming unstable oxides, such as gold, silver, mercury, etc., were sought for and not found. The same was the case when chlorine, bromine, iodine, etc., were sought by means of lines produced in tubes by the jar spark. These elements are distinguishable as a group by forming compounds with hydrogen.
It is observed that certain elementary and compound gases effect their principal absorbion in the most refrangible part of the spectrum when they are rare, and that as they become dense the absorption approaches the less refrangible end; that the spectra of compounds are banded or columnar, the bands or columns lying at the red ϵ nd of the spectrum; that the absorption spectra of chlorine, iodine, bromine, etc., are columnar, and that these are broken up by the spark just as the band spectra of compounds are broken up; and that it is probable that no compounds exist in the sun. The following facts, gathered from the work already accomplashed by Rutherford and Secchi, are stated :

There are three classes of stars:

1. Those like Sirius, the brightest (and therefore hottest?) star in the northern sky, their spectra showing only hydrogen lines very thick, and metallic line: exceedingly thin.
2. A class of stars with a spectrum differing only in degree from those of the class of Sirius, and to this our sun belongs.
3. A class of stars with columnar or banded spectra, indicating the formation of compounds.
Fog Dispeller Wanted.
The City of New York has, on three or four occasions this winter, been enveloped in fogs. occasioning inconvenience to passengers by trains and ferry boats. A suffering correspond ant of the New York Herreld calls out lustily for the invent ion of some contrivance for the artifical removal of the dip faculty. He says

Cannot man devise ane way of dispelling these fogs, at least in a measure? Man's necessity and ingenuity have reduced almost every known force of Nature to subserve his ends, and can it be that men of science cannot lift the wind ing sheet from the public convenience on such a morning as bis? Can you say if heavy concussions have ever been tried as a means of dispelling fogs? As heavy artillery pacice is invariably followed by rain, the theory of which is, I believe, that the concussions serve to discharge the electricity which holds the particles of water apart in the atmosphere would not the same cause produce the same effect on fogs and give them an honorable discharge on the earth in the shape of rains?"
alloy for Dental Plates. -Edward Conway, of Dayon, Ohio, makes a dental alloy as follows: Bismuth, tin and lead are purified by separately melting and pouring upon clean marble slabs until all dross is removed, and afterwards melting and pouring into lemon juice. The alloy is composed of platinum, gold, silver, bismuth, tin and lead.

Dr. Veil, a prominent German dermatologist, has lately cured several cases of lupus by scarification, immediately following with cauterization of the diseased parts with a so union of chloride of zinc in alcobol (ϵ quad parts). This ope ration is repeated after 6 to 8 days.

Dim writing nearly effaced by age may be restored br the application of a solution of prussiate of potash in water. Wash he parts with a hair pencil, and the writing will appear if the paper has not betel destroyed.

FIRE AND WATERPROOF CHIMNEY GUARD.

It is not an uncommon defect in a chimney, which is so constructed that the weight of its external upper portion is supported by the roof, that, when the lower part of the masonry within the building begins to settle, a separation in the brickwork occurs just at or a little below the point of junction of chimney and roof. The opening thus made, while serving as an entrance for water during rainy weather, also allows of the escape of soot, sparks, and flame, thereby exposing the adjoining wood work to imminent danger of conflagration. The following description and accompanying illustration will explain how the inventor below named proposes, by means of a quite simple device, to overcome the difficulty.
Figs. 1 and 2 are respectively perspective and sectional views. The lower or roof cap, made of galvanized iron, is in two parts, A and B. The funnel, A, is at least one inch larger in length and breadth than the size of the chimney. Its top is horizontal and extends three or more inches above the peak of the roof, B; the flange is about three inches in width and supports the funnel, which is slipped over and soldered to the turned up ends of its inner margin, as re presented in section, Fig. 2. The roof being shingled or covered, the roof cap is put in position when the chimney is built through. It is located so as to be free from contact with the latter and is finally nailed fast.
C is the chimney cap, made sufficiently large to slip over the funnel, A, and of similar material. Its sides are three or more inches in width, having flanges at least one inch wide, bent inward at right angles to the faces, forming a part to rest on the outer margin of a layer of brick, the top of which is from one to two inches above the funnel, A. By this arrangement, it is stated, when the chimney settles, the upper cap, C, slides down over the lower cap, A B, thus offering no obstruction to the set tling, as will be readily understood from the sectional view. If the roof is shingled or covered after the chimney is built we learn that the roof cap can be applied by soldering the parts after they are placed in position around the chimney. In chimneys, however, the base of which is low down in the building, and in others the tops of which are high and heavy it is advisable to apply supports at the roof, and to this end the inventor proposes a staple, D, Fig. 2, of light bar iron the points about one inch long and the crossbar four and a half inches in length, so as to allow it to straddle two layers of brick. One of these staples is placed in each face of the chimney, where the latter passes through the roof, the point entering between the courses of brick, and the crossbar, pa rallel with the face, taking against the roof boards. It is stated that these staples will not interfere with the settling of the chimney, and will hold it as firmly as in the usual way of shingling up close.
Patented December 2, 1873, by Josephus F. Schuyler, of Fostoria, Seneca county, Ohio, to whom letters for further in formation regarding sales of territory and shop rights may be addressed.

PHYSICIAN'S CANE.

We are familiar with sword canes, with canes with leaden heads for use as bludgeons, with walking sticks the staff of
 with the hollow affairs used by smugglers, in which valuable laces or dutiable drugs are concealed, and others to which canvas seats are attached for artists; but our readers will generally agree with us in considering, as a genuine novelty, a cane which is, at the same time, a receptacle for all the paraphernalia of the healing art-an invention, in fact, which may fairly dispute with bread the title of "the staff of life."

Much inconvenience, says the inventor, frequently arises from the breaking of phials in the usual pocket cases carried by physicians, and the contents are often entirely injured or ruined. It occurs to him, therefore, that all the contents of the offending case may be stowed away in the cane, as represented in our engravings. The staff is made hollow an the handle fits on by a screw thread. To the handle (Fig. 1), however, is attached a long case fitting closely within the staff, and also hollow. The space within the case is divided in suitable compartments, into which, through a long opening, the bottles are slipped.
The handle itself is made hollow and access to its interio given by a screw cover, A, Fig. 2, fitting in its end. It forms

FIRE AND WATERPROOF CHIMNEY GUARD.
earth, which are obtained from different quarries, but appear to be almost alike. The country where Richthofen discovered the porcelain earth was covered with the densest vegeta tion of azaleas, rhododendrons, and numerous other flowers.

Science for Rum Drinkers---Eficts or Alcohol
on the Body.
Dr. Brunton remarked that the performance of the vita functions depended on oxidation of the tissues and Profes sor Binz's observation that this was lessened by alcohol was the key to an explanation of its physiological effects These may be nearly all explained on the supposition hat the power of the nervous system is diminished, different part of it becoming su cessively paralyzed. First, the vasomoto nerves become affected and the blood nerves consequently dilated After lass or two of wine, the hands may noticed to be of a very red cor plump, showing that arterial blood is fowing freely through the capillaries and at the same time the veins are dila ted and full. All the vessels of the body; however, are not dilated at the same time. In some persons those of the stomach or intestines become dilated and the blood being thus abstracted from the head, the brain becomes anemic, and the individual dull and sleepy. In oth ers the arteries of the head become dilated first, and in consequence the brain receives a full supply of blood, and the intellect becomes more vigorous. If this stage is not passed, the functions return to their normal condition, and no harm ensues; but if more alcohol is taken, the paralysis extends to other parts of the nervous system. Sometimes the cere bral lobes, which are the organs of the mental faculties, are first affected, and sometimes the center, for co-ordinated
or two, and such other pocket instruments needed in every-
day practice. The invention possesses the day practice. The invention possesses the merit of novelty at least, and is the device of Mr. Milton Osborn, of Albion Mich.

THE TOSELLI TORPEDO.

M. Toselli is an Italian inventor who does not believe in the use of electricity for the purpose of firing torpedoes or blasts. He says it is expensive, uncertain, and often peri lous.

The substitute he proposes is force, trans mitted to the firing mechanism through a fine hollow thread filled with water and acted upon by a powerful hydraulic press. This will be understood from our engravings, in which Fig. 1 is the press, of which P is the handle, and on the right the hollow wire is seen emerging. The
about 0.06 inch When this tube is once fill wo strokes of the piston, according to the inventor, are suf ficient to determine an explosion. In Fig. 2, which shows the firing apparatus, A is the nipple, having a fulminating Fig. 2.

cap ; ${ }_{8}^{3} \mathrm{~B}$ is the hammer, and C a spring by which it is actuated; D is a cylinder in which moves the piston, E , through the power communicated through the tube, F. When the piston, E, is pushed forward, it strikes the spring lever, G, pushing it inwards, and this, impinging against the hammer, raises it to the position shown in the dotted lines. The lever continuing its retrograde motion, the hammer slips from under it, and is carried by the spring forcibly against the cap, thereby causing explosion.

The Home of the Porcelain of China.
Baron Richthofen writes from Chinathat he has discovered, near Hangtcheu, east of Lake Pajang, the material from which the Chinese have for nearly three thousand years manufactured their porcelain. He found to his great sur prise that the material is a stone of greenish color, and of clay slate. The stone is ground into a fine powder, the finest particles of which are again separated and formed into small bricks. The Chinese distinguish between two kinds of the
movements usually is often expressed, "onesed to be the cerebellum, or, as it other in his legs." When the head is affected, the judgment becomes impaired, though memory and imagination may still be more active than usual. These faculties next fail, and the emotions become hilarious, pugnacious, or lachry mose. The spinal cord is generally unaffected even when the cerebellum is paralyzed ; and a man who is utterly unable to walk can still ride, the mere pressure of the saddle upon his thighs being sufficient to cause reflex contraction of his adductor muscles and fix him firmly on his seat, although he upper part of his body may be swaying about like a sack of wheat. The cord itself next becomes paralyzed, and lastly the medulla oblongata, which regulates the respiratory movements.

PATENT BARREL HEAD

An ingenious device for enabling barrel heads to be readiy removed and repaired, withont taking off the hoops, is represented in the accompanying illustration. The device is qite simple, and appears to be a really handy and conve ient improvement. It is made in three parts, A, B and C, he jointed edges of which, as shown in Fig. 2, are beveled off (sections A and C on the top side and section B on the ower side) so as to form a solid head both as to inward and outward pressure, when the metallic plate, D, is properly affixed. Section B is of V shape, and its wide end enters he croze, while the point reaches near to the opposite side of the barrel, and is held in place by the plate, D, whish is secured by screws to sections A and C. To remove the head from the barrel, one of the screws is withdrawn and the plate turned on the other screw until it clears section B, when the latter is easily removed by the thumb and finger

Fiq. 2

inserted in the notches, shown near the end. To place the head in the barrel, the above operation is simply reversed. Patented by Mr. Alexander Hanvey, of Steubenville, Ohio.

Professor James Orton, of Vassar College, whose interesting letters descriptive of his recent exploration of the great Amazon river have from time to time appeared in our columns, has arrived safely home and has resumed his duties in the class of Natural History and Zöology.
Professor Orton states that his travels extended from the mouth of the Amazon river through the Southern Continent to the Andes, and over them to Lake Titicaca in Peru. In this classic region, 12,000 feet above the sea, he found the Scien tific American regularly received and highly prized.

PROFESSOR PROCTOR'S ASTRONOMICAL LECTURES. Professor Richard A. Proctor, the distinguished English astronomer, recently delivered a series of lectures in this city. The course began with masterly discourses upon the sun, the planets, and comets and meteors, which were illustrated with photographic views and diagrams thrown upon the screen by the magic lantern, and which consisted in clear explanations of the present state of scientific knowledge regarding these heavenly bodies. As the subjects above noted have, however, already found full and recent elucidation in our columns, notably in the published abstracts of the lectures of Professors Young, Morton, and others, we pass at once to the consideration of the very interesting topic of the fourth discourse-the moon.
The moon's diameter is 2,100 miles, and she is distant 238,828 miles. Her surface is less than our globe in the proportion of 1 to $13 \frac{1}{2}$, or, in other words, includes about $14,600,000$ square miles, equal to the combined ertent of North and South America. The volume of the moon is to that of the earth as 1 to $49 \frac{1}{2}$, and the relative masses as 1 to 81 .
The speakerhad heard that the observatory to le established on the Rocky Mountains will bring the moon within thirty miles of us; but that is impossible. The optical image formed by the object glass of the astronomer has defects, and if you magnify it and if you magnify it you magnify the defects. When you get beyond a
certain poini it is useless to magnify the imageas it appears, and there is no hope of any telescope larger than Rosse's to get a close view of the moon. It is hopeless to expect to find signs of life on our satellite, for the on our satellite, for the moon has no atmosphere. This is shown
by the fact that shadows thrown by the linar seen black, whereas, did an atmosphere exist, they would seen black, whereas, did an atmosphere exist, they would
vary in intensity. Also, when the moon passes over a star, the latter flashes out suddenly; if there were an atmosphere, the star would be seen precisely as our sun when sinking The moon has no water, for if she had, and if even a shal low atmosphere existed, the water would be raised into the latter, and decrease or increase the streaks or markings which appear on the great floors. In answer to the question: Where then has the water gone? four suggestions are made. The first is that a "comet carried away the lunar oceans and atmosphere. The second, that the surface is covered with frozen snow. The objection to the latter is that there is no sign of the whiteness which would then appear, for, in fact, the color of the moon is about that of weather-beaten brown sand. The third idea is that the lu nar oceans have been withdrawn into the substance of the moon; and the fourth is that the moon is egg-shaped, and that the center of gravity, being displaced on the further side, has carried to that side the oceans and air of the moon, and that the side of the moon never toward us may be a comfortable abode of life.

Several photographic pictures of the moon were then exhibited and commented upon by the speaker. He said the photographic study of nur satellite was commenced by Dr. W. H. Draper, in 1840. Mr. De Draper, in Rue, of England, subsequently made many lusequently made many lunar photographs, but the
best are those of Dr. best are those of Dr .
Henry Druper and Mr. Rutherford, of New York. From the craters called ('opernicus, Kepler, and Aristarchus, there is a radiation, and it appears clearly to observers that the strata were upheaved at different times; the later ones seem to break through those of earlier formation. It is hoped that, by this characteris. tic, we can learn some thing of the order in which the changes in the moon's surface,took place.

Fig. 1.-PART OF THE MOON'S SURFACE AS SEEN BY EARTH LIGHT,

Other pictures were shown, to illustrate how far the ap-
pearance of the moon may alter from a mere change in the ilumination, so that it is difficult to say what changes are roing on, from those apparently taking place. The moon changes and shifts not merely with regard to the sun, but to the earth, and Professor Proctor calculates that 1,300 years must elapse before any part would be again presented in precisely the same view. She is unlike our earth in general conditions. The total lunar day lasts $29 \frac{1}{\frac{1}{2}}$ of our days, but the year is very much less than ours, and is only 346 days. This is due to a slow tilting, corresponding to the precession of the equinoxes.
The two engravings which we present herewith show how the earth would look to an observer on the moon's surface,
termining the distance of the stars, is one of stupendous difficulty. A change of $383,000,000$ miles in the place of observation causes no perceptible alteration in the direction of many stars. α Centauri changes its position in a year apparently less than the distance passed over by the minute hand of a watch in $\frac{1}{2} \overline{0}$ of a second. It is 210,000 times further away than our own sun is. The largest star presents no disk to the telescope, hence its light must be measured. The star above named shines three times as brightly, and its surface is five times as large as that of our sun. Sirius is 100 times brighter, and in volume 2,000 times as large. The spectroscope shows that these stars are all suns.
Some stars are found to be double and show very well marked colors, some red, some orange, some blue, and so on. These owe their co lors not to the inherent nature o their inner light, but to the qualities of the envelopes that surround them; and the idea is suggested that we have there a process by which these stars are perhaps passing down to a cooler state. Probably Jupiter and Saturn at one time may have been visible as accompanying stars, small complements to our sun, and they at that time may have shown some colors well marked in comparison with his. Compared with the stars' distance, the whole orbit of our earth sinks into insignificance. And remember that the least of these stars -its mere disk-has enormous heating power; then remember how great the distance from star to star; and then consider that the nebulous matter is spread through these stars, and continues from one star to another, and then you have an idea of the wonderful extension of that matter. For a long time the theory was that this nebulous matter was far out in space from the stars, but it is now proved that them proved that there isa seen in the same view.
Kepler imagined that the center of the universe was the solar system, and that the light and heat of the sun spread out and was caught by a shell 70 miles in thickness, inclosing the stars. Wright supposed that our starry system was one of several and like a cloven disk.
Professor Proctor stated that he hoped to take one telescope and survey the whole heavens, counting the number of stars in different directions (not a field here and a field there, as Herschel did), little square fields, side by side, in the heavens, counting the number and mapping the results: and then seeing where the stars shown by that telescope are richly or poorly distributed. The stars have a wonderfully rapid motion. The process of change in a block of granite is relatively greater than those processes in the still heavens, yet these stars are every one traveling 20 and 30 miles in a secord, and not a star in the heavens but has that the problem which as uionomers have to solve, in de- some motion.
that is, about $13 \frac{1}{2}$ times as large as the moon appears to us. In Fig. 1 an earth-light scene is depicted; in Fig. 2 the sun is the direct source of light, the earth showing its dark side There is a defect in these lunar pictures due to the imagina ion of the artist in introducing signs of weather.
As to the cause of the lunar craters, Professor Proctor went on to state that on the moon's surface there is a pound ing down of meteoric missiles, not necessarily solid ones, but a falling down of meteors on the plastic surface. At the present day it is estimated that over $400,000,000$ meteor allthrough the day, but the result is very slight 0000,000 speaker found that the earth would requir Whil to have her diameter increased a single inch by them moon was rolling on, still plastic, and these meteors, falling down upon her surface, would produce that pitted appear ance.
the star depth
was the title of Professor Proctor's fifth lecture. He said

Fig. 2.--PART OF THE AMOON'S SURFACE, THE EARTH SHOWING ITS DARK SIDE.

Five of the stars of the Great Beararetraveling in a common direction, and apparently at a common rate. It is a well known fact that if we approached a star or other source of illumination rapidly, the waves of light will be shortened, otherwise they will be lengthened; the lines in the spectrum will be displaced, and we shall know whether the star is approaching or receding. Dr. Huggins found that these stars were receding at the rate of 11 miles in every second of time.
There is another sign of change in the stars; a gathering in a certain region. There is, in point of fact, a vast variety where everything seems so regular. We see streams, and modules, and branches of brightness, and it seems that when the astronomer has penetrated into the recesses of the milky way, he has no more reached the bounds of the universe than he had at the beginning of his research

He nas only examined more and more minutely a particula corner of the star system. We find a group of suns of
which our sun is a single member. Then again we pass to systems brought into view by the telescope, and find that the star system to which our sun belongs is only a part of that one-an atom in space.
The concluding lecture of the course was entitled the
birth and growth of the solar system.
If we look around at the condition of the planetary sys tom, we fivd much to lead us to the belief that it grew to its present state, that there was a process of its development bodies travel in tire same direction around the sun. Then every one of the bodies, whose motion has been determined turns in the same direction. There are in fact so many similaricies that we are bound by the laws of probability to
believe in the evolution process, for the chance of 142 planets believe in the evolution process, for the chance of 142 planets
going round in the same direction is 1 in $2,774,800,000,000$, going round in the same direction is 1 in $2,774,800,000,000$,
$000,000,000,000,000,000,000,000,000,000$. Laplace, in his ex planation of this motion, had the idea that there was a great nebulous mass having the sun in the certer, extending on either side far beyond the present extension of the path of the uttermost planet, that is, a path of $5,000,000,000$ miles diameter. That mass was intensely hot and vaporous, and it was rotating; and as the rotating mass contracted and it be gan to rotate more rapidly,"a ring was thrown off, which would gradually break up, its parts would gradually amal gamate; many parts would have different rates of motion, and different parts would encounter each other, and in the course of millions of ages there would be an amalgamation into one mass, having the same direction of motion that the nebulous mass had, and traveling around a center which was the sun. That process would go on until one plane the La Place theory in reference to the questions given by the La Place theory in reference to the questions connected
with the asteroids; he simply ststed the general facts and left them there. It seemed to the speaker that they were led to another theory, and he would adopt a metliod of illustrating it which hedeemed suitable. If an insect of a few hours' existence endeavored to trace the history of the growth of a tree in which it lived, it could not during its own life arrive at the truth; but by transmissions of slight knowledge, the result of study for ages, the species would eventually arrive at the truth. We know that as one nebu ous mass passes into another, by chemical means, light i produced. There is evidence that these nebulæ are gaseous
There would be one center of aggregation which would grow continually in size and power, gradually drawing more and more matter to it; and the more it drew in of these nebulous masses, the greater its power would become Professor Daniel Kirliwood took the paths of the asteroids, aud arranged them in theirorder of distance, and he found ertain places where, for some distances, there were no hem corresponding to the paths of asteroids having periods commensurate with the period of Jupiter. Jupiter would dieturb the motion of the asteroids, if they had a period hac his own, and would prevent them from travelling, his mass being so much greater. This supports the theory that the solar system arose from motiou and aggregations, not from the contraction of a great nebulous mass. The rings of Saturn give further evidence of the sare. In the star clouds we find a multitude of stars discernible with the elescope, and so closely clustered as to be irresolvable; and in these masses or cloudlets we see proof that the sidereal ystem is not a mere aggregation of stars, but contains all varicties, nebulæ, star cloudlets, and stars of all varieties; and that it resembles the solar system, not in unifurmity but in variety of stracture. In studying its laws we have a problem of enormous difficulty, but one which must one day be solved. The lecturer then exhibited numerous beauiful diagrams, illustrating the existence and appearance of nebulous masses and stars under various circumstances around the great luminous bodies, and the immense variety of these nebulous masses. He concluded by portaaying the glory of scientitic study, which brought man into a nearer and closer Enowledge of his Maker. After the conclusion which Professor Proctor appropriately responded.

A Mexican Motor

We are indebted to the Hon. Martin F. Hatch, U. S. Con ul at Merida, Yucatan, for a copy of a local newspaperLa Razon del Pueblo-containing an account of "An Astonishing Motor," the invention of a young Mexican named Gonzalez. The Mexican editor is of opinion that the inven ficn is of such extraordinary value that its mere fame wil make Mexico great among the nations. The new motor, he ays, enables mankind to navigate the air in the teeth of urricanes blowing at the rate of tbree hundred miles an hour. It permits of locomotion over the earth or under the urface of the sea, in all directions, with inconceivable elocity. We regret to say, however, that, after giving us olumin and a balf upon the various wonderful capabilitiesof he new invention, the editor fails to present any clue to the principies or construction of the device. The only light iven upon this puint is that the use of the invention involve wo $\mathrm{x}^{\prime \prime}$ nse, not even the employment of hand power, nor
steam, yor air power, nor electricity. The inventor has put steam, yor air power, nor electricity. The inventor has put into optration an example of the device in the form of a mall boat, hermeticaily sealed, which dives and moves in any desirtd oirection under water, at any desired speed, as if guided by an invisible hand. The editor does not hesitate present day has
ble to explain the phenomena.
Evidently, here is another example of "psychic force," Dich we hope will be included in the new investigations of Dr. Crookes, of London.

By the soundings of John McKinney, an experienced nav gator and old resident in the vicinity of Lake Tahoe, Cal. te greatest depth of that remarkable body of water is found to be 1,645 feet.

PATENT OFFICE DECISIONS.

The Prepara books and publicaticroscopic Ob Jects. By Thomas Davies. Enlarged second edition,
edited by Professor John Mathews. New York: G. P. edited by Professor John Mathews. New York: G
Putnam's Sons, $23 d$ street, corner of Fourth avenue, Any one who desires to become skillful in this most dellcate spectes of Andicraft, will find Instructions here that are of undoubted value. Thc tains the concise directions pertaining to every branch of the subject, It show from the experiences of the most eminent practitioners of the art. or that what subsmences are to be employed to give transparency to this spicuous, what will harden the soft membrane, or soften the bard. It describes the various solvents of various objects, shows how to clean hem, how to cut, treat, place, and secure. Shows the uses of polarized exhibits. microscopic preparation that is not here explained. Not only those who wish to learn, but all who ha ie acquired dexterity in the art, will find use-
H.llf-hours with the Microscope. By Edwin
M.D. Illustrated by Tuffen West. Explanation of the Polariscope by F. Kitton. New York:

This little volume is intended as a popular gutde to the microscope, as a

 means of amusement and instruction. It most admirably fultils its pur would be difficult to find elsewhere, in the same compass, so much micro. scopic instruction so clearly pet forth. Begioning with an explanation of the construction of the simpler forms of the instruments, it gues on to those of more complicated structure, shows the arrangement of the lenses,the combinations of the binocular attachment, the various diapliragms, camera lucida for drawing the magnifled objects, with explanations of sundry other toolsand devices.
and easy explanation of this curl with Polarized Light" gives a clea which any person of inteligence may construct a practical polariscope of bits of thin glass, at the cost of a few cents. A list of various crystaliza tlons, for the prodaction of the most peculiar forms and gorgenus colors seen under the polariscope. is give
all of comparatively simple nature
The chapter, "A Half-hour with the Microscope in the Garden," declose at home. Plates delineating the forms of some two hundred of these wonderful things are given, includiug the structure of garden plants, berries, flowers, and vegetables, showing formations of astonishing beaut Then follow: A Hal-hour "w A He Microscope in the "ountry, Indoors," each chapter betngllustrated with plctures of the A Haisfor and interesting objects that are mentioned. The book closes with an appendix, by Thomas Ketteringham, upon the preparation and mounting of microscopic objects. The frontisplece is a beautifully executed plate, in conors, of splendid polariscope objects. Some ten thousand copies of this hittle work have been sold in England, which fon an indication that
Free Hand Drawing: a Guide to Ornamental, Figure, and Landscape Drawing. By an Art Student. 50 conts.
New York: D. Van Nostrand.

Zancent samerican and foreign catents.

Improved Artificial Stone

Ernest Ransome, 10 Bush procesy described in thls patent, it is clafmed that mucb of the chloride of
califum litherto wasted is collected and saved, and the stone is washed in as many minutes as formerly days. The invention consists in the rapid blast of air, followed by a blast of air containing water in a state of fine division. The inventor states that the operation is completed in a few minutes, and that the cost of the apparatus required is but small

Improved Grain Car Unloader.

Mason W. Bosworth, Blnghamton, N. Y.-Tils invention relates to an apparatus for unloading grain in vulk from rallroad cars; and it consists
in the employment of a movable endless chain or auron, pazsing overguide drums, and carrylng a profecting gudgeon or arm, which operates in con drums, and carrying a projecting gudgeon or arm, which operates in con or scoops, a rranged within the car. The invention further consists in attaching to the slotted silding plate a reciprocating rod, traveling between gulde pulleys, and connected with the movable unloading scoops or
scrapers so as to draw the same to the door of the car for discharging the grain. The invent by ropes, to the reciprocating rod, said ropes passing over guide rollers the car for dischargtng the lithe will be slack ened for permitting it to be retracted for the purpose of filing it.

Improved Locomotive Furnace.
Andrew J. Stevens, Sacramen to, Cal.-This Inven vided with a damper on the outside, and an air deflector on the tuside inside of the door, the lower portion of the lining being cit awayso that an opaning is formed. The upper portion of the liniug acts as a reflector to mingle with the geses inclosed, and therebs produce a more perfect com mingle with the gat.
bustion of the fuel

Improved Till Alarm.

Egbert O. Wood, Nashua, N. H.-By suitable construstion, when a num berof tumblers are all turned forward so that theit short arms project upthe tumblers be turned back so thit their long arms project upward, the drawer cannot be drawn out without frst forcing the said long arm of the tnmbler or tumblers downward by operating the keys of the tumbler or
tumblers that were turned back. When the key of a tumbler that has been tumbed formard is operated. the short arm of said tumbler is raised, $\varepsilon 0$ as to turned forward is operated, the short arm of sald tumbler is raised, fo as to
prevent a lock plate from dropping down and passing out veneath lugs. When an attempt is made to open the drawer with one or mure oi the tumblers ralsed, a lug of the lock plate will strikc against the lug of a ratchet, and, releasing the lever, whin sound the alarm. As the thi or drawer is closed. the lugs of the lock plate silde up the inclined rear sides of other lugs, a: ad
dropdown in front of said lugs, therearpart of the said plateresting upon drop upwardly projecting arms of the tumblers. The alarm is set ly turniug one or more of the tumblers to the rearward; and the comblnation is chang d by turning one or more of the tumblers forward or back, us may be desired.
Olivér A. Vorce, Kentland, Ind.-This invention.
strip, which is rais, Kentland, Ind.-This invention consists of a weather stif, whanected to the spindle of the lock hy a suitable iever, so that on
belng conne opening the door the strip is relsed and retained in position by a band being depressed.

Improved Draft Equalizer.
Elias H. Blake, Coatsburg, ill.-This invention is an improved equalizer which is readlly attached to a tongue or plow bean, so adjusted as to a:lcw
the horse to walk upon either elde of the tongue, and to glve an advantage to the single horse or to the air, as may be de: Ired. The invention consists In a triangular equalizer provided with clan. ps for securing it to the tongne or beam, and having its forward arm slotted and provided with adjustable
perforated plates to receive the hammer or pin by which the tripletree is connected with it.

William J. Lane, Mmproved Coffee Roaster

 of same place. - The drum is made of rectangular or or other fohn \mathbf{G}. LaneIde is
 revolved on central sudzeons supported by cars. Oue or both of these
gulgens may be hollow, throngh whlch the coftee in the cylinder may be Sudgeng may be hollow, throngh which the coftee in the cylinder may be
nspected rome turue to time to determuc its condition. The hollow cudzeons are cloeed by stoppers while the cyllnder 1 s revolving. While
the cyliuder is heing revolved, and the roasting operation belng performed,
 cylinder is turneed, so that by removiuz a slide the coffee will be discharge

 Oscar E. Culver and Limproved Wand Boiler.

 tise lower edjec or the flauge resting upon the bottom of said boiler. The
end parts protectius beyord the flange have a number of holes formed in hange and the cods of the low down freely into the spaces between the

 tion tiee valves, when left free, will drop in ward bs their own welght. I
 structici, ss the staun begins to torm, the irster effect tis to close the valves
 throsgh tie tube and ilre llscharged upon the clothes. The water percol. West tircugh the clothes, flows down through the holes in the top, through
 the back flow of the water, aud at the same time allows the free fullow of

1mpreved Churn Dashe

 other nivet met:al, are perforated with numerous small holes, and have a
larger note formed in their centers to receive a short tube in which the lower end of the dasher handle is seceured. The disks are concaved or hieir concave sides toward cect other, and are soldered to sald tube with gelher. The tro outer disks are placed upon and are soldered to the tube siove and below tite two middule datse, and with thetr convex sides to ward
the said midlle diet perforations mat not be directly opposte each other. Λ dasher thus con-
 n a very short time.

Impeoved Printers' Furuiture

 with Which a pullon or sear whecl eygages in such a way as to move sald
quolns sinultaneously toward or from eich other. The arrangement
 tie ripitity of movement or the one encountering less pressure will b
decelerated until the pressure is equalized. Imiproved Washing Machiue. myrrovenent in the class of washing wachines formed of two or more is an crs arranged to rotate in contact. The invention relatees to an mimproved
mains of locking a sliding extension picce attached to the bottom or bed mians of locking a sliding extension picee attached to the bottom or bed
piece of the roller frume. The extension piece is made adjustable on the
 he extension piece enter:holes in the sides of the tub when the bed
estemded. The latter is held in position by means of a cam lever, which sp pirved to the hed, w
in the extemion plece.

Inproved Billiard Table Ieveler

 pifces. The iunculion coinsists of a a button or caster, with a bolt screw,
which works into isocket of the villiard foot to be adjustable thereln by means of a small hamal whecl.

Improved Machine for Making Clothes Pins.
 be terned into shape by the roughing cutters on the end of a hollow man-
 cutter acts durny periods of rept wicie. the feed rollers are caused to have
ly tine lack of teeth ou a portion of a plinon which drives sald feed rollers. rhe tuis inisg cutter aets on the ent throunhout its whole length, at tu

 part uf said plolon, that at the moment the feed rollers stop it beghins to
nct aud move the wedge back ward to allow the tinghing cutter to act, and it completes the withdrawal of the wedge, and allows the finfshing cutter

 to carricr wheels, by which they are taken between stationary tingers and s morabie diuser, carried around, and presented to the slotting saw aid
Anishled. Hudsor H.c. Arnoll, Xichoved Animas Trap. Intu ino parte by a ho: izontan trip board ploted to the sides. The outer a hole of suita ble size, leading thto the chute or passage way. The rear end
 -ng platfrrin. As tue animal steps upon the rear end of a a lever it disen

 ping bealud him, and preventug his return. The animai now sees light be
ore him, and, pasing toward it he steps apon a lever, the rear end of which extends back to the catch rod, 放 that the welght of the an!mal stepptng
upon aald lever may disengage the catch rod and allow the trip board to gant take a horizontal position, where it ts caught and held by the catco is herelnbefore described, and the trap is again set. A cake or some othe onventent recepta
elve the antmal.
Improved Direct Acting steam and Water Propeller. dents in propellers for navighab, Pase-This invention relates to improve iso pistons, piston rods, cranks and walking beams are dispensed with cllinders or chambers are beg opengs at thetr lower ends through whic the water is alternately admitted and expelled by the corresponding alte ate steam pressure and vacuum thereln, the rapidity of propulsion belng directly dependent, other things equal, on the rapidity of the in and out
low of water, or the force with which it is ejected through the orffice in How of water, or the force with which it is ejected through the orffice in
 he invention consists in introducing hot alr from the furnace into th ad produce expansion of the latter : also in arraging adjustable stops on the float rods to vary at pleasure the length of time of admission of steam to the cylinders and the hight to which the water will rise in them at eac pulsation; also in providing balance levers to relleve the fioats of weigh and which serve to set the steamvalves and put the apparatusin operation

Improved Concrete Pavement.

George Bassett, Syracuse, N. Y.-In making concrete pavements, side
walks, etc., it has, up to this time, been considered necessary to use forelg portland and other expensive manufactured cement, because it dries and ardens soon after belng laid down, 80 that the publle need not long be
excluded from the places paved or covered. Our native Rosendale and be artificlal stone by the well known, able persive cements; but owiug to the long time (from three to six monthe) equired for them to set and harden, it has been found impractieable to tillze them for pavements, road ways, etc., such as are made by laying ce ise. But owing to the great difference in the cost of que native and foreig ements, it is highly desirable to utilize the iormer in some way, inasmuc equaly as durable when sumiciently hardene
The luventor proposes to get over the diffculty by using the nstive
cements for about three fourths (more or less) of the pavement, placing he same at the bottom and about one fourth of foretgn cement upon th op, which auswers the purpose just as well for rendering the pavemen pper crust of the latter cuncut dries as soon as when the pavement Wholly of such cement, and becomes sutticlently bard he surface of the road bed, supports the crust so that it does not break while the slower dryin

Improved Reversible Stereotype Plate.
hickness and weigh, New York city.-The plate is of about the usua Thus two kinds, and double the usual amount of reading matter, are fur from, the plate is reversed in the form and the otheraide or fece is printe rom in like manner. The invention also includes the use of a margin o dge lining of sheet metal, by which the plate is locked in the form. The margin is flexible, and is bent downand held by friction with the column
rules. When the plate is to be reversed on the furniture, or block, the rules. When the plate is to be reversed on the furniture, or block, the
margin is bent in the direction opposite from what it was before. The marginal plate may be perforated or not, as preferred, to allow the melted The device is an important improvement in ty class.

Improved Wash Board.

Jas. A. Cole, Northville, N. Y.-This invention relates to providing a re
crstble wash board, with a pivoted head, so constructed and arranged as o adapt it to be folded between the projecting ends of the side bars, and rcper for enta a coarse or fline rubbing surfoce according as one end or the $1 t$ pre

ppermost.

Improved Earth Auger.

Frederick A. Barlow, La Dora, Iowa.-Tbis invention relates generally to he class of earth borers formed of a hollow flanged cylinder or case int which the loosened earth is received as the boring proceeds, and by which tructing the cyllinder with vertical grooves, exteriorly, to allow the down Ward passage of air during the boring cperation, and in making the bod
of cylinder separate from the bottom and frame thereof, and connecting cylinder separate from the bottom and frame thereof, and connectin

Improved Window Sash Lock and Holder.
Joseph r. Aran of a double cam sash fastener, pivoted to the instde of thawindow frame, and bavigg arms of different length with cam faces, so that
either sash of a window may be held securely at any polnt of the same elther sash
astening.

Improved Breech Londing Fire Arm.
Francis J. Fuss, Wesbaden, Germany, and John Weck, Baltimore, Md. parts, and hinged together with a swinging breech block, having arms piv-號 thereby cocking the plece in the act of operating the breech.

Improved Wind Wheel.
Phlifpp Brand, Jostah Barrows and Alexander Armstrong, Jacksonville out of line with the regulating vane and adapted to be self regulating. upport so as to turn on a hollow shaft, and has a horizo a one van friction roller on it working in an ascending spiral slot formed in an arm of the vane support. By this arrangement the wheel may swing around parailel with the vane out of the wind when the latter is too strong, at the sametime forcing the aforesald armup the inclined slot, so that the gravity
of the wheel and its support will cause it to move back into the wind when f the wheel and mproved
Improved Carpet.
Gregory Iskityan, New (ind arn, or strips of felt alone, in any desired was, and then pressed and matted down smooth and compact upon the surface to hide the warp inreads of cotton, linen, and the like, such as are used in the manufactur kets of which the weft is wholly of felt with warp, as in the other case, and either press the nsp down or not. The object is to cover and conceal th
warp of coarse and chesap materials, and lmpart a finer finish to the surface than can be had without such surface dressing.
lmproved Railway Crossing.
James Brahn, Jersey City, N. J.-This invention is an improied rallroad crossing, so constructed as to guard and stengt hen the parts of the ralls
where the notches are formed for the passage of the wheel flanges, and to prevent the notched ralls from being battered by the wheels. The inven-
Hon consists in slotted or hollow metallic blocks filled with wood, proride with wooden focing blocks, and with e metallic gurd bar which project bove the top of the blocks to serve as a flange or guard to gulde the flang of the wheel into the notch in the intersecting rail, and prevent it from inting and injuring the head of the rall at the slde of sald notch. The ba said angles.

Improved Pie Marker.
Thomas S. Macomber, Hamilton, N. Y.-This invention consites of a rof a handle, sald marker belng provided on fta face with a stamping design and air hole cutters. The dough used for the pie is rapidly trimmed by the sharp eage of the trimmer, while the serrated wheel crimps it at the saine
time. The impress of the stamping device and cutters inishes the dressing

Machine for Removing suow and Ice from Roadways. Charles G . Waterburs, New York city.-An irou bos of any suitable form mounted on four wheels for drawing it along the strect. A furnace is at ides extend rearward the whole length of the apparatus, to coutine the eat and form a long channel for the escape of the same. fin such manner as to confine it to the work. A hood may be attached to the rear to proce is curran, an arranged to ralse and to at pace which extends to the bottom of the sides, and is prolonged to the here is another toor to protect the operatocs and the contrivance above from the heat. The cover of the channel has several depressions to pre vent the escape of the beat too rapldly, and throw it down on the enow and
ce. The grate bars consist of tubes when the heat is blown down from he dre between them, and have he water will circulate in them and protect them from the heat. The charger, consisting of a large vertical tube rising un from the top of the
urnace, is provided with two slide doors so that, by having the lower one losed and the upper one opened, it can be flled without allowing the blast ooescape, and, by closing the upper one and opening the lower one, the cape. A delvered intn the furnace also without allowing the blast the terior walls for injecting hydrocarbou fuel from a tank, with which it is nnected outside of the furnace, said tank being arranged so that the oil ranged th the rearpart of the bor to blow the hat down to the surface of the ground. This fau is driven by belts and pulleys connected with the Ind axle of the machine, or by a special steam engine. A plpe conducts
the steam from the water space down to the fire below the grate, for addhe steam from the water space down to the tre below

Inproved Lacomotive Window

John H. Dinsmore, Boston, Mass.- - he object of this iventlou is to con uch a manner that the giass is kept free from molsture, frost,
 track. The invention consists of a window or door with an outer and
ner sash, bet ween which one or more steam pipes extend along its cir. umference, so as to produce such a temperature in the space bet ween the
lass panes that no vapor or frost can settle thereon. Both sashes are hnged, the inner one to the outer, and the outer, by linged joluts, to the Improved Bracelet Fastening.
two parts, hinged to each other at one end, and secured by an ordinary spring. A small cap of such a size as to shut down over the knob of the cstcb, is hinged to the
nd of the part of the bracelet that conta!ns the socket. To the inuer surace of the iree end of the cap is attached a small pin, which, when the cap is suut down, springs into a small hole in the knob of the catch and co
the knob, thus preventing it from becoming accidentally unfastened.

Improved Rubber Mat for Pitchers, etc

Cornelluz A. Price, Jersey Clty, N. J.-The part of the mst upon which of puch a width that the tumblers may stand upon it, and it extends par dally or wholly around the pitcher. The upper surface of the two parts is did . An elevated hub is arranged so as to preit th

Improved Churn Dasiher.
Ind.-This invention consists
David Boyd, vevay, Ind.- The two arms of each cross bas are compose pposite dir ctions, and the side cross bars are so arranged that each two adjacent face of the blades may both incline up ward and from each other or both iucline " "nward and from each other. To the outer ends of the ades is attached ire band, which is so formed that the part which is oppo te the faces of the blades that incline upward may incline inward and up-
ward, and the part that is opposite the faces of said blades that incline downward may incline downward and inward. By this construction, as die dsher moves elther up ward or downward, four strong currents of milk
fill be formed, two flowing out ward toward the wall of the churn, and two owing in ward toward lts center
Improved Whoel for Vehicles.
axle is formedan are arm, made octagonat of other polygonal form. A short cylinder has a hole formed tbrough it of the same shape as the axle arm, and its
outer surface forms the journal of the hub. The cylinder is placed upon he middle part of the arm, and upon sald arm, upon each side of the cylin. der, is placed a flange, made somewhat conical in form, which are secured in place upon sald axle arm by a linch pin. A ring, whtch forms the hub
proper, is made with a ring groove to recelve the tenous of the spokes, hich tenons are separated from each other by thin partitions, which may e made V-shaped. The outer edges of the ring have flanges formed upon nay be further secured in place by bolts passed throngh the flanged oute edges of the ring.

Improved Fly Trap.
New Berlin, Ill.-The base
George w. Eichholtz, New Berlin, al. Within the later a wite gauze cone 18 arranged body of llke mate by staples to the body lock into short radial slots of the base plate, allow gig the easy cleaniug of the plate and cone, and the ready insertion of the balt. At the lower edge of the body. below the main cone, are arranged The maln cone is truncated, and provided with a small inverted cone formgeircular slots with it thrcugh which ihe fies piss up into the uppe art of the trap. This upper chamber conslats merely of a common wit loth dish cover, which its tightly on the upper edge of the body, but is emovable therefrom.
Improved Combined Stubble Shaver and Scraper. arts of the vertical side frames of the machine are rounded up to adap them to serve as runners, and have shoes attached to them, which are
extended upward, and are attached to the top bars of sald frames. Knives xtended upward, and are attached to the top bars of sald frames. Knives
are bolted to the horizontal arms of the angular bars, and have an edge ormed upon both of their side edges, so that, when one edge becomes dull erives may detached and reversed. The bars are so formed that the orking arms may incline to the rearward to bring the knives into a gocd
 des of which are made slightly inclined and are faced with metal, is con tructed so as to push or scrape from the ridge the stubble and soil cut by
the knives. By proper arrangement, the knives snd ecraper are ratsed and he knives. By proper arrangement, the knlves snd Ecraperare ratsed and
owered at the eame time and by the same operation. Guards are attached o the frames to overlap the innerends of the knives and prevent them from the shank of which is designed to split the ridge in advance of the snive a scraper, to enable them to operatemore easily and with better effect.

Improved Spring for the Seats of Vehicles.

 Conrad Duccker, Lively Grove, Ill.-THo object of this invention is to r hook spring, which is attached to each coraer of the seat, the spring usting on the edges of the wagon box.
Busimess and extumal.

Nickel Plating- $-A$ superior,warranted mode
for sale and references given by A. Scheller, c. o. Drug. for sale and references given by Δ. Scheller, c. o. Drug.
Foundry and Machine Shop for Sile. For
articulars, address Bodine \& Loluman, Jefterson city, Plow handle bending applaratus for sale.
ddiress E. Narshalld Co., Philo, Ills.
or the hest Gold Pens, send to C. M. Fisher
ar
perfect working Potato Planter and Cut-
for salc. Address L. . Vewbern, Kinston, X. C. Vertical Tubular Boilers-All sizes. Send
price list nefore purchasing.
Lovegrove $\&$ Co.,
Col
 Woolen and Cotton Machinery of every de
scription tor Sale by Tully \& Wilde, 20 Illatt St., Y: Y. Lithographers, please address, with sam-
ples and prices, Sury Pub. Co., Att. Alry, X. C . For Leather Manufacturers- Kights for
Sale of a new patent process of Coloring Lenther: most

 L. \& J.W. Fenchthtwanger, is. Cedar. St, N. N. Y.,
 Dan's Steam Pumps, for all purposes; En-
Hines, Boiters, Iron and Wood Working Machiniery of \&ines, Boilers, Iron and Wood Working Machiuery of
anl descriptions. W. L. Chase \& Co., $93,95,97$ Liberty Atree.. New York.
stove Patterns to order-Also, for sale a
varicty of new Styles. E . J. Crutuge, rrov, X. Y.

 Temples and
Horicdale, Mass. Wanted-A good Second hand Drop of me-
dium size. Address P. o. Box 2,255, Ne w Haven, Conn. Nining, Wrecking, Pumping, Drainage, or Arnirewts Patent, Inside page.
Abbe's Bolt Machines and Palmer's Power
Hammers aspecialty. s. C. Forsaith \& Co., Nanclies.
Parties having a small shop with no horse
water power,114 Coninecticut, for sale vers cleaip, address
"Superior to all others" - for all kinds of
ork-Linet \& Co.s French Files. They are better, forzec, better cut, better tempered, and cheaper than
English files. Send for Price.List. Homer Foot \& Co.
 Electric Telegraph. A compact working Telegraphin ap/
paratus, for sending messages, making magnets, tyif.
electric IIght, siving alarms, and various other purpoes. Can be put in operation hy any lad. Includes battery,
key and wires. ॠeatly packed and sent to all parte of the world on receipt of price F. C. Beach \& Co., \&60
Rue's "Little (iiant" Injectors, Cheapest
and Best Boiler Fecder in the market. W. L. Chase \& L. UJ.W. Feuclitwanger, 5I. Cedar St. N.Y.,
teal arts.
of the thing, different buttons on the desk
of the manager, iee can communicate with anv person in

 complete for working. Hade by F. C. Beach \& Co., 260
Broadway, corner Warren St., New York. The Sclentific Broad way, corrarer warren St., New York. The Sclentific
merican establishment, New York, is itted with these Brown's Coalyard Quarry \& Contractors' Ap-
paraus for holsting and convering material by ron © a Die.

Parties needing estimates for Machinery
fany kind call on or or adress, w. L. Cluse \& Co ${ }^{93}$, $95,97 \mathrm{Liberty}$ street, New York.

 Rydraulic Presses and JJache, new nid see :ream Fire Engines, R.J. Gould,Newark, N.J. Pect's Patent Droz Props. For circulara, Suall Tools and Gear Whee Is for Models.
Lisis tree. Goodnow Wightman,23Cornhiil, buston, is. All Fruit-can Tools,Ferracute,Bridgeton,N.J.
 Diamond Carbon, of all sizes and slandes, for
drilling rock, sawing stone, and turning emery wheels;

 day, thll cured. Sold cheap by the Elastic Truss Co., 683
Brondway, New York. Protect your Buildings-Send for testimo-
uials. X. Y. State Rooing Co., 6 Cedar st., N. Y. Drawings, Models, Machines-All Einds made
 vertisement.
for lithograph,,

A. O. F. asks: Is it ever necessary for a lo
comotive silide valve to lift from its seat, either on sud, denly reversing the eupine, when running down grade orfrom any other cause? And if it does lift from its
seat, what causes it to do so? How much must it lift
 made improvements on the balanced slide valve which
mad patented turough your agency. Will it be necessary had patented through your agency. Will it be necessary-
in order to secure the tmprovements bya patent, to have a retisue of the original patent, or can I secure the im . provements by a separate patent? A. 1. The ralve may
Ise from its seat whene
 ize the pressure on
to have a reissue.
S. G. F. asks: With what substances can
pack a Tack a ilite to run about ifty barrele of water per day
We are much troubled with mudy water and have trled
charcoal and gravel with
 on passing thrs amount of water dally. A. If your wa-
teris sery dirty, 1 wall be well to have t wo that one can al ways be kept tin operatio
oour preseit filter is not large enough.
H. L. R. asks: 1. How can I take the gold
off a silver watch and chatin which have been gilded? How can I harden brass, silver or gold wire? 3 . What WIll give gold 1 tts natural color after beting heated? 4.
What will eat steel screws out of a brass or nickel watch novement, without Injury to the movement? A.1.
provably $b y$ friction. 2. By hammering. 3. Polishing Provabiy by friction. 2. By hammering. 3. Poilishing.
W. We do not know of anything that will answer. You M. H. P. says: : In our old almanacs, we al.
wass found the sun to rise and set at 100 'clock twice during the year, in March and September. But in the al.
manacs of the last two or three cears it has varied 15 or 20 minutes. Is this variation due to a thault of the al. manac maker or or as there been variation in the eun
rising and settlung durng the last few years?
How much variation is there tn the time of sun's risisig and setting
on the detes of January 1,1866 and January 1,18 sis on the dutes of January 1,1866 , and January 1,1873 . 1 . A.
A calendar yeare exceeds the true solar year by $12: 38$ sec: onds, 8 that there is an error amounting to one day in
3. 866 W. J. B. asks: 1 . Why should a fast motion
 4it inches diameter and 8 feet length increase it s capacity more than one 18 inches diameter and 4 feet length? A.

1. Lead has the effect of preventing shocks and jars. The 1. Lead has the eftiect of preventing shotks and ars. The
eccentric isa cane. . Increasing the size of the steam
drum would increase the esteam room, but would proba. oly have no effect on the steaming capacity.
J. E. H. L. asks: 1 . Why does extending . Why doos pressure on the upper 119 just below the nose prevent sneezing? 3. Why does a woolen 8 sring
tied around the leg above the calf prevent cramps?
 engrave letters on coftro plates and other plated goods?
2. How can I make gold leaf stick to glass? A. 1. Yes,
 ter, and ilter through linen. This size required 24 hours o dry, after the gold leaf 1 s applied.
E. J. O. says, in reply to A. A. D, who asks
how to ill a dent in an iron cyllinder with lead: Clean it Weill, and tin it over in the usual way (using murlatic
wild with asoldering iron, and melt in in ittle solder.
"Ifrequently stop holes in cast iron patterns in that was with good success."
T. D. H. and several other correspondents
ask: How can I make a cement for use in putting an quarium together? A. Use equal parts, by measure,of
itharge, plaster of Paris, ine beach sand, and powdered rosin. When wan
botled linseed oll.
J. asks: 1. What is the best and most ef order to smelt from fifteen to to twenty tuns of lead ore per week, and run the same into pig? The lead ore contaling from forty to sixty per cent siver . A. We cannot
give you deflinite advice without knowing more of the matter. It ts better for part tes who hive professiona work of this kind to
ty of such maters.
$\xrightarrow[\text { a sizing can I apply tocloth or woolcu goods to material }]{\text { W. T. }}$ en the surface, stififen the fabric, and, at the same time
render it waterpoof? that it will remain liquida and fit for uee when colld? A. . Molsten the cloth on the wrong stae wrt with a weak
Solution of Isighass, and when ary with an infusion o nut galls. 2. Alitile nitric acid 9
Flue wil preventits gelatinizing.
R. N. asks: How much power is gained by
 out having the cyllinder bored? The eylinder appears to ee pretty smooth and true. ... 1. We Could not answer
the question without more data. 3. WWe suppose oob, but the meaning of ". pretty suinooth and true.
R. L. asks: 1 . How can I cement whalebone
to wood? superior to the Réaumur and centigrade instruments A. 1. Take isinglass 3 y on., water 4 or8., let stand for 24
hours, and evaporate in a water bath to 2 ozs ; add rec. titled spirtit 2 ozs., and straln through linen; mix while
 rectilied sprit: triturate with powdered gum ammonac
1 dram until perfectly incorporated. 2 . The use of the diffirent k inds 18 a mater of custom only. Fihrenhet
oelieved his zero to to the pout of of absolute cold, an
J. A. F. will find the following composition
 and lastly the antlmony. It should be 1 rst run into in got, th
boxes.
J. W. and other querists for books on at
sospherice electrictity will ind the subject treated in any good text book on physics. Lyon's "Treatise on Light
ning Conductors," and Phin's "LIghtning Rods,and How

A. N. asks: How can I solder broken chis
els, files, etc., together? A. Clean off the ends by fling and upon the elont tay a thin netrip of fheet trass. Cover
the part with a paste of clay, free from sand, to the part with a paste of clay, free from sand, to the
thickness of one inch, the coating betng 4 Inches alons on each slde of the joint. Dry slowly near a fre, and
then heatto a white heat in a Dlast, whereby the clay itrifies. Cool veryslowly, and knock off the clay.
J. P. asks: 1. Is silver coin pure enough to plate wth without refnng? 2. What 18 rotten stone?
3. What is Bath brick, such as electroplaters use for leaning work? 4. What is water of Ayr stone? 5 torender tit a conductor, po that I can pulate it? I I wan
the surface of the plate when removed from the glas to the surface of the plate when removed from the glases to
be as smooth as the Giass upon which I have plated. be as smooth as the giass upon which I have plated.
can use plumbago, but I am afrald it will make the sur face rough. 6. What is the best composition for brass
gun bayre
 ral, made in Engiand, and sold in bricks. 4. A kind o hone, found in Scotland. 5. Try yilding, as descril
o. 250 , vol. 29 . 6 . Copper 90.5 parts, tin 9.5 parto
Smoker can mend his amber mouthpiece seed oil, hold the oiled part carefully over a hot cinder
or a gas light, being careful to cover up all the rest of the object loosely with paper; when the oiled parts be ome a 11 ltlesticky, press them together, and hold then
otill nearly cold,
Only that part where the edges to be untred must be warmed, and even thet with care,
lest the form or polish of the other parts should be dis turbed ; the part joined generally requires a littler pollshing.
J. H. S. asks: What are the dimensions of ire of Dary's safety lamps!' A. One thirty-efixth of
J. H. M. says : $1 . I$ think there is some mis an engine in No. 22 of your vol. 29. You say $63.6 \times 70 \times 63$ $\times 2 \times 16+33000 \times 19$. I think the last sign should be to divide.
2 Two oi us are in dispute about the horse power of an . Two or us are in dispute about the horse power of an
engine. Diameter of cylinder is 1616 Inclees, length 30 inches working at 100 revolutions per mintute with apressureor
90 A. 1. In the example mentioned, the stroke of the eng ine is taken in inehes. These must be reduced to feet -or
in other words, the fraction must be divided by 12 . It a general princtple that multiplying the denominator o on by any number has the etteet of dividing fraction by that number. 2. If an engine should give a
indicator would lye $201 \cdot 06 \times 30 \times 5 \times 100 \div 33,000$
F. M. H. asks: How can I find a rule for
the heating surface and horse power of steam boillers? I think the following is incorrect; it applies to tubular Donlers only: Two thrlds the clrcumference of all the
tubes, multiplied by the length will glve the heating surface, and every 15 square feet of heating surface will be equivalent to one horse power. A. The practice of
different makersvaries so much, and there are so many ways of rating the horse power of a boller, that we can wot give you any defintite rule.
not
W. A. C.- We cannot auswer your question some circumstances, we think that the pressure in the
E. M. J. asks: How can I gild a small wooden flower stand? How can $\begin{aligned} & \text { bome portlons be made } \\ & \text { bright, the rest remanining a dead color? }\end{aligned}$ A. Rub the wood dmooth and prime with glue size, then put on two coats of on paint and one or natung. Smooth over
when dry, with wash leather. Put on gold stze: and
wen it is sticky to to te touch, It is ready ror the leat When 1 is sticky to the touch, it 1 is ready for the leaf.
which put on carefully and dab with cooton wool. Λ Which put on carefully and dab with cotton wool. Λ
thin transparent glazing can be used to deaden the gold
W. T. Says: 1. We have in our factory a about three and a half years. The capactity is fifty horse
power, aud it is at all times under a pressure of ninetypower, and it is at all times under a pressure of ninety-
five pounds. It has commenced to leak baidy tin three or
to
 What would be the effiect? 3. Do you consider such boill ers perfectly safe? 4. We blow oft once a week. Should
the boller be examined Internally? If so, how often? The water is taken from a natural reserrootr, and is both replace the leaky sectlons. though possibly you may be able o face them off. It woula be well for you to ad-
dress the makers of the boller. 2 . We scarcely think
 structed botile. .t. We senould supposes that onct.
trree or four months would be quite suffletent.
$\underset{\text { A. L. A. asks : Are not portable engines }}{\text { mure libble to get out of order and give trouble }}$ than stationary, and doos not the e eat from the bofler
cause unequal expansion of the different parts of the cause unequal expansion or joidiferent parts of the
work, hence loosening the joints, etc? provision is made for expansion, we thnk that porta-
le engines can be made quite as durable as stationary bie enfines can be made quite as durabie as stationary
engines. It is true, however, hat there are difficulties the arrangement, and hence some butld
C. D. C. asks:
powerful magnet ?
4. Are magnets can Iurable?
5. Which has more attraction for a magnet, a point or a fat sur.
face? 4. What $t s$ the farthest distance a which a power du magnet will lift an ounce weight? 5. Whit differ
 Yes, with proper usage. 3. We suppose the magnet will
dtract elther with equal intensity. 4 . This could onl edetermined by experiment for any particular case. One tis a piece of metal which has receited its magenetic
force from another maynet, the other is iron ore which W. asks: What is the rule for romputing
the number of tuns of ice contanined tin an fice house, the length, width, and depth being given? Λ. Calculate the
number of cubic feet in the ice house, and divide by hirty.fire. This gives the number of tuns of ice
he bullding will contan if it be closely packed.
G. A. R. asks: How do you determine the
diameter of a steam chest for a roll ralve engine? the roll valve nore economical than the slide valve? 3 . Do you know of a good book which treats on the roll
valve? A. 1. It will depend upon the wlath of ports dimensions of these do not know of any tests which have been made to de. termine the relative merits of the two styles of valves.
6. None that treats of this specially.
G. O. asks : Has any account of the govern-
ent boiler tests at sandy Hook and at Pittsburgh been ment boilier tests at Sandy Hook and at Pittsburgh been
published The experiments are tncomplete, and
proabaly the detanted report will not be rendered until H. P. asks: : Is there any known sulstance
hat can be put in with hari cast iron when it is being nelted, to make a soft casting? 2. Hay there becn a ro-
tary steam engine inventeo that is practicable? It not, tary steam engine invented that is practicable? It not,
would the nenvention be of sue? A. 1 . We think not. 2. Yes, but there is great room for imp
he invention would be of great value.
 osed to cuta tunncl between Enyland and France. As he opposite shores are not in sight of eath other, wil
you explain the manner of makilig the surves? $A .1$.
 of angles or beartings. 2. In trunning a line betwecn En land and France, if stations suitable for triangulat tion or some similar device, to locate intermediate stations,
or some
 oofng felt or saill canvas, and would like to know if
here is any kind of paint which 1 can apply to to which and live steam. There will be alining of boards to proand live steam. There will be alining of boards to pro-
tect the canvas from Injury. 1 Terlaps inarine glue
will answer. In reply to your other question, sce our Will answer. In reply to your other question, see our W. T. T. asks: What is the greatest powrr
that can be attained by a steel spring, as usecs in clocks, watches. etc., and the greatest number of crolutions
that could be applled to such power, before it becomes exhausted? A. This question is too Inderthite. springs
W. L. asks. In burning the cotton dust pro-
duced in extracting wool fromi cotton falurics, which is impregnated with oll and sulphuric acid, will
nave a tendency to harm the tubes of a boller

uve ase this is a matter that could be bett

experment
C.McC. asks: 1. If I place my engine on
it ther center,should the eccentrics be set so that the lead Is he the same when the link is shipped to ack, as it riccont for cylinders, if steam is made from alkaliue 4. What is the best thing to put on an engine to keep it Irom rusting when shut down for winter, it beling ex
 ot generally be done. 2. Probably oil would be better.
Hempiscommonly employed lead and tallow. 5. Wrought iron expands a bout ${ }_{8}^{2} \frac{1}{2}$, of
its length, on befing heated from 32° to 212° Fahrenheit. J. B. H. asks: 1. What is peat and how can
be distinguished?
2. If anthing without fertilizing
 ture. 2. Nearly all organtc matter furnishes nourish-
ment to the plants by trs decompostion, and hence and
J.S.S. asks: Has a locomotive any , qreater
ressure or wetg hit upon the track when excrung her ullforce to bring a train tuto motion, than she has
J. N. P. Says: Auchincloss, on page : 33,
gives the description of setting the eccentric to cut oft at an angle of 1500, and says: "By carrytng the crank to
the 150 position we observe that the port, s , rematns open a distance. C,", (which, by the way, is wrong: for
the valve ought to be as near the seat, C, on the right as tis now to the bridge on the left) "and the most ready tance, 1."." Further on, he enays : . Hut on referringto Fig.
6, it is clear that no such adition can be made without , it is clear that no such addition can be made without
neceesstatitiga a change also in the ercentric location,for t would render the admission 300° too late. Hence we
must unkey the eccentric, advance it 30°, and refasten it." It is to this that I want to call your attention. He
says he wantsa cut-off ata a crank angle of 1500 and
 face whatever it lacks of mecting the seat. I would ask
if he has not got the cut-off where he wants it to be without advancing the eccentric at all. I am not taking the admission into consideration. Mow if he moves his
eccentric forward 30 , in order to get the admssion at the propertime, does he not get a cut-off 30 be before the We hy sets to 1500° ? It certanny seems so to me. A We have lotked over the passage in question, and the
author's statement a pears to be correct Hake J. P. Jr. asks: How is plumbago applied as
Jubricant on wood? A. yilx 1 with tallow. G. S. asks: 1. Is there any work on hydrau.
Hcs wheretn I can tind rules to caiculate the diameter of pump plungers, sutted to any diameter of water ram
inave a and inch ram and $a 1$ inch plunger: will the plungerdo for a 3 Inch ram, keeping the pumps at the same rate of sped. etc.? 2. I have had ocrasion to
changea large ramf ora small one.and 1 I 10 not get half the power. Why is this so? A. 1. You will tind the sub.
ject treated under the head of hydrostatics in any
noo work on physics. see our advertistng columns for boolk

 runnigg a small engine. I only run the engine once a

 Ret, each containing 39 four inch flues. The grates are
fect \bar{T} Inches in length. The water that surplies the boilers is heated by the exhaust steam from engines,
passing through a heater and lime extractor, and then passing through a heater and line extractor, and then
introuced into the front end of bollers. The later are
perfectlvelen perfectly clean, and yet the plates over the fire bag
down from 1 to 3 inches. They have bagged the same way when water was pumped into the mund drum. Boil
and er makers here do not sem to know the cause, and
theiropinions vary accordingly. One thnks the tro too thick (\%); another that there is too much heating
surface not allowing the water to circulate freely $;$ and surface, not allowing the water to circ ulate frely: and
another, who thinks his opinion infallbble, claims that the oil from the engine eauses all the trouble. What i
your oplnion as to the cause? Do you think oil would have any such effect? A. If there is no scale deposited
on the crown sheet. we imagine that the iracing is in.
J. \& T. G. say: In burning brichs, we find
hat, by mixing anthracite coal dust with the clay, the that, by mixing anthracite coal dust with the clay, the
bricke ree eliable to swell, many of them presenting the
appearance of large dounlunuts. When broken, the have a dark gray metallic appearance, and are hard have a dark gray metailc appearance, and are herd
and britte. It is usunlly sad, when this hap.
pens, that the fire has been pushed too raptlay. No doubt nis is true to a certanin extent, for if the the fres are
dept low untril bricks are well heated, there is 1 Ittle or Fo danger of it happening. But it is not absolutely true because tricks that are in immediate contact with the nre will usually escape this swelling, while others, far-
thest remored from it, will swell. We think that it is caused by want of a sufflicient amount of air to support that much or the coal in these swelled bricks is ot con con. sumed, and yet their appearance indicates that the inside of them must have been in a molten state. They
look as if the material of which they are composed had been in a bolling condition, so great has been the heat brick, the swelling is greatest at the center; and when set close together, they will sweil, while all the bricks around them that are set with space between them will
be free from swelling. This exists in various degrees in In some bricks ; it ca. hardly be seen tn others, as above
stated. The discoloration of bricks where they rest on each other, is another objection to the use of coal dust Those parts of the brick where they rest on eachets. will be of a purple collor, while the rest of the brick will bered. Whit we want to know is : Can any substance
 or discolor the bricks while burning, or cause them to
become discolored whe become uliscolored when exposed to the weather? coal yards. If this were ground fine, we think it would lessen the liability to swelling, but would not prevent
the discoloration. A. The swelling of your bricks is uue probably either to the escape of moisture in the coal. The red color of bricks if due to the red oxide o.
iron, which is formed during the intense heat of the kill hiere they press against one an other the heat is less in. tion of the irou compound and the formation of the red oxide. This is the cause of the purplish color where
the bricks were in contact in the kill. There is no cheaper source of oxygen than the atmosphere. Grind-
ing the coal very fine might obviate some of the difficulty
 wide. I keep in each room a stove, but I think that ter.
hips one stove could heat the two rooms, if a drum could be put tn one room and the pipe from the stove in drum to be as near the floor as a stove. In order the this, the pipe from the top of the stove must be lowered
about t feet, instead of going upwards. Would the draft of the stove be the same? Would the escaping heat of
the stove sutficiently heat the room by going through that drum? Is so, of whit size and how constructed or connection, can a lever and a wheel be so arranged
that, by turning the wheel allways in one direction, the lever would move uvand and down? 1. Probably such an
arrangenent would answer. Any reliable stove dealer will fit tit up for you.
the desired object.
T. D. (2. Jr. says: 1 . I have usually cleaned way to clean out any emery which may have fallen into he cyinder, steam ways. etc? T usually pour alcond or benzine to kill the oll, and then let running water
through. Is there anything better? 2 . Is water, charged with oxalic acid until it will take up no more, too strong ish with whiting, or will leather alone be sufflicient? . What is about, the proportion of murlaticacidd and
alum in cold coloring? Will the brass require to be washed with water when colored with muriatic acid and alum? 5. Whatkind of bronzing can be easily applied to brass like that used on gas inxtures? 6. What kind of
gilt wash can be easily and firmly applied to fron? 7 . nd window raiserswhich we see in cars, and which snaps as if they were taken out after being cast, the rough
edges filed oft, and then dipped into something? What a good lacher to apply to bass, alreay polishe to keen it bright? A. 1. Take them apart, cover the pieces
with oil, and wipe ciean. 2 . We think not dition of whiting will probably be an improvement. 4 6,7 . You will find directions about gold coloring, on
page 43 , current volume. 8. 5. See p.331, vol. 29. Dis-
solve 8 ounces of seed lac in one J. B. (G. asks: In an article in your No. 24,
volume 29 , on the ventilation of the Senate chamber, it is said that the exhaust apparatus takes the air fronk the phy entertained by many in this part of the country. ndeed, all the builaings 1 know of have the air taken froin openings in the floor, the idea of course being that
the vitiated air, being heavier than pure air, is more easily taken from the floor: besides the warm air from the room, is not drawn out before having performed its
work. What is your opinion? ive a general rule as to where the foul air of a room is tions. The air may be heated before it is forced into the
room; and if a current is established from the bot om, there is no ebjectin to removigg the air from the
H. J. asks: 1. Is it common for persons to boat some years ago, but not injured. and have not had my memory since. 2. I was on board a boat and ghe water in her boilers. There were some persons standing within 3 feet of the bollers, and some immediately
over them. Soneme 25 were killed and wounded, yet no bne was scalded. What became of the water? $\Lambda .1$. Shch action occasionaliy takes place, but we hardy think
that it is common.. 2. The hole may have blown out in
B. F.T. asks: Has any person a patent on conductors of heat, as on steam boilers, pipes, etc? 2 . Can india rubber be dissolved in water so as to be
nixed with other substances and becomedry and hard?
$\underset{\text { when written with an }}{\text { R. Hron stylus, the electrical cur }}$ solutionsoliort? A. D. solution of ferrocyanide of potassium. The passage blue marks, the salt being Iconverted into Prussian
blue.
N. O. J. asks: 1. If I have a round timber nd the sldes of the beam expressed In function of the expansion of water by heat? 3. IL Ganot's " Physcs ", there are the following formulas. by Dr. Mathiessen
t $\mathrm{t}=1-0.0000053(\mathrm{t}-4)+0.0000003399(\mathrm{t}-4)^{2}+0.000000$ $\mathrm{t}=1-0 \cdot 00000253(\mathrm{t}-4)+0 \cdot 0000003389(\mathrm{t}-4)^{2}+0 \cdot 0000000$
$173(\mathrm{t}-4)^{3}$ between 4° and $32^{\circ} \mathrm{C}^{\prime}$. and $\mathrm{Vt}=0 \cdot 999695+$ $1 \cdot 0000054724 \mathrm{t}^{2}+0 \cdot 00000001126 \mathrm{t}^{3}$ between 30° and $100^{\circ} \mathrm{C}$. The side of the greatest square tlat can be inscribed in The stde ot the greatest square t.at can be inscribed in
a circle e 18.707 of the diameter. 2 . The frrst formula may be thus translated: If we call the volume of a given welght of water, at a temperature of ion oct
grade, unty, the volume at any other temperature, t, t 253 times the given temperature, dlminished by +0.000000339 times the square of the given tempera ture, less $4,+0.000000071 \pi^{3}$ times the cube of the given temperature, less 4 . The translation of the other tormula is similar. Vt in the first member of the cquation means
the volume at the temperature, t, which temperature A. R. asks: How smanl in size did Newto tof its molecules? A. We do not remember that New
P. P. asks: What is the principal difficulty In running band saws in ordinary lumber mills, and
why are they not used more extensively? Is not the power requrrei to od drive a band saw less sin proportion
oo width of kerf, the rate of sawing beln the A. The band saw is comparstively a recent invention but already it is being largely introduced. We do no
think thereare any great difliculties in its use. T powerrequired is not less
W.R. G. asks: 1. In calculating the power of
water wheis, is there any thing allowed for rriction? Generaly, yes.
R. S. F. asks: Is there such a thing as a re-
cording dynamometer for use on steam engines, water Wheels, and othermotive po wers? A. We believe there
are such machines. but they have not come into general use on account of therr complications, expenses, etc
The fild is still open for the inventor who can produc
D. M. L. asks: 1. How is the monthly aver age of a thermometer obtained? on some days, at the
hour of observation, it indicates above zero and a others below. 2. What is the mean averape of the fol
lowing record for ten days: $1 \mathrm{st}, 10{ }^{\circ}$ above $; 2 \mathrm{~d}, 8^{\circ}{ }^{\circ}$ above 3d, 30 below; 4 th, 40 below; $; 5$ th, 2o above; $; 6$ th, 55 above 1. 1. Take the algebratc sum of the readiags, and divide by the number. 2. The mean temperature, as ashown by
these observations, $=\left(10^{\circ}+8^{\circ}-3^{\circ}-40^{\circ}+20^{\circ}+55^{\circ}-1^{\circ}-80+9\right.$ $\left.+4^{\circ}\right)+10=2 \cdot 2^{\circ}$ above zero
D. M. A. says: A board is 12 feet long and Thcht hick. At
end 12 inches wid. to have the 8 ame
amount of each plece? A. Let A Board. \quad represent the
boapose the problem to be solved
and that E F, or b, drawn at a distance, x,
above C D, divides the bosrd into twe equal
parts. It is thus re quired to find the valu
of x. It is easy to se that if the sides of the board were continued
v.pwards unt1l the met, as at G.the lengt
would be 18 feet. W G C D, with a line, EF

216: $216-x \cdot 12 \cdot b$, and $b=12-x$. Having found the top and hight of the plece, EF C D, we can calcula half the area of the lboard. Then $\left(12-\frac{x}{36}\right) \times x=566$. Solv Ing thls equation for x, we find the hight above $C D$,
which the board must be cut, is 4 feet, , inches, nearly. A. L. asks: Can you tell me how to stain
hard wood in imtation of ornamental kituds? subject is a very complicated one, and a full descriptio of the processes would occupy too much of our space
M. asks: What is a good metal that can b kingmodels, and will be quite estif when cold? I have
been using lead, tin, and antimony, but think that per been asing lead, tin, ind antimony, , ut think that per
hape Ido not get right proportions. A. nicrease the
A. B. P. asks: How can I make an amal

A. Z. B. asks: 1. What treatment should
 in linseed oll and wash the oll out with soapy water. F. A. R. asks: 1. What are the meanings of In an almanac? 2. How is coal tar made? 3 . How 1
In time after which the same dass of the week recur on the same days of the year. This period of the sun (solar
cycle) is 28 years, and of the moon's changes 19 solar years. The golden number is the number of the year 11
the cycle. To flnd the golden number add 1 to the date and divide by 19. The remainder is the number. Thu $1874+1=1875 \div 19=98$ and 13 remainder. The epact the moon'sage at the end of the year; and if we take the epact corresponding to the year's golden num
ber, we can otala the dates of the new moons, and
the is a by-product of the distillation of coal, as in makin 1s a by.product of the distlilation of ooal, as in in
inluminating gas. 3 . By the distillation of clder.
L. J. O. asks: What are the use and meanIng of the marks over certaln leters, as in Protessor
Orton's letters?
A. The marks you refer to are the ac cents on the lettern (in) in the spanish language. The

J. S. asks: What has become of the boiler woumended operations until spring
S. H. asks: On what day of the week did
P. asks: How can I remove oil from a print-
F. A. B. sends the following recipe for
 Dis8olve the shellac in the alcohol, and add the other
redients. If it gets too thick thin ain P. P. P. asks: 1. What makes a person
shake when having cenill ? 2. What cause the cold
and hot feelling during a chill? 3. When death is aused by congestive chill, what parto of the body is so the deep searlet color of the geranium flower produced on Wax? 2. How can I prevent white wax from turn. ing yellow?-S. B. R. asks: How can I dye furs ? ?-A.
P. asks: Which is the largest pump in the world ?-J. ficlal light used all over the world ?-T. F. asks: How can I remove the smell of codilver and castor oils? ? J. H. asks: How is a hygroscope (a paper altering its color With the humidity of the atmosphere) made?-G. P. Z.
siks: Is there any remedy that will remove hair from nark or signs of its application?

COMMUNICATIONS RECEIVED.

The Editor of the Scientific America acknowledges, with much pleasure, the re ceipt of original papers and contributions pon the following subjects
On a Specific for St. Vitus' Dance. By A. S On the Phonetic System. By A. F. S. On a Mathematical Discovery. By 'T. F. On Ventilating a Church. By R. On a Theory of the Origin of the Solar ystem. By C. D.
On Lunar Acceleration. By J. H.
On Minerals in Tennessee. By A.D. M.
On Steam Power in Philadelphia. By L. B.
A
T.R.\&S.-C.T.-J.J.K.-J.D.B.-G. W. B.-S. M.D.

Correspondents in different parts of the country ask :
Who makes the beet breecb-loading shot gun? Who eils machnnes for making buttoncead rivets? Who
 will probably promote their interes.
reply, in the SicIENTIFIO AMRRICAN. Correspondents who write to ask the address of certain manufacturers, or where specified articles are to be had, martuers, should send with their communications an anount sumcient to cover the cost or pubitcation unaer
the heead of " "Business and Personal" which is spectally

[OFFICIAL.]

Index of Inventions
For which
Letters Patent of the United States Granted in the week e,
January 6,1874 ,
and each bearing that date
Atr cooling, A. Muhl..........................
Alkalies, package for caustic, H. B. Hall.
Artist's ink slab. W. Keuftel
Auger bits, ale for forming, J.Swan
Bed bottom, Briel \& Krieger
Bed bottom, Deal \& Hobbs.
Bed bottom spring,D. W. Whitaker
Bell tightener, S. L. Gould........
Billiard register, C. F. Washburn
Bit atock, Chandler and Folsom
Bit stock, Chandler and Folsom.................
Botler, etc., locomottve, N. F. B. De Chodzko
Boller
Books, fastening leaves in, L. Mess
Boot counter stiffener, J. L. Hatch
Boot heel, forming, G. W. Keene (r).
Boot heels, etc.. nalling, J. M. W
Boot sole cutter, H. T. Marshall.
Boot, sole for, Pebbles et al..
Boring apparatus, etc., ea
Bride tink bar, J. Christie.
Buttons, etc., J. F. Bapterosses
Cage, bird, W. O. Grover.........
Car axle, lubricating, P. Bauer..
Car coupling, X. Krapf
Car coupling, F. Thorpe
Car coupling, A.WIlson
Car spring, railroad, J. W. Evans........
Card for wrapping thread, H. Sutr
Carpet fastener, F. Graff.....
Carriage, child s, S. P. P. Tibbal
Carriage seat, H. W. Quinn
Carrage top, J. Catro
Crriage top, .. De
Chuck, w. H. McCoy.
Cigars, machtne for molding, H . Dombrowski
Clamp, I. Kenney.....
Clamp, floor, R. C. Davidson
Clothes dryer, F. Lyford.
Coal, etc., discharging, Lippy et al.
Cooking apparatus, A.E. Neltz.

 Curve scriber, I. Eenney.t.
Cutter, rod, D. S. Merritt. Dental plates, aloy for, E .
Digger, potato, R. B. Evaus
Dider 1, rill chuck, H . M. Olmstead Duster handle, etc., E.M. M. Fon
Elevator, ise, J. S. Johnson..
Flevator, water, T. J. Curists.
Engine steam, Field \& Cott
Engines, packing for steam, W . Beschke...
Fancet compression,J. T. Hayden.......
Fertliters

Flue cleaner, H. Freeman.
Fork, horse hay, E. Itishle
Forms, cutting irregular, J. P. Grosienor (r)
Furnace mouths, arch iron for, T. Sharts...
Gage for edgers, , T. Taylo

Grain bunder, Cubbertson \& Edgar.
Grinding machine, W. J. Reagan.
Grinding rolls, machine for, N. Gavit.
Hammer eyes, formiug, H. H. Warren
Harrow, wheel, E Baylis
Harvester, J Beach
Hatch way, selff.closing, W. A. Morrison....
Hemmins, etc., attachnent for, JJT. Jonc Hinge, A. OKecfe...........
Hook, whiftletree, J. Behel.
Horseshoe hlank, J. Russell.,
Iron, puadlling, F. A. Leliurin
Jack, 1 Ifting. E. B. Cump
Jack, litting, IL File.
Jewelcr's's linge stock die,
Lader fire escape, M. Pare

Lock, seal, J.C. wands.
Lock, permutation
Locomotive water supply
Loom shed, G. Crompton
Loom shed, (G. Crompt on, (r)...
Mechantcal movement, $\mathrm{B} . \mathrm{Fres}$
Mechanteal movemente, J. Won
Medical compound, P. Hunter

Medical compouna,
rilling

Music leyf turner, W. W. II, Kin
Naill picture, J. O. Niles....
Nut machine, s. H. Wright.
Ores, etc., sampling, J. Collom
Painting broom lanulles. I . leit
Paper bass, mak'ng, c. T. Picker

Pipes and tubing. W. V. Phili
Plane euide, w. H. Stitipe

Powder keg, X . Tenney

Regulator, draft, J. Il. Adolpl
Roofng, metalic, A. Gat

Sadde attachiment, Big
Safe, fur, R. H. Miller.
Sash balance, $J . J$. Cowell,
Sash fastener
Sash faster, J. Xelson
Sash pulle,
Saw mill, feed wheel
Scraper, foot, X. C. Burnap
Screw cutting maccline, L .
Spewng machine, T. K. R.eed................
Sewing machine caster, J. A. stansbury
S.
Sewing machine cover, W. C. Wendell..

Sign, alterable, L. . .ellander.
soda viater apparatus, J. w.
Sower, sead, J. B. Xixon.

Spooling machine, S. K. Smith ...
spring, suspender, G. K. Wiunfleld
Stereoscope, revolving, J. W. Cadw
Stereotype block holder, J. Brsson
Stone, dressing, G. W. Weatherhogk
Stove, portable, F. A. Schroeder....
Suspender spring, G. K. WTngfie
Tablet, drawing, M. Willson.
Thill coupling, E. P. Couricl
Tool handle, W. H. Mc
Toy, G. B. Adams
Tracefastener,
Trangplanter, F. B. Abbott
Trap, antmal, C. schwelze
Trap, fy, McCreary \& Crist.....
Twine holder, Huntley \& Esty
Vehicles, wheel ior, F. H. Brink kotte
Venticles, wheel for, w. Corris.
Vehicles, wheel for, C. H. Guur
Vehicles, wheel for, C. B. Wain wrig
Velocipede, G. Avery.
Washer, ore, E. Paul.
Washer or buddle, ore, J. Collo
Washing machine, D. W. Linn.
Washing machine, D. W. Linn
Washng machine, F.E. Smth
Weter
Water Wheel, turbine, M. W. Obenchatinet
WIndlass and crank brake, H. Y.
Wind ass ant crank brage
Wind wheel, A. T. Page
Wrench, H.P. HIood
Zinc from fumes, re
Zinc from fumes, recovering, H. Siege
nish a model, with specification and dra wings in dupli-
cate. It is also necessary for him to sign and make affidavit to the origiuality of the invention. The total expense, in ordinary cases, to apply for a Canadian ju ent, is 8 fi, U. S. currency. This incluaes
the govan intent fees for the first five years, and also our the govav:Mrfent fees for the first five years, and also ou cations and papers, and attending to the entire business The holder of the patent ts entitled to t to extensions of the patent, each for five years, making firteen years
in all.
all the rights of the inventor.
A small working model must be furnished, made to any convenient scale. The dimensions of the mode should not exceed twelve inches
If the invention
If the invention consists of a composition of matter gredients, must be furnuthed.
Persons who desire to apply for patents in Canada ar
requested to send to us (MLNN \& Co.). oy express. model with a descrintion. 10 thelr own language, showalso the fees as above for such term for the patent as they way elect. We will then mmedistely prepare the
drawing and specifcation, and send the latter to the applicant for his examination, signature, and afidavit It requires from four to twelve weeks'time, after com
pletion of the papers, to obtain the decision of the Cana pletion or he Office. Remit the fees by check, draft, or
dlan Patent
Post postal. Give us your name in full, midd die name include Inventions that have already been patented in th patented in Canads.
On flling an application for a Cangdian patent. the
Commissioner causes an examination as to the novelt Commissioner causes an examination as to the novelty and utility of the tuvention. If found lacking in etther of these particulars, the apphicaten wid will be returne to the applicant.
Inventors may temporarily secure their improvements in
in full.
For further information about canadian patents, as

VALUR OP PATRNTS

And How to Obtain Them.
Practical Hints to Inveituros.
 ROBABLY no investment of a small sam expense incurred in obtain!ng a patent, even When the invention is but a small one. Large
inventions are found to pay correspondingls Inventions are found to pay correspondingls
well. The names of Blanchard, Morse, Bigelow, Colt, Ericesson, Howe, McCormick, Hoe and others, who have annased immense for-
tunes from thetr inventions, are well known Δ nd there are thousands of others who
realized large sums from thelr patents. More than Fifty Thousand inventors have avalled TWENTY-SIX years they hare acted as soltcitors and Publishers of the Scientific Amprican. They stand at the head in this class of business; and their large corps
of assistants, mostly selected from the ranks of the of assistants, mostly selected from the ranks of
Patent Offce: men capable of rendering the best scrvice to the laventor.from the expertence pracucallyobtained
whlle examiners in the Patent offce : enables MUNN \& Co. to do everything appertanning to patents better
and ciencer than any other rellable agency.

H0W T0 PRENT OBTAIN

oflce. A positive answer can only be had by presenting a complete application for a patent to the Commissione of Patents. An application cons18ts of a Model, Draw
ings, Pettion, Oath, ard full Specification. Various efforts of the inventor to do all this business himself are generally without success. After great perplextty and
delay, he is usually glad to seek the ald of persons experienced in patent business, and have all the work done
over again. The best plan is to solict proper adrice at ove beginning. If the parties consulted are honorable men, the inventor maysafely conilde his ideas to them
they will advise whether the improvement is probably patentable, and will give him all the directions needful

Fo Make an Application for a Patent.

The applicant for a pated should furnish a model of It may be dispensed with; or, if the invention be a chem tcal production, he must fnrifish samples of the ingredients of which h1s composition consists. These them and sent by express, prepald. Small models, from a dis tance, can otten be sent cheaper by mall. The safest
way to remit money, lis by a draft or postal order, on ew York, payable to ${ }^{\text {hu }}$ orderof MUNN \& Co. Pers chase drafts from their merchants on thefr New York

Foreign Patents.

The population of Great Britain is $31,000,000$; of France,
$37,000,000$; Belgium, $5,000,000 ;$ Austria, $36,000,000$; Prussia, $40,000,000$,and Russia, $70,000,000$. Patents may be securea by American cittizens in all of these countries. Now is the
tIme, when business 18 dull at home, to take advantage of these immense forelgn fields. Mechanical improvement
never be a better time than the present to take patent abroad. We have rellable business connections with the
princlpal canitals of Europe. A large share of all the obtanned tirough our Agency. Address MoNN \& Co., 37 obtained through our Agency. Address MONN \& Co., $3 i$
Park Row, New York. Circulars with full information on forelgn patents, furnished iree.
Caveats.
Persons desiring to fle a caveat can have the papers
prepared in the shortest time, by sending a sketch and prepared in the shortest time, by sending a sketch and
description of the invention. The Government fee for description of the invention. The Government fee for
a caveat is $\$ 10$. A pamphlet of advice regarding applica thons for patents and caveats is furnished gratis, on ap-
plication Dy mall. Address MUNN \& Co. 37 Park Row plication by mall. Address Muns \& Co. 37 Park Row

Value of Extended patents
Did patentees realize the fact that their inventions are
likety to be more productive of proft durly the seven Yikeyy to be more productive of proft during the seven
years of extenzlon than the first full tern for which their patents were granted. we think more would arall thenselves of the extension privilege. Patents granted prior
to $18 \overline{1} 1$ may be extentled for seven years, for the beneft to 1801 may be extented for seven years, for the benefl
of the fuventor, or of his hetrs in case of the deceasc of fomer, by dueapplication to the Patent Offlice, ninety dass before the termination of the patent. The extended time intires to the benefit of the inventor, the assignees
under the tirst term having no rightsunder the extensinn excent by spectal agreement. The (iovermment fee for ension ts 1100 , and it 18 necressary that good professional service te obtaine. to conduct the business before
the Patent Office. Full tuformation as to extensions nay be had by addressing Menn (on. is Park Row, New

Trademarks.
Any person or firm aomiched in ine Untted States, of Where similar privileges are extended to citizens of the ection. This is very important to manufacturers in this

Design Patents.

Forelgn designers and manufacturers, who send good pattergeuntry, may secure patents here upon their new selling the same goods in this narket. A patent for a design may be granted to any person
whether citizen or allen, for any new and original desigu for a manufacture, bust any new and original design for the printing or woolen
silk, cotton, or other tabrics, any new and oristral im. prebsion, orbameut, pattern, urlat, or bicture, to be into any article of manufacture.
Deslgn patents are equally as important to citizenis as torncero. 37 P fill Copies of Patents.
ber 26,1867 , 1 mb bied with ber 26,1867 , ean be supplied with ottl ctal coptes at a reas.
onable cost, the price depending upon the extent of draw Any pern or spectication. time the Patent Oftice commenced printing the drawings
and speciftations, may be had by remiting to thls or tice $\$ 1$.
A cod
of the clams of suy patent fsoued since ${ }^{1336}$ When ordering coptes, plesse to remit for the same as above. and state name of patentee. title of invention,and
date of pateut. Address MUNN \& Co., Patent sollciturs MLNN \& Co. will be happy to sce inventorsin person at ther office, or to advise them by letter. In all cases
they may expect an honest opin.on. For such consuita tions, opinions, and advice, no charge i.s mude. Write All business commited to our care, and all consula In all matters pertaining to patents, surh as conductir.g interierences, procuring extensions, dra wing assifu
ments, examinations into the valinity of patentr, eic.

```
                                    MUNN & CO
```

publishers scientific american,
37 Park kow, New York
 Sireets. opposite Patent Offce

Bdartisentents.

The Welch WATLR ENGINE anvequicaziz

TO CAPITALISTS AND MECHANIC

\section*{| Hed |
| :--- |
| jue |
| bel |}

 ames MIES GenuineChester Em-

I

BAIRD'S Boons
For Practical Men.
 Be sent, free of postage, to any on baird,
with his adresi.
HENY CAREY BAI INDUSTRIAL PUBLISHER,
40f WALNUT STREET, Philadelp
Moulding, Founding \& Metallic Alloys.

The Practical Metal Workers' Assistant

The Practical Brass and Iron Founder's Guide:

 Metallic Alloys:

GO The above or any of my Books, sent by mall,
 HENRY CAREY BAIRD,

INDUSTRIAL PUBLISHER.
406 WALNUT STREET, Philadelphia. M $\mathrm{ACHINERY}, \mathrm{NDD}$, HAND, FOR SALE-
 T Tin

 $\mathbf{\$ 2 0} \underset{ }{\mathrm{PERR}} \mathrm{F}$

Turbine Water Wheels.

 $K_{\text {UANT, }}$ UUEER, AND KURIOUS is the New Yors.

 CHAS. B. BARDDCE
The FAWTEY KITIN

${ }^{6} \mathrm{~S}^{\text {MILES }}$ AND TEARS" -Two Charm

Fourth Grand Gift Concert,
PUBLIC LIBRARY of KY.
Over a Million in Bank!!
A FULL DRAWING ASSURED! Tuesday, the 31st of March, next.

$$
\$ 1,500,000!
$$

divided into 12,000 cagh gift, will be distrib-
uted by iot anongthe tictet tulders.

 all paid in proportion to tre number or
PRICE OF TICKETS:

AGENTS, Ret the beat selluf book and secore
S for sale, at verr reduced figures, a number of holet

gherticat.

S INGLEE AND BARREL MACCINERT.

SCHENCK'S PATENT. 1832.
WOODWORTH PLANERS And Be-Sawing Machines, Wood and Iron Worbling Ma
chinery. Engines, Bollers, etc.

Portable steam engines, combin

WOODBURY'S PATENT

COD ROLLED SHAFTING

 GREEN HOUSE\& BEDDING PLANTS.
 Veneer Cutting Machines. FOR SALE,

GEO. W. READ \& CO. STEAM BAND SAW AND VENEER CUTTING MILL.

 J. A. FA

P. BLAISDELI \& CO.

Andrew's Paients.

PUNCHING

\qquad

Machinery,

Cold Rolled Shafting.

Sturtevant Blowers.

SITENCIL IIINS

Catalogues Free.

 TIITITIn Wrought T Union Iron Milla, Pitheburgh, Pa

An deut) ${ }^{\text {Pde }}$ Erfinder.
Dicfe große witb thätige ©rafic unfrce Be, böfferung madect twir beforbers baranf
 bindung mit Waffington mud den enropaiidiler Wauptitibten, bcionbere Wort)cile zur ©rllar:
 bietet.
Yeber Erfinber, glcidbier weldjer શationalität angchörig, ift burd bie liberalen \mathfrak{F} atentge, Setge der Bercin:gten Ctaaten zum æatertidjut fïr Exfindungen becedtigt. Unife firma if
 Grfinber jeber Зeit zu berather unt zu mä́igen Preifenrajd und puinftlid) Patente ju crlangen.
$\mathfrak{D i e}$ Dentldje ©ection ift in ben \mathfrak{W} anden
 Dffice periöntid mit Erfindern bertchren werben.

Der ,Scientife American" wird in feinen Epalten bie bebeutenberen Evfindoungen be. [pred)ent
Sorrefpnibent crbetct und prompt beant mortet. Famphicte in Dcat jder eprade wer ben auf $\mathfrak{B e r l a n g e n ~ f r a n c o ~ j u g e i n n t . ~}$

,.Scientific American" Patent Acentur. 37 gatt Now,

Aduextisements．

${ }^{\text {To sell }}$ the Home Shuttle sewing Machine

 Adaress Johnson，Clark \＆Cor，Boston，Mass，
Pittsburghl，P：it，Chicago，III，or St．Louis，Mo．

Part I．of The W orkshop $18 \% 4$. ${ }^{\wedge}$ Uoth1］Journal devoted to the Properes or the the

Part I．of Art－Workmanship．

Machinists＇Tools．

 E．\＆A．BETTS，

ANTI LAMINA

JUST OUT．
 THE
 Science Record

\section*{FOR} | Planiorant Hand |
| :---: |
| Anctine |

 JOHNA．ROEBLINGBSONB Fin

DOUBLEACTING

SteamPumps
VALLEY MACHINE COMPANY， Easthampton，Mass．

SUPRR－FTEATTERS

$T^{T H E} L A N B O D Q^{20}$ Iniversdl Tnill clblGK $\underset{\text { Dever }}{\substack{\text { Levi }}}$
 GLASS CUTTERS．
 TRON PIANERS，

$\mathbf{C}^{\text {HAAMPION }}$ SPING MATTRESS－The

 EMA AND BOLLERS，New and Sec

WIRE ROPE

S THE BESTT SOLDD EMERY

 PORTLAND CEMENT，

E\＆OSースーnty roo men

Pruspu（ive

of the

SCIENTIFIC AMERICAN．
THE BEST MECHANICAL PAPER IN THE WORLD．
TWENTY－NINTH YEAR．
VOLUME XXX．－NEW SERIES The publishers of the SCIENTIFIC AMERICAN beg
to announce that on the third day of January， 1874 ，a new volume commences．It will continue to be the alm
of the publishers to render the contents of the coming year more attractive and useful than any of its prede－ The SCIENTIFIC AMERICAN is devoted to the inter－ ests of Popular Sclence，the Mechanic Arts，Manufac－
tures，Inventions，Agriculture，Commerce，and the Indus rial pursuits generally；and it is valuable and instruc－ tive not only in the Workshop and Manufactory，but also
in the Household，the Library，and the Reading Room． The best Mechanical Paper in the World！ A year＇s numbers contain over 800 pages and several
hundred engravings of new machines，useful and noveI nventions，man

To the Mechanic and Manufacturer ！
 CAN．Every number contains from six to ten engravings of new machines and inventions which cannot be found in any other publication．TERMS．
One copy，one year．．
83.00
1.50
1.50

One copy，fix months．
One copy of Sclentific A merican for one year，and
one copy of engraving，＂Men of Yrogress＂．． 10.0
One copy of sclentinc American for one year，and
one copy of＂Sclence Record＂for 18i4．．．．． 5.00
Remit by postal order，draft or express．
The postage on the Sclentific American is five cents per quarter，payable at the offlce where recelved．Can－
ada subscribers must remit，with subscription， 25 cents
extra to pay postage．
Address all letters and make all Post Office orders and
MUNN \＆CO．
37 PARK ROW，NEW YORE

