was first to be kept, but it is natural to suppose that the new
arrangement would be brought into force as soon as possible, that is, in the then existing year.
It is pronable that this reform of the calendar was not of fected with:ut, much opposition. It lasted through the reign r.f Ptolemy III, But in B. C. 222-1 he died; his son Ptolemy Philof, ate: succeeded him, and then this sixth intercalasy day was no longer kept. There seems to have been a reaction Sirius the jear was no longer observed, and the common year, of his days only, again prevailed. The old irregularities radually became apparent: and the reform, which in consequence became necessary, was effected during thie reign of Anrustus in the year B. C. 26.
The latter p:st of the inscription recounts the honors decreed to the deified Princess Berenice. Her statue is to be placed in the g reat temple at Canopus, near the statue of Osiiis. In all temples of the first and second orders, a statue of her, made of gold and adorned with jewels, is to be kept in the adytum; a four days' festival in all the temples is to be kept in memory of her, beginning on Tybi 17th (March
$7 \mathrm{tl}_{\mathrm{i}}$), the day on which the mourning for her ceased and her 7 thi), the day on which the mourning for her ceased and her apotheosis was decreed. On the festivals of the other divinities her image is to be carried in the processic-1. Hymns are to be sung in her honor, and regular rations given to the maiden daughters of the priests who do service to her.
Lastly, the presiding high priest in each temple, and the temple scribes, are charged to set up in every temple of the first, second, and third order, and in the most conspicuous place, a copy of the decree, carved in Hieroglyphic, Egyptian and Greek characters,on a pillar of stone or brass
Gut of the many copies that must have existed, this is the only one hitherto discovered.

Correspondence.

The Ventilation of the United States io the Editor of the Scientific American:

dllow me a few words of comment on the article on venti hiting the Senate Chamber in your issue of December 13,

Vertilation is a very simple thing; and to secure it, it req 'ires only to be not prevented or olstructed. Nature will ventilare ary apartment if it is only allowed to do so. As eavily a; a man draws his breath, so will an apartment, crowded or cot, ventilate itself if it be allowed a throat to d. it with. 'fol derise fans, steam engines, exhausts, or inishy trying to help Nature to do work which she can better d) Withcut iesp. It would be no more absurd to invent a whirligic to put into a man's mouth to help him to draw his breath than it is to devise an injector and an exhaust to force in pure and draw out impure air to and from a room. To help a river over a waterfall is not more preposterous than, by moving apparatus, to accelerate the entrance of
fresh and the exit of foul air from a crowded hall. The same force which makes the water descend, gravity, forces cold air urde: hot air and makes it ascend. If the foul air of a crowdeo hall could be seen and handled, the nature of its movemenis would have been long ago as well understood as those of water. Supposing foul air were the color of dense smoke, it would be seen to accumulate at the ceiling. If could be seen that it always tended upwards, a hole in he roof would be the natural result of the desire to get quit of it. The amount of haziness regarding this simple
matter in the minds of scientific men is unaccountable. The thousands of pounds and the amount of abortive invention spent on the ventilation of our Parliament Houses might make the angels weep,and all for what? To force atmospheric air to obey a law of its nature, which it cannot of itself disobey. As the sparks fly upwards so will heated air, if it is not restrained; and herein consists the whole secret of rentilation. It needs no device to float a cork; neither does it need any machine, fan, steam engine, exhaust, or injector to purify the air of the Senate House. All that is strictly required is an entrance for fresh air below, and an exit for foul air abovo. These provided, ventilation will work in spite of all the wrong headed theories of the savans and
without the well meant but useless inventions usually without the well meant but useless inventions usually hall need ke either impure or oppressive. If the place b talf filled, the supply of pure air will be enough. If crowded, it will be augmented to meet the larger demand. Fyery person who enters is a machine to make the current in ivards and outwards work more vigorously; and every one who leaves deducts from the demand and the power to suppiy. The atmosphere is a nicer balance than ever man made, and vibrates to a counterpoise infinitesimal beyond his coneption. It is a comfortable as well as an undeniable fac: 1:; the objects which require ventilation are the very meas: to create it. Fires, lights, and man himself, if they consume pure air, also heat it, causing it to ascend and give place to a new supply, which in turn is consumed, heated and puslied upwards. This process, which is never ending, s simple, admirable, exact, and complete. It requires no assistance, has worked from the beginning of time, and will
work, though there be neither savan nor machinist in ex work, th
If our halls, like the ancient Greek, were without roofs, ventilation would cause us no thought. The foul air from our lungs and bodies would ascend right into the air, and a fresh supply would come down to us through the same opening. But our houses and halls are ceiled, and the currents are prevented taking their natural courses. Even in a
ceiled chamber, if an open space be left large enough, the ascending and descending currents through it would supply
all the ventilation required by a crowded assembly. But it is more convenient, as the modern fashion of buildings is and as our climates require, to admit our fresh air at the smaller opering in the part of at the top. By this mode smaller opening is needed than many would suppose. And here I beg to take exception to a statement in the article re ferred to. It is there said that the machinery injects 25 cubic feet of air per minute for every man of 1,200 assem bled, or it is capable of doing so. This quantity is ridicu lously overdone. A man does not consume even one foot of air per minute by breathing; 15 inhalations of 60 cubi inches each make only 900 , and a cubic foot contains 1728. Take man by man in an assembly, half a foot per minute is all each will consume. One can inhale through a half inch tube more air than he requires. Even a quarter inch one will not oppress him muc!. I speak of a round tube, but f you will, take a square one. Of this a square foot will re present 576 persons' breathing area, and will admit air suff cient to supply that number. It may be said the velocity of air into a crowded chamber is not so great as that of the air through the tube when one breathes by it. But it is to b remembered the air is passing into the lungs only half the time, while the inward rush to supply an assembly hall is constant. The fact is the current inwards and outwards in a chamber, ventilated in the natural way which I indicate, is quite as fast as the current in and out of a man's windpipe. But in an assemb. y hall at night, the lights must be supplied with fresh air as well as the occupants. I need hardly mention fires, as it is not usual to have them in such places. If they be used, they also must have their supply of air, and they will take an amount of inlet for themselves, equal to the united areas of their chimneys. I suppose there are no fireplaces in the Senate Chamber: but a crowded hall gets
lieated, and an extra snpply of air is demanded on that acleated. and an extra supply of air is demanded on that ac count. If such is the case, it calls in its own supply. The velocity both inwards and outwards increases and the tem oppressive. It is impure air that exhausts and makes people pant. Taking your estimate, 1.200, as the usual number in the Senate Chamber, a hole in the roof equal to two sq uare feet, with an under inlet the same, are ample to supply all the breathing air rec; ited. The lights may be al.
lowed as mucb, and the hea', an equal space. As a large lowed as mucb, and the hea' an equal space. As a large
hole is about as cheaply made as a small one, and as plenty of outlet does not affect the pe \imath ple below, the openings may be made double or even treble the size mentioned without fear of inconvenience. These ol enings must be free to the atmosphere, but may be made with louvres to keep out the rain. A hinged skylight is as good as anything else. $I s$ a cisteru of water will be emptied if any sort of hole he driven through the bottom, so will a crowded hall he refreshed if any sort of hole is driven through the roof.
I am sorry I did not get admission to the Senate House when I visited Washington, else I might be more precise in my suggestions. But I believe that there is a ceiling be ween the outer roof and the audience, an! that this ceiling is pierced with ornamental fretwork, and that the piercing is equa
outlet.
The inlet oi fresh air is the next thing to be consid. red; and while it is equally simple in principle as the out et, it is nct exactly so in practice. The outlet may be any where in the roof. It may be far larger than really required It may be one large opening, or it may be many small ones. The inlet must be a great many small openings, or a disagreeable current will blow in one plase and inconvenience hose near it. But even this is a simple matter. An open ing in the masonry under the joists of the floor, communica ing with the outer air, will allow a fresh current to rise hrough small gratings in the passages between seats. Or if the corridors have proper air holes, a supply to the main chamber may be got from them by slits above the doors. Or air may be letin along the channel where lie the heating pipes and allowed to find its way to the cbamber through small grate work along the base of the wainscoating. The
modes for small inlets are endless. And let me say the modes for small inlets are endless. And let me asy the united aress of the divided inlets need not be so great a hose of the outlets, because they are supplemented by chinks of windows, thresholds of doors, etc. I would im press on all objectors that no inconvenience from the cur ents will be felt, if an inlet area of 8 or 10 feet be properly attered over a room of the size of the Senate Chamber
Allow me a few words on the long pipe proposed, to suck the air from the park 220 feet off. I do not know what
purer air people would wish than that at the Capitol. It purer air people would wish than that at the Capitol. I
blew on me as fresh as mountain breezes. It is all peopl have to breathe who are walking outside; and if those inside get the fame, what elae do they want? One undeviating law of air currents is that they always take the shortest avail able cut and depend upon it, the ventilating air of the Senate house will never run through a long pipe if it can get in at n open door nearer its work. The whole thing is of a piece with the London delusion, and indeed is a counterpart of it from beginning to end
Paisley, Scotland.

Wm. Mackean
To the Editor of the Scientific Arwlin
I bave read an article in your issue of Decembsr 13th, 1873, on the above subject, and I understood the difficulty (remedied by the charges described) to be the want of sufficient area, and the proper arrangement of the air passages from mistake in your explanation, there was, in my opinion, no mistake in your explanation, there was, in my opinion, no
necessity for the new fans, engine, and the two air shafts,
which in all probability occasioned a large expenditure. I venturemy opinion on these grounds: You say that the capacity of the old fan was 80 revolutions per minute, discharging 500 cubic feet of air at each revolution, making in all 40,000 cubic feet of air per minute ; and that in consequence of the defect, it was producing but one fourth of the ventilation that it had the capacity to furnish. As you state the capacity of the new fans to be 30,000 cubic feet per minute it appears there was at least no want of capacity in the oid fan, and that in comparison with forced ventilation, there is no advantage in ventilating by exhaustion. In ny opinion, Mr. Hayden selected a very indirect, as well as an extrava gant, method of remedying a very simple matter.

Chicago.

Mental arithmetic

To the Editor of the Scientific American:

The young mechanic who hopes to excel in his chosen rade should endeavor to become skillfill in mental arithme ic ; and at the last analysis, all computation is strictly men tal, the figures employed being only tallies $t . i$ record resulte. I will give a table illustrating the theorem that the product f any two numbers is equal to the square of half their sum ess the square of half their difference, that long practice proves to be a useful method of multiplicatior.

$$
\begin{aligned}
& 6 \times 6=36=6^{2} \\
& 7 \times 5=3 \tilde{3}=6^{2}-1^{2} \\
& 8 \times 4=32=6^{2}-2^{2} \\
& 9 \times 3=27=6^{2}-3^{2} \\
& 10 \times 2=20=6^{2}-4^{2}
\end{aligned}
$$

$11 \times 1=11=0^{2}-5^{2}$
This theorem may be expressed algebraically, thus: ($n-\mathrm{x}$
$x(a+x)=a^{2}-x^{2}$, and numerically as in the table
Suppose it is reqcired to multiply 53 by 47 . Half thelt sum is 50 , thie square of 50 is 2,500 , and the answer sought is that sum less $3^{2}=9=2,491$. In practice, such an example can be solved almost instantaneously. If 47 times if vere required, proceed as in the example and add $4 \boldsymbol{r}$ to the product.
To use this method, corsiderable knowledge of square numbers and of some of their remarkable properties is re quired; and the careful study of difference series will be heneficial. This study has proved an excellent means of intiating pupils into the mysteries of square and other roots, nabling them to become proficient in a short time. There are many similar things in the curious and wonderful science of numbers that, like the magic squares given in your issut of December 30,1873 , are of far more value than is generally upposed. Let some one arrange them in a suitable form and put them into the hands of the Yankee boy.
New Britain, ('onn.
F. H. R.

The Relative Atraction of the Earth and the Sun

 To the Editor of the Scientific American:The semidiameter of the earth is, in round numbers, about 4,000 miles, and that of the sun 425,000 miles. An object situated on the surface of the earth will, therefore, when turned toward the sun, be 22,874 times farther from the center of solar attraction than it is from the center of terrestrial attraction; and when turned from the sun, it will be 22,876 times as far from the sun's center as from the carth's center. Now ats from the sun's center as from the carth's center. Now ats the strength of attraction varies inversely as the sciuares of
the distances, the pull of the earth's mass will be $22,874^{2}$ the distances, the pull of the earth's mass will be $22,874^{2}$
times as great (on a body on the surface of the earth turned times as great (on a body on the surface of the earth turned
toward the sun) as the pull of an equal solar mass will be and when the object is away from the sun, the pull of the earth will be $22,876^{2}$ times as great as the pull of an equal solar mass. But, as the sun's mass is estimated to be 215,000 times as great as the earth's mass, the total pull of the sun
on an object in the two supposed situations will be : 22,874 315,000
and $22,878^{2}$ times that of the earth.
$\frac{315,000}{22,874^{2}}=\frac{315,000}{523,176,276}$ and $\frac{315,000}{22,876^{2}}=\frac{315,000}{523,21,376}{ }^{\text {or }} 1,6 \frac{1}{1,80,877}$
and $\overline{1,660,688}$.
Now if the foregoing estimates be correct, there must be, certain situations, a sensible difference between the weight a given mass when on the surface of the earth in the direction of the sun, and the weight of the same mass when the earth has turned it away from the sun. This could be verified by experiment.

Let the place be at the equator, and the time of the experiment be one of the equinoxes. Suppose scales to be con structed of the capacity of several tuns and of the utmost possible delicacy. Now let us try our experiment with o weight of 10 tuns. Its weight at noon will be $10 \mathrm{~T}-166 \frac{1}{0 s}$: of 10 T . and its weight at midnight will be $10 \mathrm{~T} .+\frac{1}{166 \frac{1}{67} 7 \times 4}$ of 10 T . or: Noon $w::$ ght $=20,000 \mathrm{lbs} .-12 \mathrm{lbs} .10$ drams $=$ 19,987 lbs. 15 czs. 6 drams. Midnight weight $=20,000+1$. lbe. 8 drams $=20,012$ lbe. 0 ozs. 8 drams, making a difference between the noon weight and the midnight weight of 24 llos. oz. 2 drams.
If astronomers have miscalculated the relative masses of the sun and the earth, will not this experiment indicate the fact? And if we experiment in the same manner with the moon's attraction, may it not lead us to modify nur state. ments of relative masses still further? And, moreover, may it not lead to a reconstruction of our tables of distances? If the principles set forth herein be correct, would not such an experiment be as worthy the interest of the great powers as are those expeditions of observation, so muaificently aidel, to
make the transit of Venus and the total eclipse of the sun Brownville,
W. B. Slajohter

Adjusting Jonrnal Boxes Horizontally

To the Eelitor of the Seientific American

Apropos of recent suggestions for taking up the wear of ournal boxes, permit me to say that there is a common error among machinists to the effect that the wear upon the side of the main journal box nearest the cylinder is double that on the side opposite. Strange to say, the same idea is ad vanced as a theorem in a work on machine drawing, recently published by a noted writer on graphics. Some machinists, again, think that the wear is equal on each side of the center. The following is a demonstration of the true case:

The diagram be ing the skeleton figure of a locomo tive or stationary point of traction on belt or rail, be taken as the axis
of moments
Let $P=$ pressure on piston, let $x=$ pressure on front of box at 0 , let $\mathrm{y}=$ pressure on back of box at O , let $\mathrm{R}=$ radiu of wheel, and $r=$ radius of crank. With crank pin at C, we have $x=P \times(R+r)$ by equaling momenis. With crank pin at 1 , we have $y=\frac{P \times(R-r)}{R}$. Whence $x \div y=$ $\frac{P(R+r)}{R} x_{P(R-r)} \frac{R}{R-r}=1+\frac{2 r}{R-r}$, by performing division But if $x=2 y$, then $x \div-\frac{y}{2 r} \quad \begin{aligned} & 2 r\end{aligned}$ must equal 2 ; whence $\stackrel{2 r}{\mathrm{R}-\mathrm{r}}=1$ and $2 \mathrm{r}=\mathrm{R}-\mathrm{r}$ or $\mathrm{R}=3 \mathrm{r}$. That is, the pressure on the front of box is double that on the back of box only whe the radius of the wheel is three times that of the crank.
Or in a locomotive, let P, x and y be as before, and $\mathrm{T}=$ train resistance. Then going forward, with crank at $C, x=$ $\mathrm{P}+\mathrm{T}$: or with crank at $\mathrm{B}, \mathrm{y}=\mathrm{P}-\mathrm{T}$, whence $\mathrm{x} \div \mathrm{y}=\begin{aligned} & \mathrm{P}+\mathrm{T} \\ & \mathrm{P}-\mathrm{T}\end{aligned}=$ $1+\frac{2 ' \mathrm{~T}}{\mathrm{P}-\mathrm{T}}$ which, as before, is equal to 2 only when $\mathrm{P}=3 \mathrm{~T}$ The wear on both sides of the box will be equal only when $\mathrm{r}=\mathrm{O}$. The wear on the front box will always therefore be practically the greater, but not necessarily twice as great. Since the wear is proportional to the pressure, the formulie $x \div y=\frac{R+r}{R-r}$ and $x \div y=\begin{aligned} & P+T \\ & P-T\end{aligned}$
the relative thickness of the two sides of the box.
Notwithstanding the weight of the engine throws the point of greatest wear towards the top or bottom of the box the fact of unerual wear, proved above, shows the necessity of making the boxes adjustable horizontally, as suggested
by your correspondent.
W. L. C. by your correspondent.
Lehigh Univeraity, Bethlehem, Pa.

Animal Elcetricity and Magnetisin.

To the Editor of the Scientific American:
Among the components that make up the whole of man' vital parts, animal electricity and magnetism are of promi nent importance. Their existence has long been known but almost all else in regard to them seems mystery
Air when taken into the lungs gives up a portion of its oxygen, which passes into the blood, and, when expired is converted into carbonic acid gas. The latter gas amount to about three and a half per cent of the whole expiration In the process a combustion takes place, wherein a portion of the oxygen combines with the blood, and another portion with carbon, to be exhaled as carbonic acid gas. I presume that this combustion or transformation is the cause of ani mal heat. But this is foreign to the present subject. Faraday discovered that oxygen was the most magnetic of al gases, holding the same place among gases that iron does among metals. When reduced to proportions and figures, if 17.5 represents the magnetism of oxygen, air would rate $3 \cdot 4$, while carbonic acid gas is diamagnetic and would be represented by $0 \cdot 0$. The amount of carbonic acid gas taken into the lungs with air is quite small, but from each healthy person sixteen cubic inches are exhaled per minute, or twenty-three thousand cuhic inches per day. As this gas is composed of carbon one part and oxygen two parts, it fol lows that about fifteen thousand three hundred and thirty-
two cubicinches of oxygen, charged with magnetism in the proportion above stated, has the total amount of magnetism daily eliminated from it by the vital organs of each individ ual. What becomes of this magnetism thus extracted from the oxygen of the air? It enters the lungs; it does not go nut again. The sequence is beyond question: it is taken up by the organism and remains there to be used in the vital forces. Thus in the life giving gas, not only is to be found the property of supporting life, by purifying the blood and furnishing heat for the body, but, aleo, the magnetism that performs an important, but a far more subtile part. An at mosphere of pure oxygen, if supplied to the lungs, increase the heat, magnetism, and electricity of the body, by the conversion of a much larger proportion of oxygen into carbon ic acid gas, and quickens life to such an extent as to cause death from exuberance. When an absence of oxygen from the blood has almost caused a cessation of magnetic and elec tric currents in the body, an injection into the circulation of blood charged with oxygen will cause their instant return and just in proportion as carbonic acid gas is exhaled from the lungs, do we find a supply of these fluids remaining. I have referred to animal electricity and magnetism a
dentical. In vital economy I believe them to be so in sourc f supply; and while manifestations of one may be had without the apparent presence of the other, yet there is so much to join them together, and so little to separate them, that the day of doubting their identity, in this respect, ha about passed. Oxygen and ozone are the same, and yet how different! Are not both different conditions of the sam hing

Jorn Hill.

Columbus, Ga.

THE SILVER MINES OF PERU.

Peru was conquered and explored by the early Spaniards under the belief that it was El Dorado; but there are no fa mous mines of gold in the Republic save those of Carabaya It better deserves the name of La Platcu, for its Andes ar threaded with silver. The annual yield of Peruvian silver owever, is decreasing, owing to mismanagement. A thor ough scientific survey of the country is needed, and then judicious system of mining. We are confident this will re veal

That on the high cquatorridgy rise.

The most famous silver mines in South America, after those of Potosi, are the mines of Cerro de Pasco, sixt leagues northeast of Lima. They are situated on the At lantic slope of the Andes, over 13,000 feet above the sea where the prevailing rock is conglomerate. The silver, dis covered by an Indian in 1630, occurs in the native state; also as sulphuret mixed with pyrites, with cobrizo (a carbonat of copper and lead. with sulphuret of copper), and with ox des, forming what are known in Peru and Mexico as pacos and colorados. The ore is treated to salt and mercury, but oo rudely that generally one pound of mercury is lost to every half pound of silver extracted. Fortunately, Cerro de Pasco is only 200 miles from the celebrated quicksilver mines of Huancavelica. According to Herndon, the ore ields only six marks to the cajou. (A mark is eight ounces and a cajou is three tuns). A representative specimen in our possession contains 0.004 of silver. During the last two cen turies and a half, the mines have produced about $\$ 500,000$, 000 . The annual amount of ore mined has been $50,000 \mathrm{ca}$ jous, yielding an average of four and a half marks, the malgam containing 22 per cent of silver. Just now, wor has nearly ceased, owing to the inadequate means of drain age. But at Cerro de Pasco, as at other places, it has been found profitable to re-work. by the improved modern method, the tailings left by the old Spanish miners.
Hualgayoc, fourteen leagues north of Cajamarca, has long lso afflicted with plethora of water. There are many good mines in the vi cinity of Lampa and Puno on the borders of Lake Titicaca hose of Manto, Salcedo, Chupica, and Cancharani were famous in Spanish history. The ores of Huantajaya near rquique yield from 2,000 to 5,000 marks to the cajou. Mass es of pure silver have been found on the surface of the plain one weighing 800 lbs. Rich deposits occur also in the prov ince of Cailloma, north of Arequipa; and at Yauli, San Ma teo, and other localities near the Oroya Railroad. Extensive eins have been recently discovered at Chileta, the terminu of the Pacasmayo railroad, the oreassaying from $\$ 60$ to $\$ 200$ tun.
But the most numerous and promising silver mines of Peru are, without doubt, located in the department of An cache, just north of Lima; not because it is a richer region han the eastern cordillera, but because it is the only distric which has been scientifically explored. This has been done by the accomplished naturalist, Professor Raymondi, unde he patronage of Mr. Henry Meiggs. The report just pub ished at Lima contains assays of specimens from the most aluable mines in which the silver occurs. It appears: (1) That silver is not very common in the native state. (2) That he minerals richest in silver are pyrargyrite (" rosicler" or uby silver) and stephanite (brittle silver glance). (3) That he greater part of the silver, however, is extracted from trahedrite, galena, and many mineral oxides (pacos or color dos). The pacos richest in silver ore are those which result from the oxidation of stephanite and pyrargyrite; the poor st are found in great part of oxide of iron, in which the sil ver is minutely disseminated in the native state. (4). It i worthy of notice that the silver ores are constantly associa ed with antimony. Eren the galenas having a cubical structure always contain a small percentage of antimony.

New Houses.

The coincidence of a man's moving into a new house and dying soon after has frequently been a subject of remark and there is an avoidable cause-the house is moved into before the walls and plaster and the wood are sufficiently ried. Sometimes the cause of death is the poisonous character of the water conveyed through new lead pipes. No water for drinking or cooking purposes should be used in a building supplied with new lead pipes, in whole or in part, for at least one month after the water has been used daily this gives time for a protecting coating to form on the inner surface of the pipes, when their chemical change from contact with water generally ceases.
But the damp materials of the house have the most decided ffect, especially on persons over fifty years old or of frail constitutions; whereas if the person were in the full vigor of life and health, not even an inconvenience would be ex erienced.
In building a new hoase, or on going to live in another lo cality where the water supply is not far from the house, i should be ascertained with the utmost certainty that the
spring or well is higher than the privies or barnyards. In sidious and fatal forms of decline and typhoid very often re sult from persons drinking water which is draincd from the localities named.
The safest plan, and the only safe plan for furnishing dwellings with the most healthful and unobjectionalle water, is to have a watertight cistern, and let the water from the roof of the house or barn, or other outhouses, be con veyed into it through a box of sand several yards long, this box to rest on a board, or cemented bottom and sides, so that no outside water could not get into it.-Hall's Iournal of Health.

Solvent Powers of Water.

Water is a physical rather than a chemical agent in bleach ng and dyeing; it is the vehicle which carries the chemica substance to the cloth to be operated upon, or which removes the matters necessary to be removed from it. When a sub stance is mixed with water, it may either be dissolved by it, anddisappear, as salt does; or it may remain in suspension as chalk does. Nothing is considered to be actually dissolved in water if it can settle out again, or if it will not pass with the water through a filter made of paper or calico; thus to talik of dissolving ground chalk in water is incorrect, for fallowed to stand it would settle out; or. if the misture were filered, the water would pass clear, while the chalk would emain upon the calico; but blue vitriol (sulphate of copper) or example, does really dissolve in water, and the liquor al Alters through together; to deprive the water of the blue vitriol would require chemical means different in kind from filtration. Water, therefore, dissolves some substances and not others. Water does not dissolve the same quantity of all soluble substances; of some it can dissolve its own weight, and more; of others a small portion; and of some ex tremely little. As a rule, hot water dissolves more than cold and more quickly than cold: but, upon cooling, the excess mostly falls out as crystals. This point deserves notice, for liquor, which is of right strength when a little warm, may e too weak when it becomes cold; left in a carboy, for ex ample, in a cold place, because the salt crystallizes out this is the case only with those salts that are but sparingly soluble, as chlorate of potash, cream of tartar, sulphate of potash, etc. The crystallizing is sometimes troublesome in steam colors which, right enough wien freshly made, become filled with small crystals, and rough on the machine; it is felt in the case of an ageing liquor, which contains chiorate of potash'as an active agent, which, crystallizing out, leaves the liquor weak and not able to do its work. As a usual thing, the drug room upon a printing or dyeing works should be cool, but there are some liquors better in a moderately warm place; brown vitriol, for example, in winter time is apt to go solid in the carboys, if kept in an exposed place.-Am, Tex. Manuf.
ir Richard A. Glass.
Sir Richard Atwood Glass died recently at Sou thampton, aged 53. It was at his factory that 1250 miles of the first Atlantic cable of 1866 was wholly constructed, under the direction of Mr. Glass, who, on the successful completion of the under taking, after ten years of unremitting labor, received the honor of knighthood. He retired from the company in 1867 , and afterwards became chairman of the Anglo-American Telegraph Company. He was for a short time a member of the House of Commons.

The Detection of Death

The late Marquis d'Ourche,one of whose friends was buried live, left a sum of 20,000 francs $(\$ 4,000)$ to the French Academy of Medicine, to be given to the inventor of a simple process of ascertaining when death has really occurred, and a further sum of 5,000 francs to be awarded to the discover of a scientific method of verifying death. Altogether 102 essays were sent in for adjudication. Most of the papers ontained such absurd suggestions that the list was practially limited to 32 competitors. The large prize was not warded, but the 5,000 francs weredividedbetween four competitors. No new facts, likely to enlarge the domain of forensic medicine, have been elucidated by these investigations.

Mebsrs. Macnatght, Robinson, \& Co.. of Southwark, London, England, have sent us diagrams of a most complete system of wrought iron girders for buildin $\{$ purposes, made by them and kept constantly in stock. Their sections are cheifly of the double T form, and range from 2 to 6 inches in width, and from 3 to 14 inches in hight. The list also includes fitch plates, bolte, nuts, washers, etc., an arrangement very convenient for builders, who by consulting the chart can as certain the approximate cost.

We have received from Messrs. (joodnow and Wightman, of 23 Cornhill, Boston, Mass., an illustrated catalogue of ools, lathe atiachments,and machinists' supplies, which provides for nearly all the possible wants of model makers and experimenters in mechanics. The line of small gearings is extensive and complete, and the book describen several now gages and combination tools, of value and interest to all inventors and amateur mechanics.

A New Application of Gypsim.-Gypsum mixed with 4 per cent of fowdered marshmallow root will harden in about one hour, and can then be sawn or turned, and made into dominoes, dice, etc. With 8 per cent of marshmallow, the hardness of the mass is increased, and it can be rolled out
into thin plates, and painted or polished.

